The trans-ancestral genomic architecture of glycemic traits

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature genetics Ročník 53; číslo 6; s. 840 - 860
Hlavní autori: Marenne, Gaëlle, Horikoshi, Momoko, Chu, Audrey Y., Hong, Jaeyoung, Hottenga, Jouke-Jan, Kaakinen, Marika A., Moreno-Macias, Hortensia, Nolte, Ilja M., Raulerson, Chelsea K., Chen, Brian H., Hai, Yang, He, Jing, Heianza, Yoriko, Huang, Tao, Huerta-Chagoya, Alicia, Jensen, Richard A., Lange, Leslie A., Langefeld, Carl D., Li, Man, Nag, Abhishek, Pistis, Giorgio, Raffield, Laura, Robertson, Neil R., Rueedi, Rico, Ryan, Kathleen, Saxena, Richa, van der Most, Peter J., Wang, Nan, Warren, Helen R., Wilsgaard, Tom, Wong, Andrew, Zafarmand, Mohammad Hadi, Baldassarre, Damiano, Beekman, Marian, Bergman, Richard N., Bornstein, Stefan R., Campbell, Archie, Chang, Yi Cheng, Eiriksdottir, Gudny, Han, Sohee, Hartman, Catharina A., Ichihara, Sahoko, Katsuya, Tomohiro, Khor, Chiea Chuen, Kolcic, Ivana, Kuulasmaa, Teemu, Lemaitre, Rozenn N., Lin, Shih-Yi, Linneberg, Allan, Matsuda, Fumihiko, Moon, Sanghoon, Ohyagi, Yasumasa, Qi, Qibin, Sandow, Kevin, Thuesen, Betina, van Dam, Rob M., Willems van Dijk, Ko, Adair, Linda S., Boehnke, Michael, Bønnelykke, Klaus, Boomsma, D. I., Buchanan, Thomas A., Chambers, John C., Chasman, Daniel I., Chen, Yii-Der Ida, Collins, Francis S., Cucca, Francesco, de Silva, H. Janaka, Ferrucci, Luigi, Florez, Jose C., Franks, Paul W., Grimsgaard, Sameline, Guo, Xiuqing, Huang, Wei, Kato, Norihiro, Koistinen, Heikki A., Kuh, Diana, Kumari, Meena, Launer, Lenore J., Mook-Kanamori, Dennis O., Pedersen, Oluf, Pramstaller, Peter P., Province, Michael A., Psaty, Bruce M., Rosendaal, Frits R., Shu, Xiao-ou, Tai, E. Shyong, Timpson, Nicholas J., Tusie, Teresa, Uusitupa, Matti, Vrijkotte, Tanja G. M., Wei, Wen B., Willemsen, Gonneke, Wong, Tien-Yin, Xiang, Anny H., Yokota, Mitsuhiro, Zeggini, Eleftheria, McCarthy, Mark I., Dupuis, Josée, Parker, Stephen C. J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.06.2021
Nature Publishing Group
Predmet:
ISSN:1061-4036, 1546-1718, 1546-1718
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P  < 5 × 10 −8 ), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
AbstractList Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10.sup.-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242loci (99 novel; P<5×10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10.sup.-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Glycemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated hemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P<5x10-8), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P  < 5 × 10 −8 ), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P &lt; 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P &lt; 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10 ), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Audience Academic
Author Kumari, Meena
Rasmussen-Torvik, Laura J.
Sofer, Tamar
Wang, Yujie
Abecasis, Gonçalo R.
Zafarmand, Mohammad Hadi
Franks, Paul W.
Sanna, Serena
Pedersen, Oluf
Nag, Abhishek
Teslovich, Tanya M.
Hartwig, Fernando P.
Kentistou, Katherine A.
Amin, Najaf
Baldassarre, Damiano
Vogel, Mandy
Matsubara, Tatsuaki
Alarcón-Riquelme, Marta E.
Goodarzi, Mark O.
Eiriksdottir, Gudny
Aguilar-Salinas, Carlos Alberto
Kim, Young Jin
Peters, Annette
Lin, Xu
Takeuchi, Fumihiko
Peyser, Patricia A.
Palmer, Colin N. A.
Njølstad, Inger
Chen, Chien-Hsiun
Qi, Lu
Jørgensen, Marit E.
Yokota, Mitsuhiro
Liu, Ching-Ti
Tönjes, Anke
Barroso, Inês
Boerwinkle, Eric
Kutalik, Zoltan
van Dam, Rob M.
Lind, Lars
Chang, Yi Cheng
Wu, Peitao
Frayling, Timothy M.
Wang, Carol A.
Timmers, Paul R. H. J.
Zhao, Wei
Evans, Michele K.
Wood, Andrew R.
Lindström, Jaana
Li-Gao, Ruifang
Gigante, Bruna
Heckbert, Susan R.
Boomsma, D. I.
Rich, Stephen S.
Jensen, Richard A.
Kawaguchi, Takahisa
Goel, Anuj
Liu, Jianjun
Small, Kerrin S.
Duan, Qing
Matsuda, Fumihiko
Schurmann, Claudia
März, Winfried
de Haan, Hugo
AuthorAffiliation 204 Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
272 National Heart and Lung Institute, Imperial College London, London, UK
121 Genomics plc, Oxford, UK
93 German Center for Diabetes Research (DZD), Neuherberg, Bavaria, Germany
110 Icelandic Heart Association, Kopavogur, Iceland
105 Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
246 Department of Medicine, Harvard Medical School, Boston, MA, USA
192 Gen-info LtD, Zagreb, Croatia
42 Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
160 Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
98 Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
124 Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
13 Laboratory for Genomics of Diabetes
AuthorAffiliation_xml – name: 34 Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
– name: 205 Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
– name: 255 Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
– name: 169 Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
– name: 317 Wellcome Sanger Institute, Hinxton, UK
– name: 207 Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
– name: 53 NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
– name: 265 MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda
– name: 115 National Center for Global Health and Medicine, Tokyo, Japan
– name: 188 Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– name: 83 Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
– name: 250 Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
– name: 315 Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
– name: 264 Netherlands Heart Institute, Utrecht, The Netherlands
– name: 151 Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
– name: 69 Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
– name: 105 Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
– name: 200 Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
– name: 186 Department of Medicine and Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
– name: 102 Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
– name: 190 Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Bavaria, Germany
– name: 263 Institute of Molecular and Clinical Ophthalmology Basel IOB, Basel, Switzerland
– name: 77 Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
– name: 168 Institute of Biomedicine, Bioinformatics Center, Univeristy of Eastern Finland, Kuopio, Finland
– name: 75 Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
– name: 209 Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
– name: 120 Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
– name: 159 Internal Medicine, Endocrinology, Diabetes & Metabolism, Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
– name: 269 Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
– name: 71 Department of Statistics, The University of Auckland, Science Center, Auckland, New Zealand
– name: 127 Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
– name: 171 USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
– name: 89 Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmo, Sweden
– name: 293 Pirkanmaa Hospital District, Tampere, Finland
– name: 318 TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
– name: 303 Cardiovascular and Metabolic Disease Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
– name: 26 Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
– name: 119 Department of Biomedical Data Sciences, Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
– name: 176 Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
– name: 224 Aberdeen Centre for Health Data Science, 1:042 Polwarth Building, School of Medicine, Medical, Science and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
– name: 305 Department of Public Health, University of Helsinki, Helsinki, Finland
– name: 192 Gen-info LtD, Zagreb, Croatia
– name: 197 Centre for Global Health, The Usher Institute, University of Edinburgh, Edinburgh, UK
– name: 244 Intramural Research Program, National Institute of Aging, Baltimore, MD, USA
– name: 325 Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
– name: 261 Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
– name: 294 Department of Medicine, University of Cambridge, Cambridge, UK
– name: 48 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
– name: 309 Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
– name: 237 Harvard Medical School, Boston, MA, USA
– name: 220 Clinical and Health Services Research, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
– name: 319 Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
– name: 58 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Taiwan
– name: 18 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
– name: 15 Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
– name: 266 Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
– name: 129 Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam Universities Medical Center, Amsterdam, The Netherlands
– name: 185 Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
– name: 231 Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
– name: 46 Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
– name: 221 Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– name: 106 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
– name: 20 Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
– name: 184 Department of Diabetes, Diabetes, & Nutritional Sciences, James Black Centre, King’s College London, London, UK
– name: 93 German Center for Diabetes Research (DZD), Neuherberg, Bavaria, Germany
– name: 211 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
– name: 22 Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
– name: 73 Department of Medicine, Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 152 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
– name: 81 Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
– name: 187 Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
– name: 183 Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya, Japan
– name: 1 Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
– name: 63 Department of Statistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– name: 21 Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
– name: 116 Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
– name: 101 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
– name: 154 Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
– name: 166 Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
– name: 247 Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweeden
– name: 179 Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
– name: 234 INSERM UMR 1283 / CNRS UMR 8199, European Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
– name: 98 Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
– name: 141 Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
– name: 24 Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
– name: 36 Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
– name: 203 Sarepta Therapeutics, Cambridge, Massachusetts, USA
– name: 47 The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
– name: 298 Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
– name: 27 Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
– name: 68 Bioinfosol, Sevilla, Spain
– name: 157 Internal Medicine, Endocrine & Metabolism, Tri-Service General Hospital, Taipei, Taiwan
– name: 316 Kurume University School of Medicine, Japan
– name: 304 Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
– name: 230 Digital Health Center, Hasso Plattner Institut, University Potsdam, Potsdam, Germany
– name: 29 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
– name: 300 Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
– name: 139 Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institues of Health, Bethesda, MD, USA
– name: 7 MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
– name: 296 Department of Psychology, University of Miami, Miami, FL, USA
Author_xml – sequence: 3
  givenname: Gaëlle
  orcidid: 0000-0002-4363-7170
  surname: Marenne
  fullname: Marenne, Gaëlle
  organization: Department of Human Genetics, Wellcome Sanger Institute, Inserm, Univ Brest, EFS, UMR 1078, GGB
– sequence: 10
  givenname: Momoko
  surname: Horikoshi
  fullname: Horikoshi, Momoko
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Wellcome Centre for Human Genetics, University of Oxford, Laboratory for Genomics of Diabetes and Metabolism, RIKEN Centre for Integrative Medical Sciences
– sequence: 18
  givenname: Audrey Y.
  surname: Chu
  fullname: Chu, Audrey Y.
  organization: Division of Preventive Medicine, Brigham and Women’s Hospital
– sequence: 21
  givenname: Jaeyoung
  surname: Hong
  fullname: Hong, Jaeyoung
  organization: Department of Biostatistics, Boston University School of Public Health
– sequence: 22
  givenname: Jouke-Jan
  surname: Hottenga
  fullname: Hottenga, Jouke-Jan
  organization: Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam University Medical Center
– sequence: 24
  givenname: Marika A.
  surname: Kaakinen
  fullname: Kaakinen, Marika A.
  organization: Department of Metabolism, Digestion and Reproduction, Imperial College London, Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey
– sequence: 27
  givenname: Hortensia
  surname: Moreno-Macias
  fullname: Moreno-Macias, Hortensia
  organization: Department of Economics, Metropolitan Autonomous University
– sequence: 30
  givenname: Ilja M.
  surname: Nolte
  fullname: Nolte, Ilja M.
  organization: Department of Epidemiology, University of Groningen, University Medical Center Groningen
– sequence: 32
  givenname: Chelsea K.
  surname: Raulerson
  fullname: Raulerson, Chelsea K.
  organization: Department of Genetics, University of North Carolina
– sequence: 55
  givenname: Brian H.
  surname: Chen
  fullname: Chen, Brian H.
  organization: Department of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego
– sequence: 68
  givenname: Yang
  surname: Hai
  fullname: Hai, Yang
  organization: Department of Statistics, The University of Auckland, Science Center
– sequence: 70
  givenname: Jing
  surname: He
  fullname: He, Jing
  organization: Department of Medicine, Epidemiology, Vanderbilt University Medical Center
– sequence: 71
  givenname: Yoriko
  surname: Heianza
  fullname: Heianza, Yoriko
  organization: Department of Epidemiology, Tulane University Obesity Research Center, Tulane University
– sequence: 72
  givenname: Tao
  surname: Huang
  fullname: Huang, Tao
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Peking University
– sequence: 73
  givenname: Alicia
  surname: Huerta-Chagoya
  fullname: Huerta-Chagoya, Alicia
  organization: Molecular Biology and Genomic Medicine Unit, National Council for Science and Technology, Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition
– sequence: 75
  givenname: Richard A.
  surname: Jensen
  fullname: Jensen, Richard A.
  organization: Department of Medicine, Cardiovascular Health Research Unit, University of Washington
– sequence: 82
  givenname: Leslie A.
  surname: Lange
  fullname: Lange, Leslie A.
  organization: Department of Medicine, Divison of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus
– sequence: 83
  givenname: Carl D.
  surname: Langefeld
  fullname: Langefeld, Carl D.
  organization: Department of Biostatistics and Data Science, Wake Forest School of Medicine
– sequence: 85
  givenname: Man
  surname: Li
  fullname: Li, Man
  organization: Department of Medicine, Division of Nephrology and Hypertension, University of Utah
– sequence: 94
  givenname: Abhishek
  surname: Nag
  fullname: Nag, Abhishek
  organization: Wellcome Centre for Human Genetics, University of Oxford
– sequence: 98
  givenname: Giorgio
  surname: Pistis
  fullname: Pistis, Giorgio
  organization: Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)
– sequence: 100
  givenname: Laura
  surname: Raffield
  fullname: Raffield, Laura
  organization: Department of Genetics, University of North Carolina
– sequence: 103
  givenname: Neil R.
  surname: Robertson
  fullname: Robertson, Neil R.
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Wellcome Centre for Human Genetics, University of Oxford
– sequence: 104
  givenname: Rico
  surname: Rueedi
  fullname: Rueedi, Rico
  organization: Department of Computational Biology, University of Lausanne, Swiss Institute of Bioinformatics
– sequence: 105
  givenname: Kathleen
  surname: Ryan
  fullname: Ryan, Kathleen
  organization: Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine
– sequence: 107
  givenname: Richa
  surname: Saxena
  fullname: Saxena, Richa
  organization: Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Program in Medical and Population Genetics, Broad Institute
– sequence: 118
  givenname: Peter J.
  surname: van der Most
  fullname: van der Most, Peter J.
  organization: Department of Epidemiology, University of Groningen, University Medical Center Groningen
– sequence: 123
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: Department of Preventive Medicine, Keck School of Medicine of University of Southern California, University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California
– sequence: 124
  givenname: Helen R.
  surname: Warren
  fullname: Warren, Helen R.
  organization: Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London
– sequence: 126
  givenname: Tom
  surname: Wilsgaard
  fullname: Wilsgaard, Tom
  organization: Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway
– sequence: 127
  givenname: Andrew
  surname: Wong
  fullname: Wong, Andrew
  organization: MRC Unit for Lifelong Health and Ageing at University College London
– sequence: 130
  givenname: Mohammad Hadi
  surname: Zafarmand
  fullname: Zafarmand, Mohammad Hadi
  organization: Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center
– sequence: 137
  givenname: Damiano
  surname: Baldassarre
  fullname: Baldassarre, Damiano
  organization: Department of Medical Biotechnology and Translational Medicine, University of Milan, Centro Cardiologico Monzino, IRCCS
– sequence: 138
  givenname: Marian
  surname: Beekman
  fullname: Beekman, Marian
  organization: Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center
– sequence: 139
  givenname: Richard N.
  surname: Bergman
  fullname: Bergman, Richard N.
  organization: Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center
– sequence: 143
  givenname: Stefan R.
  surname: Bornstein
  fullname: Bornstein, Stefan R.
  organization: Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
– sequence: 146
  givenname: Archie
  surname: Campbell
  fullname: Campbell, Archie
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Usher Institute, University of Edinburgh
– sequence: 148
  givenname: Yi Cheng
  surname: Chang
  fullname: Chang, Yi Cheng
  organization: Institute of Biomedical Sciences, Academia Sinica, Department of Internal Medicine, National Taiwan University Hospital, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University
– sequence: 152
  givenname: Gudny
  surname: Eiriksdottir
  fullname: Eiriksdottir, Gudny
  organization: Icelandic Heart Association
– sequence: 159
  givenname: Sohee
  surname: Han
  fullname: Han, Sohee
  organization: Division of Genome Science, Department of Precision Medicine, National Institute of Health
– sequence: 160
  givenname: Catharina A.
  surname: Hartman
  fullname: Hartman, Catharina A.
  organization: Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen
– sequence: 165
  givenname: Sahoko
  surname: Ichihara
  fullname: Ichihara, Sahoko
  organization: Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine
– sequence: 173
  givenname: Tomohiro
  surname: Katsuya
  fullname: Katsuya, Tomohiro
  organization: Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine
– sequence: 174
  givenname: Chiea Chuen
  surname: Khor
  fullname: Khor, Chiea Chuen
  organization: Genome Institute of Singapore, Agency for Science, Technology and Research
– sequence: 176
  givenname: Ivana
  surname: Kolcic
  fullname: Kolcic, Ivana
  organization: Department of Public Health, University of Split School of Medicine
– sequence: 177
  givenname: Teemu
  surname: Kuulasmaa
  fullname: Kuulasmaa, Teemu
  organization: Institute of Biomedicine, Bioinformatics Center, Univeristy of Eastern Finland
– sequence: 183
  givenname: Rozenn N.
  surname: Lemaitre
  fullname: Lemaitre, Rozenn N.
  organization: Department of Medicine, Cardiovascular Health Research Unit, University of Washington
– sequence: 186
  givenname: Shih-Yi
  surname: Lin
  fullname: Lin, Shih-Yi
  organization: Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, National Defense Medical Center, National Yang-Ming University
– sequence: 188
  givenname: Allan
  surname: Linneberg
  fullname: Linneberg, Allan
  organization: Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 192
  givenname: Fumihiko
  surname: Matsuda
  fullname: Matsuda, Fumihiko
  organization: Center for Genomic Medicine, Kyoto University Graduate School of Medicine
– sequence: 195
  givenname: Sanghoon
  surname: Moon
  fullname: Moon, Sanghoon
  organization: Division of Genome Science, Department of Precision Medicine, National Institute of Health
– sequence: 202
  givenname: Yasumasa
  surname: Ohyagi
  fullname: Ohyagi, Yasumasa
  organization: Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine
– sequence: 206
  givenname: Qibin
  surname: Qi
  fullname: Qi, Qibin
  organization: Department of Epidemiology and Population Health, Albert Einstein College of Medicine
– sequence: 214
  givenname: Kevin
  surname: Sandow
  fullname: Sandow, Kevin
  organization: The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
– sequence: 221
  givenname: Betina
  surname: Thuesen
  fullname: Thuesen, Betina
  organization: Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital
– sequence: 226
  givenname: Rob M.
  surname: van Dam
  fullname: van Dam, Rob M.
  organization: Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Department of Nutrition, Harvard T. H. Chan School of Public Health
– sequence: 233
  givenname: Ko
  surname: Willems van Dijk
  fullname: Willems van Dijk, Ko
  organization: Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Department of Human Genetics, Leiden University Medical Center
– sequence: 236
  givenname: Linda S.
  surname: Adair
  fullname: Adair, Linda S.
  organization: Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Carolina Population Center, University of North Carolina
– sequence: 246
  givenname: Michael
  surname: Boehnke
  fullname: Boehnke, Michael
  organization: Center for Statistical Genetics, University of Michigan, Department of Biostatistics, School of Public Health, University of Michigan
– sequence: 249
  givenname: Klaus
  surname: Bønnelykke
  fullname: Bønnelykke, Klaus
  organization: COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen
– sequence: 250
  givenname: D. I.
  surname: Boomsma
  fullname: Boomsma, D. I.
  organization: Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam University Medical Center
– sequence: 252
  givenname: Thomas A.
  surname: Buchanan
  fullname: Buchanan, Thomas A.
  organization: University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Department of Medicine, Keck School of Medicine of University of Southern California, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California
– sequence: 255
  givenname: John C.
  surname: Chambers
  fullname: Chambers, John C.
  organization: Department of Epidemiology and Biostatistics, Imperial College London, Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Lee Kong Chian School of Medicine, Nanyang Technological University, Imperial College Healthcare NHS Trust, Imperial College London, MRC-PHE Centre for Environment and Health, Imperial College London
– sequence: 256
  givenname: Daniel I.
  surname: Chasman
  fullname: Chasman, Daniel I.
  organization: Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 257
  givenname: Yii-Der Ida
  surname: Chen
  fullname: Chen, Yii-Der Ida
  organization: The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
– sequence: 259
  givenname: Francis S.
  surname: Collins
  fullname: Collins, Francis S.
  organization: Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institues of Health
– sequence: 261
  givenname: Francesco
  surname: Cucca
  fullname: Cucca, Francesco
  organization: Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)
– sequence: 262
  givenname: H. Janaka
  surname: de Silva
  fullname: de Silva, H. Janaka
  organization: Department of Medicine, Faculty of Medicine, University of Kelaniya
– sequence: 267
  givenname: Luigi
  surname: Ferrucci
  fullname: Ferrucci, Luigi
  organization: Intramural Research Program, National Institute of Aging
– sequence: 268
  givenname: Jose C.
  surname: Florez
  fullname: Florez, Jose C.
  organization: Program in Medical and Population Genetics, Broad Institute, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School
– sequence: 269
  givenname: Paul W.
  surname: Franks
  fullname: Franks, Paul W.
  organization: Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Department of Public Health and Clinical Medicine, Umeå University
– sequence: 277
  givenname: Sameline
  surname: Grimsgaard
  fullname: Grimsgaard, Sameline
  organization: Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway
– sequence: 280
  givenname: Xiuqing
  surname: Guo
  fullname: Guo, Xiuqing
  organization: The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
– sequence: 286
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science & Technology (SAST)
– sequence: 295
  givenname: Norihiro
  surname: Kato
  fullname: Kato, Norihiro
  organization: National Center for Global Health and Medicine
– sequence: 299
  givenname: Heikki A.
  surname: Koistinen
  fullname: Koistinen, Heikki A.
  organization: Department of Public Health Solutions, Finnish Institute for Health and Welfare, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Minerva Foundation Institute for Medical Research
– sequence: 303
  givenname: Diana
  surname: Kuh
  fullname: Kuh, Diana
  organization: MRC Unit for Lifelong Health and Ageing at University College London
– sequence: 304
  givenname: Meena
  surname: Kumari
  fullname: Kumari, Meena
  organization: Institute for Social and Economic Research, University of Essex
– sequence: 308
  givenname: Lenore J.
  surname: Launer
  fullname: Launer, Lenore J.
  organization: Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health
– sequence: 319
  givenname: Dennis O.
  surname: Mook-Kanamori
  fullname: Mook-Kanamori, Dennis O.
  organization: Department of Clinical Epidemiology, Leiden University Medical Center, Department of Public Health and Primary Care, Leiden University Medical Center
– sequence: 329
  givenname: Oluf
  surname: Pedersen
  fullname: Pedersen, Oluf
  organization: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 332
  givenname: Peter P.
  surname: Pramstaller
  fullname: Pramstaller, Peter P.
  organization: Institute for Biomedicine, Eurac Research
– sequence: 333
  givenname: Michael A.
  surname: Province
  fullname: Province, Michael A.
  organization: Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine
– sequence: 334
  givenname: Bruce M.
  surname: Psaty
  fullname: Psaty, Bruce M.
  organization: Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Department of Health Services, Cardiovascular Health Research Unit, University of Washington
– sequence: 340
  givenname: Frits R.
  surname: Rosendaal
  fullname: Rosendaal, Frits R.
  organization: Department of Clinical Epidemiology, Leiden University Medical Center
– sequence: 349
  givenname: Xiao-ou
  surname: Shu
  fullname: Shu, Xiao-ou
  organization: Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center
– sequence: 362
  givenname: E. Shyong
  surname: Tai
  fullname: Tai, E. Shyong
  organization: Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Cardiovascular and Metabolic Disease Signature Research Program, Duke-NUS Medical School
– sequence: 363
  givenname: Nicholas J.
  surname: Timpson
  fullname: Timpson, Nicholas J.
  organization: MRC Integrative Epidemiology Unit, University of Bristol, Department of Population Health Sciences, Bristol Medical School, University of Bristol
– sequence: 366
  givenname: Teresa
  surname: Tusie
  fullname: Tusie, Teresa
  organization: Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico
– sequence: 367
  givenname: Matti
  surname: Uusitupa
  fullname: Uusitupa, Matti
  organization: Department of Public Health and Clinical Nutrition, University of Eastern Finland
– sequence: 372
  givenname: Tanja G. M.
  surname: Vrijkotte
  fullname: Vrijkotte, Tanja G. M.
  organization: Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center
– sequence: 379
  givenname: Wen B.
  surname: Wei
  fullname: Wei, Wen B.
  organization: Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University
– sequence: 381
  givenname: Gonneke
  surname: Willemsen
  fullname: Willemsen, Gonneke
  organization: Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam University Medical Center
– sequence: 383
  givenname: Tien-Yin
  surname: Wong
  fullname: Wong, Tien-Yin
  organization: Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School
– sequence: 385
  givenname: Anny H.
  surname: Xiang
  fullname: Xiang, Anny H.
  organization: Department of Research and Evaluation, Kaiser Permanente of Southern California
– sequence: 388
  givenname: Mitsuhiro
  surname: Yokota
  fullname: Yokota, Mitsuhiro
  organization: Kurume University School of Medicine
– sequence: 389
  givenname: Eleftheria
  surname: Zeggini
  fullname: Zeggini, Eleftheria
  organization: Department of Human Genetics, Wellcome Sanger Institute, Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar
– sequence: 394
  givenname: Mark I.
  surname: McCarthy
  fullname: McCarthy, Mark I.
  organization: Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Wellcome Centre for Human Genetics, University of Oxford, Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Genentech
– sequence: 395
  givenname: Josée
  surname: Dupuis
  fullname: Dupuis, Josée
  organization: Department of Biostatistics, Boston University School of Public Health
– sequence: 401
  givenname: Stephen C. J.
  orcidid: 0000-0001-8122-0117
  surname: Parker
  fullname: Parker, Stephen C. J.
  organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Department of Human Genetics, University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34059833$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04535845$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185083$$DView record from Swedish Publication Index (Umeå universitet)
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454592$$DView record from Swedish Publication Index (Uppsala universitet)
http://kipublications.ki.se/Default.aspx?queryparsed=id:146730751$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqNk1tr1EAUx4NU7EW_gA-y4IsFU2cyl0woCEu9tFAoaO3rYTJ7kk3NZtZMUu2390x3bd1ii-Qhw5nf_5w5t91kq_MdJslLzg44E-ZdkFwZk7KMp4wZlaXFk2SHK6lTnnOzRWemeSqZ0NvJbgiXjHEpmXmWbAvJVGGE2EkOz-c4GXrbhdR2DgMd20mNnV80bmJ7N28GdMPY48RXk7q9dhgviGqG8Dx5Wtk24Iv1fy_59unj-dFxenr2-eRoepo6U7AhLYWueOYyzHJjdSmNEs5lxmIuS6EwQ0Ov0YKXKJwULjd5gTMjFbNOYG642EvSld_wE5djCcu-Wdj-GrxtYG36TicEqbnONPH2QX7p-8G20GPAmB20YxQS1TbODo3vArhMKjdTJRiOBUhhOZQzp0HObCUEla0QlmK8fTDGh-ZiCr6vYRxBKqmK7NEU7vDFCNwoRo3ZS96veIIXOHPYxcZsZrJx0zVzqP0V5JqzQhlysL9yML8nO56eQrQxqYSiKl_F-r5ZB-v9j5FmABZNcNi2tkM_BsgiKUQu47te30Mv_dh31H2iYhtjsndUbVuEpqs8vdFFpzDVmgpCcxipg39Q9M3ijNGoVw3ZNwT7GwJiBvw11HYMAU6-fvl_9uxik331d7Fvy_VnSwjIVoDrfQg9VrcIZxBXEVarCLSKcLOKUJDI3BO5ZrgZsbg97eNSsZ4WitPV2N9V-RHVb9izRWo
CitedBy_id crossref_primary_10_3389_fgene_2023_1230113
crossref_primary_10_1186_s12916_023_02775_0
crossref_primary_10_1016_j_atherosclerosis_2025_120409
crossref_primary_10_1016_j_eehl_2024_07_001
crossref_primary_10_3389_fnut_2024_1424286
crossref_primary_10_1097_MD_0000000000044482
crossref_primary_10_1038_s41588_023_01596_4
crossref_primary_10_1093_gerona_glaf007
crossref_primary_10_1093_ajh_hpaf031
crossref_primary_10_3389_fcell_2024_1404006
crossref_primary_10_5334_gh_1438
crossref_primary_10_1016_j_ajhg_2022_05_013
crossref_primary_10_1016_j_csbj_2024_05_034
crossref_primary_10_1038_s42003_022_03702_4
crossref_primary_10_3389_fendo_2024_1331031
crossref_primary_10_1093_hmg_ddae030
crossref_primary_10_1111_dom_16054
crossref_primary_10_1111_eci_14116
crossref_primary_10_1016_j_metabol_2024_156112
crossref_primary_10_1186_s12933_024_02321_z
crossref_primary_10_1186_s12933_024_02389_7
crossref_primary_10_1038_s41467_023_36272_y
crossref_primary_10_1097_PRS_0000000000010775
crossref_primary_10_2147_JIR_S441231
crossref_primary_10_1097_MD_0000000000044495
crossref_primary_10_1038_s41584_021_00725_9
crossref_primary_10_3389_fendo_2023_1133260
crossref_primary_10_3390_cancers14102376
crossref_primary_10_1093_jbmrpl_ziae126
crossref_primary_10_1016_j_xgen_2025_100844
crossref_primary_10_1016_j_xcrm_2024_101688
crossref_primary_10_1186_s13059_022_02757_0
crossref_primary_10_1038_s41586_023_05857_4
crossref_primary_10_1161_JAHA_124_039195
crossref_primary_10_2337_db24_0677
crossref_primary_10_1007_s00125_024_06175_8
crossref_primary_10_1186_s12982_025_00485_x
crossref_primary_10_3389_fgene_2023_1150458
crossref_primary_10_1186_s12916_024_03486_w
crossref_primary_10_1186_s12916_024_03700_9
crossref_primary_10_1186_s13148_024_01752_5
crossref_primary_10_1016_j_cmet_2023_12_023
crossref_primary_10_1016_j_envres_2024_120054
crossref_primary_10_1007_s12020_023_03584_4
crossref_primary_10_1038_s41588_023_01462_3
crossref_primary_10_1007_s12672_024_01428_9
crossref_primary_10_1186_s13098_023_01218_3
crossref_primary_10_3390_ijms25179668
crossref_primary_10_1016_j_diabres_2024_111967
crossref_primary_10_1111_jgh_16330
crossref_primary_10_1136_bmjdrc_2023_003966
crossref_primary_10_3389_fbinf_2025_1657895
crossref_primary_10_3389_fendo_2022_1036088
crossref_primary_10_3390_ijms241914857
crossref_primary_10_1186_s13098_023_01174_y
crossref_primary_10_3390_genes16050497
crossref_primary_10_1016_j_spinee_2023_10_021
crossref_primary_10_3390_biomedicines13081841
crossref_primary_10_1016_j_semarthrit_2022_152058
crossref_primary_10_3390_genes14061259
crossref_primary_10_1038_s41398_024_02924_w
crossref_primary_10_1038_s42003_024_05977_1
crossref_primary_10_1186_s13098_024_01311_1
crossref_primary_10_1038_s41588_025_02094_5
crossref_primary_10_1038_s44161_025_00700_7
crossref_primary_10_1111_liv_15283
crossref_primary_10_1016_j_tem_2023_07_007
crossref_primary_10_1038_s41390_025_03975_5
crossref_primary_10_1016_j_lanwpc_2023_100710
crossref_primary_10_1093_hmg_ddac050
crossref_primary_10_1007_s00125_021_05635_9
crossref_primary_10_1038_s41588_025_02335_7
crossref_primary_10_1007_s00774_023_01480_5
crossref_primary_10_2337_dc22_1385
crossref_primary_10_1186_s40001_025_02462_1
crossref_primary_10_2337_db21_0320
crossref_primary_10_1186_s12929_025_01137_7
crossref_primary_10_1007_s10654_025_01246_5
crossref_primary_10_1093_jnci_djac011
crossref_primary_10_1038_s42255_022_00734_2
crossref_primary_10_1016_j_ejphar_2025_177838
crossref_primary_10_1007_s12020_024_03766_8
crossref_primary_10_1016_j_ejphar_2025_177957
crossref_primary_10_1038_s41467_025_59442_6
crossref_primary_10_1177_15347346241283260
crossref_primary_10_1038_s41587_021_01099_9
crossref_primary_10_1016_j_ebiom_2024_105110
crossref_primary_10_1016_j_gene_2023_147787
crossref_primary_10_1038_s41586_024_07019_6
crossref_primary_10_3390_nu15173682
crossref_primary_10_1134_S102279542212002X
crossref_primary_10_1016_j_ebiom_2024_105007
crossref_primary_10_3390_nu15051202
crossref_primary_10_1007_s00018_025_05784_9
crossref_primary_10_1155_2022_6819644
crossref_primary_10_1016_j_jtemb_2024_127586
crossref_primary_10_1080_21505594_2025_2553786
crossref_primary_10_1212_WNL_0000000000213573
crossref_primary_10_3389_fendo_2023_1081667
crossref_primary_10_1007_s10072_025_08407_0
crossref_primary_10_1038_s43856_025_00774_1
crossref_primary_10_1186_s12916_025_04127_6
crossref_primary_10_3389_fpsyt_2023_1275834
crossref_primary_10_1111_cns_14759
crossref_primary_10_1097_MOL_0000000000000917
crossref_primary_10_3389_fmicb_2023_1259579
crossref_primary_10_1007_s10519_021_10076_6
crossref_primary_10_3389_fcvm_2022_964743
crossref_primary_10_1186_s12944_025_02515_8
crossref_primary_10_1016_j_diabres_2024_111679
crossref_primary_10_1038_s43587_023_00455_5
crossref_primary_10_3389_fnut_2023_1106769
crossref_primary_10_1016_j_heliyon_2024_e28154
crossref_primary_10_1038_s41467_022_35069_9
crossref_primary_10_1126_science_adp4753
crossref_primary_10_3389_fncel_2022_826193
crossref_primary_10_3389_fonc_2022_863340
crossref_primary_10_1007_s00125_023_06054_8
crossref_primary_10_1186_s12916_023_02903_w
crossref_primary_10_1055_s_0042_1760335
crossref_primary_10_1007_s11892_022_01462_3
crossref_primary_10_1016_j_isci_2024_109815
crossref_primary_10_1016_j_cmet_2022_08_014
crossref_primary_10_1161_CIR_0000000000001123
crossref_primary_10_1007_s10787_024_01542_8
crossref_primary_10_1097_MD_0000000000044097
crossref_primary_10_3389_fimmu_2025_1623315
crossref_primary_10_1016_j_ajhg_2024_07_017
crossref_primary_10_3390_cells14100690
crossref_primary_10_1111_acel_13445
crossref_primary_10_1136_thorax_2024_221472
crossref_primary_10_1038_s41467_023_42560_4
crossref_primary_10_1007_s00125_023_05957_w
crossref_primary_10_1021_jacs_1c12748
crossref_primary_10_1038_s42003_022_04362_0
crossref_primary_10_7326_M23_0724
crossref_primary_10_1038_s41588_023_01346_6
crossref_primary_10_1210_clinem_dgae169
crossref_primary_10_1186_s12933_022_01613_6
crossref_primary_10_3389_fendo_2024_1293292
crossref_primary_10_1002_pros_24598
crossref_primary_10_3390_metabo13010109
crossref_primary_10_1002_cai2_70004
crossref_primary_10_1038_s41588_024_01982_6
crossref_primary_10_2337_dc23_1691
crossref_primary_10_1007_s00125_023_05922_7
crossref_primary_10_1007_s10142_024_01451_7
crossref_primary_10_1038_s41586_024_08207_0
crossref_primary_10_1186_s13059_023_02935_8
crossref_primary_10_7554_eLife_96535_3
crossref_primary_10_1111_jnc_16254
crossref_primary_10_1210_clinem_dgae275
crossref_primary_10_1007_s00439_023_02532_6
crossref_primary_10_1007_s00125_023_06065_5
crossref_primary_10_1371_journal_pgen_1011104
crossref_primary_10_1016_j_ajcnut_2023_08_011
crossref_primary_10_1038_s41598_025_02630_7
crossref_primary_10_1016_j_medj_2024_05_015
crossref_primary_10_1210_clinem_dgae393
crossref_primary_10_1016_j_numecd_2024_07_012
crossref_primary_10_1177_20552076231216682
crossref_primary_10_1101_gr_276862_122
crossref_primary_10_1016_j_metabol_2023_155616
crossref_primary_10_1016_j_ajhg_2023_12_002
crossref_primary_10_1007_s00438_025_02281_3
crossref_primary_10_1007_s12035_024_04336_9
crossref_primary_10_3389_fendo_2024_1285872
crossref_primary_10_1016_j_mayocp_2024_10_018
crossref_primary_10_1038_s41598_024_65538_8
crossref_primary_10_1080_02770903_2024_2394143
crossref_primary_10_1097_j_pain_0000000000003051
crossref_primary_10_1210_clinem_dgad371
crossref_primary_10_7554_eLife_89212_3
crossref_primary_10_3390_nu17010198
crossref_primary_10_1016_j_heliyon_2023_e23118
crossref_primary_10_1161_CIR_0000000000001209
crossref_primary_10_1038_s41591_025_03872_8
crossref_primary_10_3389_fgene_2022_835917
crossref_primary_10_1016_j_ebiom_2023_104803
crossref_primary_10_1016_j_molmet_2023_101722
crossref_primary_10_7554_eLife_89212
crossref_primary_10_1186_s12915_022_01427_8
crossref_primary_10_1210_clinem_dgae455
crossref_primary_10_3389_fendo_2024_1398687
crossref_primary_10_3389_fimmu_2023_1091780
crossref_primary_10_2337_db22_0942
crossref_primary_10_1038_s41366_024_01605_4
crossref_primary_10_1002_hep_32183
crossref_primary_10_1093_ije_dyac212
crossref_primary_10_1155_2024_6260651
crossref_primary_10_3390_biomedicines10020368
crossref_primary_10_3390_nu15071695
crossref_primary_10_1111_liv_15532
crossref_primary_10_3389_fendo_2024_1404747
crossref_primary_10_1007_s00125_023_05912_9
crossref_primary_10_1210_jendso_bvad090
crossref_primary_10_3389_fendo_2022_836023
crossref_primary_10_3390_metabo14090508
crossref_primary_10_1186_s13098_024_01404_x
crossref_primary_10_1016_j_ajhg_2023_07_002
crossref_primary_10_1016_j_xgen_2025_100775
crossref_primary_10_1016_j_avsg_2024_07_105
crossref_primary_10_1038_s41598_023_39936_3
crossref_primary_10_1152_ajpcell_00231_2025
crossref_primary_10_3389_fendo_2023_1278273
crossref_primary_10_1155_ane_8775816
crossref_primary_10_1136_bmjmed_2022_000277
crossref_primary_10_1161_CIR_0000000000001303
crossref_primary_10_1016_j_metabol_2022_155329
crossref_primary_10_1186_s13048_024_01420_5
crossref_primary_10_1038_s42255_023_00807_w
crossref_primary_10_3389_fendo_2023_1337071
crossref_primary_10_2147_IJNRD_S511736
crossref_primary_10_3390_nu16213674
crossref_primary_10_1093_hmg_ddae184
crossref_primary_10_1002_hsr2_70875
crossref_primary_10_1186_s12883_024_03955_y
crossref_primary_10_3390_nu14153201
crossref_primary_10_26641_2307_0404_2024_1_300508
crossref_primary_10_1016_j_jad_2023_04_114
crossref_primary_10_1016_j_molmet_2021_101412
crossref_primary_10_1080_07853890_2023_2191218
crossref_primary_10_2147_DMSO_S390752
crossref_primary_10_1016_j_numecd_2025_103898
crossref_primary_10_1038_s41588_024_01771_1
crossref_primary_10_1016_j_celrep_2025_116065
crossref_primary_10_1016_j_tem_2024_12_002
crossref_primary_10_1038_s41467_024_49109_z
crossref_primary_10_1186_s12933_024_02207_0
crossref_primary_10_1186_s13098_024_01383_z
crossref_primary_10_1186_s13148_023_01589_4
crossref_primary_10_1210_clinem_dgae422
crossref_primary_10_1186_s13098_024_01296_x
crossref_primary_10_3390_nu15133013
crossref_primary_10_1016_j_xgen_2025_101004
crossref_primary_10_1038_s41467_024_53623_5
crossref_primary_10_1038_s41598_025_12369_w
crossref_primary_10_3390_healthcare13091085
crossref_primary_10_1055_s_0043_1777351
crossref_primary_10_1007_s00125_022_05671_z
crossref_primary_10_1016_j_cjca_2025_03_027
crossref_primary_10_1186_s12884_025_07534_y
crossref_primary_10_1016_j_atherosclerosis_2023_117246
crossref_primary_10_1016_j_molmet_2021_101403
crossref_primary_10_1007_s00125_025_06395_6
crossref_primary_10_1161_JAHA_123_030683
crossref_primary_10_1038_s41598_024_58007_9
crossref_primary_10_2337_db22_0628
crossref_primary_10_5582_bst_2024_01006
crossref_primary_10_1038_s41467_023_36013_1
crossref_primary_10_2147_JMDH_S529217
crossref_primary_10_1016_j_cmet_2024_09_006
crossref_primary_10_3390_math9233083
crossref_primary_10_1038_s41398_023_02694_x
crossref_primary_10_1007_s00125_024_06256_8
crossref_primary_10_1093_eurheartj_ehad736
crossref_primary_10_1016_j_cmet_2024_10_020
crossref_primary_10_1186_s13098_025_01763_z
crossref_primary_10_3389_fendo_2024_1363877
crossref_primary_10_1111_cen_14801
crossref_primary_10_3390_biomedicines13030723
crossref_primary_10_1186_s13098_025_01883_6
crossref_primary_10_3389_fendo_2022_949061
crossref_primary_10_3389_fendo_2024_1446719
crossref_primary_10_1038_s41591_024_03010_w
crossref_primary_10_1038_s41588_025_02140_2
crossref_primary_10_1038_s41588_023_01425_8
crossref_primary_10_3389_fendo_2023_1272939
crossref_primary_10_1210_clinem_dgac374
crossref_primary_10_3389_fendo_2022_860274
crossref_primary_10_1097_MD_0000000000041752
crossref_primary_10_1002_mnfr_202400561
crossref_primary_10_1093_humrep_dead234
crossref_primary_10_1016_j_envres_2025_122085
crossref_primary_10_1002_gepi_22454
crossref_primary_10_3389_fnut_2021_738000
crossref_primary_10_1038_s41467_023_44451_0
crossref_primary_10_1016_j_ebiom_2022_104259
crossref_primary_10_1161_CIRCULATIONAHA_125_074554
crossref_primary_10_1186_s13059_022_02837_1
crossref_primary_10_1186_s13059_024_03201_1
crossref_primary_10_1186_s12888_025_06777_5
crossref_primary_10_1111_dom_15207
crossref_primary_10_1186_s13098_023_01189_5
crossref_primary_10_1161_CIRCGEN_123_004272
crossref_primary_10_1016_j_dsx_2024_103048
crossref_primary_10_1186_s12967_022_03637_8
crossref_primary_10_3389_fpubh_2023_1201479
crossref_primary_10_1007_s00408_023_00611_z
crossref_primary_10_3390_nu16081166
crossref_primary_10_3389_fendo_2023_1146099
crossref_primary_10_3390_metabo13030403
crossref_primary_10_1093_postmj_qgad083
crossref_primary_10_3389_fendo_2023_1221228
crossref_primary_10_3390_metabo14030174
crossref_primary_10_1038_s41380_025_03083_0
crossref_primary_10_1038_s41398_021_01759_z
crossref_primary_10_1186_s12916_022_02322_3
crossref_primary_10_1007_s11739_024_03727_z
crossref_primary_10_1038_s41467_025_57457_7
crossref_primary_10_1002_jbmr_4924
crossref_primary_10_1016_j_heliyon_2023_e23872
crossref_primary_10_2337_db23_0318
crossref_primary_10_1016_j_numecd_2022_07_005
crossref_primary_10_3389_fimmu_2023_1088778
crossref_primary_10_1007_s40265_022_01774_4
crossref_primary_10_1038_s41586_023_06693_2
crossref_primary_10_2337_dc23_0855
crossref_primary_10_1016_j_numecd_2023_10_028
crossref_primary_10_1371_journal_pone_0264657
crossref_primary_10_1007_s00125_021_05575_4
crossref_primary_10_1016_j_jnha_2023_100019
crossref_primary_10_1186_s12967_023_04565_x
crossref_primary_10_1038_s41598_024_53209_7
crossref_primary_10_1111_eci_13852
crossref_primary_10_1681_ASN_0000000000000238
crossref_primary_10_1016_j_cmet_2022_07_003
crossref_primary_10_3233_JAD_230623
crossref_primary_10_1007_s12672_025_03094_x
crossref_primary_10_1016_j_medp_2024_100046
crossref_primary_10_3390_genes15081059
crossref_primary_10_12688_wellcomeopenres_18754_1
crossref_primary_10_1186_s12967_025_06782_y
crossref_primary_10_1038_s41588_024_01934_0
crossref_primary_10_3390_nu14163428
crossref_primary_10_1186_s12916_022_02477_z
crossref_primary_10_1210_clinem_dgae882
crossref_primary_10_1210_clinem_dgae880
crossref_primary_10_1002_jmv_28205
crossref_primary_10_1186_s12864_024_10293_3
crossref_primary_10_1016_S2213_8587_24_00195_5
crossref_primary_10_3389_fnut_2022_1009122
crossref_primary_10_1038_s42003_022_04168_0
crossref_primary_10_1186_s13048_025_01614_5
crossref_primary_10_1186_s12967_024_05053_6
crossref_primary_10_14814_phy2_70513
crossref_primary_10_1210_clinem_dgac699
crossref_primary_10_1016_S2213_8587_23_00164_X
crossref_primary_10_2337_db21_0905
crossref_primary_10_1210_clinem_dgad308
crossref_primary_10_3389_fendo_2023_1212647
crossref_primary_10_1038_s41598_024_59211_3
crossref_primary_10_1038_s42003_022_03448_z
crossref_primary_10_1016_j_clinthera_2024_01_005
crossref_primary_10_1038_s41588_022_01200_1
crossref_primary_10_3390_ijms24054738
crossref_primary_10_3389_fgene_2023_1087878
crossref_primary_10_1007_s11255_025_04594_z
crossref_primary_10_3389_fendo_2023_1227372
crossref_primary_10_1007_s00125_022_05746_x
crossref_primary_10_1016_j_lanwpc_2022_100596
crossref_primary_10_1186_s13098_024_01517_3
crossref_primary_10_1016_j_diabres_2025_112246
crossref_primary_10_1016_j_molmed_2024_09_005
crossref_primary_10_1016_j_dsx_2024_103127
crossref_primary_10_1167_iovs_63_5_37
crossref_primary_10_1038_s41574_025_01132_w
crossref_primary_10_1186_s13578_025_01454_2
crossref_primary_10_1186_s40001_025_02695_0
crossref_primary_10_2337_db24_0262
crossref_primary_10_3389_fnut_2024_1375179
crossref_primary_10_1186_s12864_023_09425_y
crossref_primary_10_1016_j_metabol_2025_156339
crossref_primary_10_2337_db22_0110
crossref_primary_10_1186_s13098_024_01299_8
crossref_primary_10_3389_fonc_2023_1203685
crossref_primary_10_1038_s41467_025_57452_y
crossref_primary_10_1101_gr_279741_124
crossref_primary_10_1161_JAHA_124_038857
crossref_primary_10_3390_biom13020257
crossref_primary_10_1093_hmg_ddac140
crossref_primary_10_1038_s41586_025_08980_6
crossref_primary_10_1038_s42255_024_01133_5
crossref_primary_10_1186_s12933_025_02851_0
crossref_primary_10_1093_ije_dyad187
crossref_primary_10_1186_s12916_023_03003_5
crossref_primary_10_1186_s12933_023_02079_w
crossref_primary_10_3389_fcvm_2025_1453106
crossref_primary_10_3390_ijms24097799
crossref_primary_10_1016_j_cyto_2024_156569
crossref_primary_10_1038_s41467_024_53091_x
crossref_primary_10_1016_j_ebiom_2022_104288
crossref_primary_10_1038_s42255_025_01372_0
crossref_primary_10_1016_j_ajhg_2023_01_002
crossref_primary_10_1038_s41467_024_52105_y
crossref_primary_10_2337_db22_0252
crossref_primary_10_3390_ijms232012504
crossref_primary_10_1186_s12916_023_03227_5
crossref_primary_10_1016_j_amjcard_2023_06_044
crossref_primary_10_1016_j_bbi_2025_01_024
crossref_primary_10_1186_s12937_025_01110_y
crossref_primary_10_1186_s12888_025_07152_0
crossref_primary_10_1038_s41588_023_01625_2
crossref_primary_10_1007_s00125_021_05629_7
crossref_primary_10_1007_s00125_022_05743_0
crossref_primary_10_3390_metabo14070385
crossref_primary_10_1371_journal_pone_0293017
crossref_primary_10_1038_s41598_022_26572_6
crossref_primary_10_1007_s00592_025_02571_7
crossref_primary_10_1177_0271678X231169838
crossref_primary_10_3389_fgene_2023_1260367
crossref_primary_10_1038_s41598_025_98507_w
crossref_primary_10_1186_s12864_025_11262_0
crossref_primary_10_3389_fgene_2021_767577
crossref_primary_10_1186_s13098_023_01101_1
crossref_primary_10_1016_j_hrthm_2023_10_024
crossref_primary_10_1007_s00125_021_05639_5
crossref_primary_10_3390_jcm13020561
crossref_primary_10_1007_s11325_024_03020_5
crossref_primary_10_1007_s00125_024_06352_9
crossref_primary_10_1097_MPA_0000000000002170
crossref_primary_10_1186_s12959_024_00600_z
crossref_primary_10_1111_dom_15298
crossref_primary_10_1007_s00125_022_05769_4
crossref_primary_10_1093_ije_dyad093
crossref_primary_10_7554_eLife_96535
crossref_primary_10_1016_j_jse_2023_08_006
crossref_primary_10_1038_s41598_024_79260_y
crossref_primary_10_1080_00221309_2025_2525809
crossref_primary_10_1038_s41598_025_86317_z
crossref_primary_10_2337_db21_0734
crossref_primary_10_1007_s00266_023_03551_4
crossref_primary_10_1038_s41467_023_43159_5
crossref_primary_10_1016_j_exger_2025_112715
crossref_primary_10_1016_j_numecd_2025_104207
crossref_primary_10_1038_s41467_023_38234_w
crossref_primary_10_1038_s41588_023_01408_9
crossref_primary_10_1038_s41598_024_85070_z
crossref_primary_10_3389_fphar_2022_900424
crossref_primary_10_1038_s41574_022_00669_4
crossref_primary_10_1016_j_ebiom_2022_104199
crossref_primary_10_1093_brain_awae399
crossref_primary_10_1002_brb3_70396
crossref_primary_10_1038_s41598_024_65310_y
crossref_primary_10_1186_s12876_024_03400_x
crossref_primary_10_1016_j_diabres_2024_111094
crossref_primary_10_3390_app14125136
crossref_primary_10_1186_s13148_023_01572_z
crossref_primary_10_1080_09286586_2025_2458245
crossref_primary_10_1016_j_ebiom_2024_105530
crossref_primary_10_1038_s41588_025_02136_y
crossref_primary_10_1016_j_cmet_2022_05_005
crossref_primary_10_2337_dc22_0105
Cites_doi 10.1371/journal.pone.0010827
10.7554/eLife.48376
10.1038/ncomms6897
10.1093/bioinformatics/btq340
10.1002/gepi.20630
10.1073/pnas.1621192114
10.1371/journal.pmed.1002654
10.1038/ng.3437
10.1371/journal.pone.0099049
10.1038/ncomms6890
10.1371/journal.pgen.1004876
10.1007/s00125-011-2348-5
10.1038/nature05911
10.1038/ijo.2017.8
10.1093/bioinformatics/btv201
10.1016/j.cell.2019.10.004
10.1038/s41588-018-0241-6
10.1038/s41596-020-0353-1
10.1371/journal.pgen.1005230
10.1016/j.ajhg.2014.03.004
10.1016/j.celrep.2013.07.050
10.1172/JCI119832
10.1073/pnas.1317023110
10.1186/s13059-016-1142-6
10.1210/er.2019-00088
10.1038/nprot.2014.071
10.1016/j.ajhg.2014.12.021
10.1016/S0140-6736(10)60484-9
10.2337/db16-0199
10.1038/nature24277
10.1016/j.ajhg.2018.02.003
10.1038/nature09906
10.1038/ng.3211
10.2337/dc12-0544
10.1038/s41588-018-0152-6
10.1016/j.ajhg.2017.01.027
10.1038/ng.3737
10.1038/ng.2274
10.1126/science.aah6171
10.1007/s00415-014-7433-5
10.1038/s41588-018-0322-6
10.1016/j.ajhg.2019.08.010
10.2337/dc18-1712
10.1371/journal.pmed.1002724
10.1038/s41588-020-0637-y
10.1016/j.cell.2010.09.006
10.1038/s41586-020-2263-3
10.1038/ncomms8400
10.1373/clinchem.2005.051979
10.1016/j.cell.2016.10.042
10.1016/j.asoc.2016.12.019
10.2337/db13-1815
10.1038/s41588-018-0060-9
10.1038/ng.520
10.1038/ng.2756
10.1371/journal.pgen.1007275
10.1371/journal.pgen.1002793
10.1210/jc.2013-4064
10.1038/ng.2383
10.1038/nature14248
10.1038/s41467-019-11112-0
10.1126/scitranslmed.aad3744
10.2337/db13-0949
10.1371/journal.pmed.1000263
10.1371/journal.pgen.1005694
10.1038/ncomms5926
10.1093/bioinformatics/btw018
10.1152/ajpendo.00013.2011
10.1371/journal.pmed.1002383
10.1038/ejhg.2017.50
10.1007/s11892-013-0421-9
10.1016/j.metabol.2018.08.006
10.1371/journal.pgen.1007172
10.1038/s41588-018-0147-3
10.1038/s41588-018-0248-z
10.1101/790618
10.1371/journal.pgen.1002607
10.1182/blood-2011-06-364034
10.1038/s41588-019-0379-x
10.1038/s41467-019-09718-5
10.1002/ijc.29950
10.1038/s41588-018-0151-7
10.2337/db14-0563
10.1038/nmeth.1906
10.2337/db10-0502
10.1038/ncomms11764
10.1093/hmg/ddu362
10.1002/gepi.20533
10.1681/ASN.2016030357
10.1038/ng.2385
10.1101/2020.09.22.20198937
10.2337/db16-1253
10.1038/nature15393
10.1038/ng.2213
10.1371/journal.pgen.1006760
10.1111/j.0006-341X.1999.00997.x
10.1038/nature11632
10.1016/j.ajhg.2018.11.008
10.1016/j.ajhg.2010.11.011
10.1210/er.2011-1034
ContentType Journal Article
Contributor van der Harst, Pim
de Haan, Hugoline G
van Hylckama Vlieg, Astrid
van den Akker, Erik
van der Most, Peter J
van Willems van Dijk, Ko
de Geus, Eco J C
van Dam, Rob M
van Heemst, Diana
de Silva, H Janaka
van Duijn, Cornelia
Contributor_xml – sequence: 1
  givenname: Hugoline G
  surname: de Haan
  fullname: de Haan, Hugoline G
– sequence: 2
  givenname: Erik
  surname: van den Akker
  fullname: van den Akker, Erik
– sequence: 3
  givenname: Peter J
  surname: van der Most
  fullname: van der Most, Peter J
– sequence: 4
  givenname: Eco J C
  surname: de Geus
  fullname: de Geus, Eco J C
– sequence: 5
  givenname: Rob M
  surname: van Dam
  fullname: van Dam, Rob M
– sequence: 6
  givenname: Diana
  surname: van Heemst
  fullname: van Heemst, Diana
– sequence: 7
  givenname: Astrid
  surname: van Hylckama Vlieg
  fullname: van Hylckama Vlieg, Astrid
– sequence: 8
  givenname: Ko
  surname: van Willems van Dijk
  fullname: van Willems van Dijk, Ko
– sequence: 9
  givenname: H Janaka
  surname: de Silva
  fullname: de Silva, H Janaka
– sequence: 10
  givenname: Pim
  surname: van der Harst
  fullname: van der Harst, Pim
– sequence: 11
  givenname: Cornelia
  surname: van Duijn
  fullname: van Duijn, Cornelia
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Jun 2021
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jun 2021
– notice: licence_http://creativecommons.org/publicdomain/zero
CorporateAuthor The Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC)
Lifelines Cohort Study
Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC)
Genetic and Molecular Epidemiology
Lunds universitet
Profile areas and other strong research environments
Translational Muscle Research
Department of Clinical Sciences, Malmö
Lund University
Translationell muskelforskning
Strategiska forskningsområden (SFO)
EpiHealth: Epidemiology for Health
Genetisk och molekylär epidemiologi
EXODIAB: Excellence of Diabetes Research in Sweden
Faculty of Medicine
Strategic research areas (SRA)
Medicinska fakulteten
Profilområden och andra starka forskningsmiljöer
Institutionen för kliniska vetenskaper, Malmö
Geriatrik
Geriatrics
CorporateAuthor_xml – name: The Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC)
– name: Lifelines Cohort Study
– name: Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC)
– name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Translationell muskelforskning
– name: Geriatrik
– name: EpiHealth: Epidemiology for Health
– name: Institutionen för kliniska vetenskaper, Malmö
– name: Strategic research areas (SRA)
– name: Genetisk och molekylär epidemiologi
– name: Lunds universitet
– name: Translational Muscle Research
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: EXODIAB: Excellence of Diabetes Research in Sweden
– name: Profile areas and other strong research environments
– name: Genetic and Molecular Epidemiology
– name: Geriatrics
– name: Department of Clinical Sciences, Malmö
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
1XC
VOOES
5PM
ADTPV
AOWAS
D93
DF2
D95
D8T
ZZAVC
DOI 10.1038/s41588-021-00852-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (UHCL Subscription)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Umeå universitet
SWEPUB Uppsala universitet
SWEPUB Lunds universitet
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Research Library Prep








MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 860
ExternalDocumentID oai_swepub_ki_se_461626
oai_portal_research_lu_se_publications_c245cd5b_81e9_43a1_bdc6_4daf3398393a
oai_DiVA_org_uu_454592
oai_DiVA_org_umu_185083
PMC7610958
oai:HAL:hal-04535845v1
A664591443
34059833
10_1038_s41588_021_00852_9
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GrantInformation_xml – fundername: There are too many different funders to enter one by one in the boxes. All funding information is contained in the Supplementary Note.
– fundername: NHLBI NIH HHS
  grantid: N01HC95169
– fundername: Medical Research Council
  grantid: MR/N003284/1
– fundername: Department of Health
  grantid: 16/136/68
– fundername: NHLBI NIH HHS
  grantid: R03 HL154284
– fundername: NIMH NIH HHS
  grantid: U01 MH115485
– fundername: Cancer Research UK
  grantid: C18281/A19169
– fundername: NHLBI NIH HHS
  grantid: N01HC95163
– fundername: NIDDK NIH HHS
  grantid: P30 DK020541
– fundername: NHLBI NIH HHS
  grantid: N01HC95166
– fundername: Wellcome Trust
  grantid: 084726/Z/08/Z
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACSTC
AETEA
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIEIU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
1XC
VOOES
5PM
ADTPV
AOWAS
D93
DF2
D95
D8T
ZZAVC
ID FETCH-LOGICAL-c890t-b36f12c2e278a6b4853cc28ae74b35e2e8405631be3c43c7879ed8450ac3e7813
IEDL.DBID 8C1
ISICitedReferencesCount 486
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656384400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-4036
1546-1718
IngestDate Tue Nov 25 03:36:46 EST 2025
Wed Nov 19 03:22:57 EST 2025
Tue Nov 04 16:40:32 EST 2025
Tue Nov 04 16:47:56 EST 2025
Tue Nov 04 01:51:54 EST 2025
Fri Nov 21 06:31:57 EST 2025
Thu Oct 02 14:57:15 EDT 2025
Fri Oct 03 09:40:45 EDT 2025
Sat Nov 29 13:29:59 EST 2025
Sat Nov 29 10:05:14 EST 2025
Wed Nov 26 09:52:08 EST 2025
Wed Nov 26 10:28:26 EST 2025
Mon Jul 21 06:00:17 EDT 2025
Sat Nov 29 03:07:11 EST 2025
Tue Nov 18 21:48:52 EST 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c890t-b36f12c2e278a6b4853cc28ae74b35e2e8405631be3c43c7879ed8450ac3e7813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7610958
Denote shared authorship contributions
Current address: Genentech, South San Francisco, CA
ORCID 0000-0002-4363-7170
0000-0001-8122-0117
0000-0002-4032-9500
0000-0002-8616-6444
0000-0002-5017-7344
0000-0001-9177-9707
0000-0001-5800-4520
0000-0002-6805-6014
0000-0003-2972-0784
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:146730751
PMID 34059833
PQID 2540565923
PQPubID 33429
PageCount 21
ParticipantIDs swepub_primary_oai_swepub_ki_se_461626
swepub_primary_oai_portal_research_lu_se_publications_c245cd5b_81e9_43a1_bdc6_4daf3398393a
swepub_primary_oai_DiVA_org_uu_454592
swepub_primary_oai_DiVA_org_umu_185083
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610958
hal_primary_oai_HAL_hal_04535845v1
proquest_miscellaneous_2535833743
proquest_journals_2540565923
gale_infotracmisc_A664591443
gale_infotracacademiconefile_A664591443
gale_incontextgauss_ISR_A664591443
gale_incontextgauss_IOV_A664591443
pubmed_primary_34059833
crossref_primary_10_1038_s41588_021_00852_9
crossref_citationtrail_10_1038_s41588_021_00852_9
springer_journals_10_1038_s41588_021_00852_9
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References ChenPMultiple nonglycemic genomic loci are newly associated with blood level of glycated hemoglobin in East AsiansDiabetes2014632551256224647736428440210.2337/db13-1815
MikkelsenTSComparative epigenomic analysis of murine and human adipogenesisCell20101431561691:CAS:528:DC%2BC3cXht1Cmu7zK20887899295083310.1016/j.cell.2010.09.006
WinklerTWQuality control and conduct of genome-wide association meta-analysesNat. Protoc.201491192121224762786408321710.1038/nprot.2014.071
Diamanti-KandarakisEDunaifAInsulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implicationsEndocr. Rev.20123398110301:CAS:528:DC%2BC3sXhsVKrsLY%3D23065822539315510.1210/er.2011-1034
The 1000 Genomes Project ConsortiumAn integrated map of genetic variation from 1,092 human genomesNature20124915665349806610.1038/nature116321:CAS:528:DC%2BC38Xhs1ajsbjL
VujkovicMDiscovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysisNat. Genet.2020526806911:CAS:528:DC%2BB3cXhtFKgtr%2FO32541925734359210.1038/s41588-020-0637-y
NolteIMMissing heritability: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort StudyEur. J. Hum. Genet.20172587788528401901552006310.1038/ejhg.2017.50
Bulik-SullivanBKLD Score regression distinguishes confounding from polygenicity in genome-wide association studiesNat. Genet.2015472912951:CAS:528:DC%2BC2MXhvFCntb8%3D25642630449576910.1038/ng.3211
SoranzoNCommon variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathwaysDiabetes201059322932391:CAS:528:DC%2BC3MXlsVaktA%3D%3D20858683299278710.2337/db10-0502
BenyaminBNovel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosisNat. Commun.201451:CAS:528:DC%2BC2MXktFens7s%3D2535234010.1038/ncomms5926
HorikoshiMDiscovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputationPLoS Genet.201511e100523026132169448884510.1371/journal.pgen.10052301:CAS:528:DC%2BC28XhtVaqsrnN
DuncanLAnalysis of polygenic risk score usage and performance in diverse human populationsNat. Commun.2019101:STN:280:DC%2BB3MvhtlKisw%3D%3D31346163665847110.1038/s41467-019-11112-0
WalfordGAGenome-wide association study of the modified Stumvoll insulin sensitivity index identifies BCL2 and FAM19A2 as novel insulin sensitivity lociDiabetes201665320032111:CAS:528:DC%2BC28XhvFKlur3E27416945503326210.2337/db16-0199
Ng, N. H. J. et al. Tissue-specific alteration of metabolic pathways influences glycemic regulation. Preprint at bioRxivhttps://doi.org/10.1101/790618 (2019).
CivelekMGenetic regulation of adipose gene expression and cardio-metabolic traitsAm. J. Hum. Genet.20171004284431:CAS:528:DC%2BC2sXjvVWrsLg%3D28257690533933310.1016/j.ajhg.2017.01.027
Canela-XandriORawlikKTenesaAAn atlas of genetic associations in UK BiobankNat. Genet.201850159315991:CAS:528:DC%2BC1cXhvF2lsbrJ30349118670781410.1038/s41588-018-0248-z
ReesMGCellular characterisation of the GCKR P446L variant associated with type 2 diabetes riskDiabetologia2012551141221:CAS:528:DC%2BC3MXhsFOqurfO2203852010.1007/s00125-011-2348-5
HodonskyCJGenome-wide association study of red blood cell traits in Hispanics/Latinos: The Hispanic Community Health Study/Study of LatinosPLoS Genet.201713e100676028453575542897910.1371/journal.pgen.10067601:CAS:528:DC%2BC2sXhvFCgsLzJ
ShrinerDRotimiCNWhole-genome-sequence-based haplotypes reveal single origin of the sickle allele during the Holocene wet phaseAm. J. Hum. Genet.20181025475561:CAS:528:DC%2BC1cXktlSgsL4%3D29526279598536010.1016/j.ajhg.2018.02.003
NagelMMeta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathwaysNat. Genet.2018509209271:CAS:528:DC%2BC1cXht1WqsLvN2994208510.1038/s41588-018-0151-7
RavenhallMNovel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern TanzaniaPLoS Genet.201814e100717229381699580689510.1371/journal.pgen.10071721:CAS:528:DC%2BC1cXhs1OhsLrF
Mahajan, A. et al. Trans-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Preprint at medRxivhttps://doi.org/10.1101/2020.09.22.20198937 (2020).
ScottRALarge-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathwaysNat. Genet.20124499110051:CAS:528:DC%2BC38XhtFOgsbzJ22885924343339410.1038/ng.2385
GeTChenCYNiYFengYASmollerJWPolygenic prediction via Bayesian regression and continuous shrinkage priorsNat. Commun.20191030992449646799810.1038/s41467-019-09718-51:CAS:528:DC%2BC1MXoslKmtLs%3D
ParkerSCChromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variantsProc. Natl Acad. Sci. USA201311017921179261:CAS:528:DC%2BC3sXhvVWmur%2FE2412759110.1073/pnas.13170231103816444
GurdasaniDUganda genome resource enables insights into population history and genomic discovery in AfricaCell201917998410021:CAS:528:DC%2BC1MXitFSjsrrP31675503720213410.1016/j.cell.2019.10.004
WheelerEImpact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysisPLoS Med.201714e100238328898252559528210.1371/journal.pmed.1002383
PeiYFZhangLLiJDengHWAnalyses and comparison of imputation-based association methodsPLoS ONE20105e1082720520814287708210.1371/journal.pone.00108271:CAS:528:DC%2BC3cXmvFersLs%3D
SpracklenCNIdentification of type 2 diabetes loci in 433,540 East Asian individualsNature20205822402451:CAS:528:DC%2BB3cXoslOqt7o%3D32499647729278310.1038/s41586-020-2263-3
GTEx ConsortiumGenetic effects on gene expression across human tissuesNature2017550204213577675610.1038/nature24277
GuallarDRNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cellsNat. Genet.2018504434511:CAS:528:DC%2BC1cXltVyitrk%3D29483655586275610.1038/s41588-018-0060-9
SchmidtEMGREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approachBioinformatics201531260126061:CAS:528:DC%2BC28Xht1Cit7%2FI25886982461239010.1093/bioinformatics/btv201
AltieriBAdrenocortical tumors and insulin resistance: what is the first step?Int. J. Cancer2016138278527941:CAS:528:DC%2BC2MXitVCqs7zP2663795510.1002/ijc.29950
MahajanAIdentification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locusPLoS Genet.201511e100487625625282430797610.1371/journal.pgen.10048761:CAS:528:DC%2BC28XmtVCqurw%3D
BianFTET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytesMetabolism20188939471:CAS:528:DC%2BC1cXhs1yltLbI30193945622191710.1016/j.metabol.2018.08.006
LuoYTranscription factor Ets1 regulates expression of thioredoxin-interacting protein and inhibits insulin secretion in pancreatic beta-cellsPLoS ONE20149e9904924897113404597610.1371/journal.pone.00990491:CAS:528:DC%2BC2cXhsVKiu7fM
NaiATMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individualsBlood2011118445944621:CAS:528:DC%2BC3MXhsVKjsrfL2187354710.1182/blood-2011-06-364034
TillinTInsulin resistance and truncal obesity as important determinants of the greater incidence of diabetes in Indian Asians and African Caribbeans compared with Europeans: the Southall And Brent REvisited (SABRE) cohortDiabetes Care20133638339322966089355427110.2337/dc12-0544
GoodarziMOFasting insulin reflects heterogeneous physiological processes: role of insulin clearanceAm. J. Physiol. Endocrinol. Metab.2011301E402E4081:CAS:528:DC%2BC3MXhtFSqurnL21632466315452910.1152/ajpendo.00013.2011
KichaevGLeveraging polygenic functional enrichment to improve GWAS powerAm. J. Hum. Genet.201910465751:CAS:528:DC%2BC1MXntlGm3059537010.1016/j.ajhg.2018.11.008
BineshNRezghiMFuzzy clustering in community detection based on nonnegative matrix factoriztion with two novel evaluation criteriaAppl. Soft Comput.20186968970310.1016/j.asoc.2016.12.019
MartinARClinical use of current polygenic risk scores may exacerbate health disparitiesNat. Genet.2019515845911:CAS:528:DC%2BC1MXoslGltLw%3D30926966656383810.1038/s41588-019-0379-x
SavageJEGenome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligenceNat. Genet.2018509129191:CAS:528:DC%2BC1cXht1WqsLvF29942086641104110.1038/s41588-018-0152-6
LiYWillerCJDingJScheetPAbecasisGRMaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypesGenet. Epidemiol.20103481683421058334317561810.1002/gepi.20533
ErnstJMapping and analysis of chromatin state dynamics in nine human cell typesNature201147343491:CAS:528:DC%2BC3MXjvVOitL0%3D21441907308877310.1038/nature09906
MahajanAFine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome mapsNat. Genet.201850150515131:CAS:528:DC%2BC1cXitVCitLrM30297969628770610.1038/s41588-018-0241-6
AstleWJThe allelic landscape of human blood cell trait variation and links to common complex diseaseCell2016167141514291:CAS:528:DC%2BC28XhvFWgu7rO27863252530090710.1016/j.cell.2016.10.042
AgusDBVitamin C crosses the blood-brain barrier in the oxidized form through the glucose transportersJ. Clin. Invest.1997100284228481:CAS:528:DyaK2sXotVehs7k%3D938975050849010.1172/JCI119832
SpracklenCNIdentification and functional analysis of glycemic trait loci in the China Health and Nutrition SurveyPLoS Genet.201814e100727529621232588638310.1371/journal.pgen.10072751:CAS:528:DC%2BC1cXhslyisLfL
BonomoJAThe ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney diseaseHum. Mol. Genet.201423644164471:CAS:528:DC%2BC2MXitl2ntLY%3D25027322424019710.1093/hmg/ddu362
WestraHJSystematic identification of trans eQTLs as putative drivers of known di
Y Luo (852_CR28) 2014; 9
KJ Gaulton (852_CR36) 2015; 47
852_CR69
J Yang (852_CR22) 2012; 44
WJ Astle (852_CR90) 2016; 167
JA Bonomo (852_CR46) 2014; 23
GTEx Consortium (852_CR98) 2017; 550
852_CR63
Y Yoo (852_CR68) 2017; 41
B Devlin (852_CR86) 1999; 55
GA Walford (852_CR10) 2016; 65
M Johansson (852_CR73) 2019; 16
C Benner (852_CR89) 2016; 32
A Leong (852_CR76) 2019; 42
BK Bulik-Sullivan (852_CR88) 2015; 47
N Binesh (852_CR93) 2018; 69
852_CR78
T Ge (852_CR33) 2019; 10
EM Schmidt (852_CR56) 2015; 31
JE Savage (852_CR55) 2018; 50
MS Udler (852_CR4) 2018; 15
S Wolking (852_CR65) 2014; 261
YF Pei (852_CR84) 2010; 5
PH Whincup (852_CR18) 2010; 7
SC Parker (852_CR57) 2013; 110
Y Li (852_CR83) 2010; 34
HJ Westra (852_CR100) 2013; 45
TH Pers (852_CR102) 2015; 6
MO Goodarzi (852_CR2) 2011; 301
D Gurdasani (852_CR44) 2019; 179
AR Martin (852_CR35) 2019; 51
RA Scott (852_CR94) 2017; 66
L Braccini (852_CR29) 2015; 6
J Wessel (852_CR47) 2015; 6
F Bian (852_CR67) 2018; 89
M Vujkovic (852_CR27) 2020; 52
O Canela-Xandri (852_CR91) 2018; 50
TS Mikkelsen (852_CR96) 2010; 143
D Guallar (852_CR66) 2018; 50
T Tillin (852_CR17) 2013; 36
The Emerging Risk Factors Collaboration (852_CR6) 2010; 375
The 1000 Genomes Project Consortium (852_CR82) 2012; 491
HJ Kramer (852_CR41) 2017; 28
The DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium (852_CR75) 2012; 44
JY Hwang (852_CR13) 2015; 64
A Mahajan (852_CR25) 2018; 50
RA Scott (852_CR48) 2016; 8
A Mahajan (852_CR12) 2015; 11
BF Voight (852_CR81) 2012; 8
Z Dastani (852_CR34) 2012; 8
IM Nolte (852_CR32) 2017; 25
P D’Orazio (852_CR80) 2005; 51
A Varshney (852_CR38) 2017; 114
E Wheeler (852_CR7) 2017; 14
CJ Hodonsky (852_CR43) 2017; 13
LJ Scott (852_CR62) 2016; 7
J Ernst (852_CR95) 2011; 473
852_CR1
852_CR23
852_CR24
A Nai (852_CR49) 2011; 118
M Civelek (852_CR61) 2017; 100
R Joehanes (852_CR101) 2017; 18
N Soranzo (852_CR51) 2010; 59
AK Manning (852_CR9) 2012; 44
J Ernst (852_CR97) 2012; 9
AS Dimas (852_CR3) 2014; 63
CN Spracklen (852_CR37) 2018; 14
P Chen (852_CR14) 2014; 63
MS Udler (852_CR5) 2019; 40
G Kichaev (852_CR39) 2019; 104
B Altieri (852_CR72) 2016; 138
EK Spanakis (852_CR16) 2013; 13
JJ Lee (852_CR31) 2018; 50
A Kundaje (852_CR53) 2015; 518
DV Zhernakova (852_CR99) 2017; 49
E Diamanti-Kandarakis (852_CR74) 2012; 33
V Iotchkova (852_CR59) 2019; 51
RA Scott (852_CR15) 2012; 44
C Sarnowski (852_CR52) 2019; 105
CJ Willer (852_CR20) 2010; 26
H Aschard (852_CR30) 2015; 96
M Nagel (852_CR54) 2018; 50
B Benyamin (852_CR92) 2014; 5
M van de Bunt (852_CR60) 2015; 11
AP Morris (852_CR87) 2011; 35
JK Pickrell (852_CR58) 2014; 94
DB Agus (852_CR64) 1997; 100
The 1000 Genomes Project Consortium (852_CR19) 2015; 526
M Ravenhall (852_CR42) 2018; 14
M Horikoshi (852_CR11) 2015; 11
TW Winkler (852_CR85) 2014; 9
A Pottekat (852_CR70) 2013; 4
852_CR50
II Androulakis (852_CR71) 2014; 99
L Duncan (852_CR77) 2019; 10
MG Rees (852_CR45) 2012; 55
CN Spracklen (852_CR26) 2020; 582
D Shriner (852_CR40) 2018; 102
J Dupuis (852_CR8) 2010; 42
SW Choi (852_CR79) 2020; 15
J Yang (852_CR21) 2011; 88
References_xml – reference: MahajanAIdentification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locusPLoS Genet.201511e100487625625282430797610.1371/journal.pgen.10048761:CAS:528:DC%2BC28XmtVCqurw%3D
– reference: AstleWJThe allelic landscape of human blood cell trait variation and links to common complex diseaseCell2016167141514291:CAS:528:DC%2BC28XhvFWgu7rO27863252530090710.1016/j.cell.2016.10.042
– reference: Bulik-SullivanBKLD Score regression distinguishes confounding from polygenicity in genome-wide association studiesNat. Genet.2015472912951:CAS:528:DC%2BC2MXhvFCntb8%3D25642630449576910.1038/ng.3211
– reference: NaiATMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individualsBlood2011118445944621:CAS:528:DC%2BC3MXhsVKjsrfL2187354710.1182/blood-2011-06-364034
– reference: LeeJJGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat. Genet.201850111211211:CAS:528:DC%2BC1cXhtlOis7zI30038396639376810.1038/s41588-018-0147-3
– reference: DastaniZNovel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individualsPLoS Genet.20128e10026071:CAS:528:DC%2BC38XlsFaltbs%3D22479202331547010.1371/journal.pgen.1002607
– reference: AschardHVilhjálmssonBJJoshiADPriceALKraftPAdjusting for heritable covariates can bias effect estimates in genome-wide association studiesAm. J. Hum. Genet.2015963293391:CAS:528:DC%2BC2MXhvVOqsLo%3D25640676432026910.1016/j.ajhg.2014.12.021
– reference: ShrinerDRotimiCNWhole-genome-sequence-based haplotypes reveal single origin of the sickle allele during the Holocene wet phaseAm. J. Hum. Genet.20181025475561:CAS:528:DC%2BC1cXktlSgsL4%3D29526279598536010.1016/j.ajhg.2018.02.003
– reference: CivelekMGenetic regulation of adipose gene expression and cardio-metabolic traitsAm. J. Hum. Genet.20171004284431:CAS:528:DC%2BC2sXjvVWrsLg%3D28257690533933310.1016/j.ajhg.2017.01.027
– reference: DevlinBRoederKGenomic control for association studiesBiometrics19995599710041:STN:280:DC%2BD3M3itFSqtA%3D%3D1131509210.1111/j.0006-341X.1999.00997.x
– reference: GoodarziMOFasting insulin reflects heterogeneous physiological processes: role of insulin clearanceAm. J. Physiol. Endocrinol. Metab.2011301E402E4081:CAS:528:DC%2BC3MXhtFSqurnL21632466315452910.1152/ajpendo.00013.2011
– reference: The 1000 Genomes Project ConsortiumA global reference for human genetic variationNature2015526687410.1038/nature153931:CAS:528:DC%2BC2MXhs1SitLjO
– reference: van de BuntMTranscript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectorsPLoS Genet.201511e100569426624892466661110.1371/journal.pgen.10056941:CAS:528:DC%2BC28XhtlWhurvO
– reference: SpracklenCNIdentification of type 2 diabetes loci in 433,540 East Asian individualsNature20205822402451:CAS:528:DC%2BB3cXoslOqt7o%3D32499647729278310.1038/s41586-020-2263-3
– reference: Diamanti-KandarakisEDunaifAInsulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implicationsEndocr. Rev.20123398110301:CAS:528:DC%2BC3sXhsVKrsLY%3D23065822539315510.1210/er.2011-1034
– reference: D’OrazioPApproved IFCC recommendation on reporting results for blood glucose (abbreviated)Clin. Chem.200551157315761612094510.1373/clinchem.2005.0519791:CAS:528:DC%2BD2MXps1yktLw%3D
– reference: DuncanLAnalysis of polygenic risk score usage and performance in diverse human populationsNat. Commun.2019101:STN:280:DC%2BB3MvhtlKisw%3D%3D31346163665847110.1038/s41467-019-11112-0
– reference: MahajanAFine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome mapsNat. Genet.201850150515131:CAS:528:DC%2BC1cXitVCitLrM30297969628770610.1038/s41588-018-0241-6
– reference: DimasASImpact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneityDiabetes201463215821711:CAS:528:DC%2BC2cXhsV2ls7rM24296717403010310.2337/db13-0949
– reference: TillinTInsulin resistance and truncal obesity as important determinants of the greater incidence of diabetes in Indian Asians and African Caribbeans compared with Europeans: the Southall And Brent REvisited (SABRE) cohortDiabetes Care20133638339322966089355427110.2337/dc12-0544
– reference: ZhernakovaDVIdentification of context-dependent expression quantitative trait loci in whole bloodNat. Genet.2017491391451:CAS:528:DC%2BC28XitVSrurnO2791853310.1038/ng.3737
– reference: VujkovicMDiscovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysisNat. Genet.2020526806911:CAS:528:DC%2BB3cXhtFKgtr%2FO32541925734359210.1038/s41588-020-0637-y
– reference: SarnowskiCImpact of rare and common genetic variants on diabetes diagnosis by hemoglobin A1c in multi-ancestry cohorts: the trans-omics for precision medicine programAm. J. Hum. Genet.20191057067181:CAS:528:DC%2BC1MXhvVylsbrE31564435681752910.1016/j.ajhg.2019.08.010
– reference: JohanssonMThe influence of obesity-related factors in the etiology of renal cell carcinoma-A Mendelian randomization studyPLoS Med.201916e100272430605491631777610.1371/journal.pmed.10027241:CAS:528:DC%2BC1MXit1OntrvO
– reference: WalfordGAGenome-wide association study of the modified Stumvoll insulin sensitivity index identifies BCL2 and FAM19A2 as novel insulin sensitivity lociDiabetes201665320032111:CAS:528:DC%2BC28XhvFKlur3E27416945503326210.2337/db16-0199
– reference: Mahajan, A. et al. Trans-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Preprint at medRxivhttps://doi.org/10.1101/2020.09.22.20198937 (2020).
– reference: IotchkovaVGARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signalsNat. Genet.2019513433531:CAS:528:DC%2BC1MXmtFKjsLo%3D30692680690844810.1038/s41588-018-0322-6
– reference: LuoYTranscription factor Ets1 regulates expression of thioredoxin-interacting protein and inhibits insulin secretion in pancreatic beta-cellsPLoS ONE20149e9904924897113404597610.1371/journal.pone.00990491:CAS:528:DC%2BC2cXhsVKiu7fM
– reference: Ben Harouch, S., Klar, A. & Falik Zaccai, T. C. in GeneReviews (eds Adam, M. P. et al.) (Univ. of Washington, 1993).
– reference: The DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumLarge-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetesNat. Genet.20124498199010.1038/ng.23831:CAS:528:DC%2BC38XhtFOgsLfP
– reference: ScottRAA genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart diseaseSci. Transl. Med.20168341ra7627252175521900110.1126/scitranslmed.aad37441:CAS:528:DC%2BC2sXmtl2hu7Y%3D
– reference: BianFTET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytesMetabolism20188939471:CAS:528:DC%2BC1cXhs1yltLbI30193945622191710.1016/j.metabol.2018.08.006
– reference: KichaevGLeveraging polygenic functional enrichment to improve GWAS powerAm. J. Hum. Genet.201910465751:CAS:528:DC%2BC1MXntlGm3059537010.1016/j.ajhg.2018.11.008
– reference: DupuisJNew genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes riskNat. Genet.2010421051161:CAS:528:DC%2BC3cXntVCqsw%3D%3D20081858301876410.1038/ng.520
– reference: ScottRALarge-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathwaysNat. Genet.20124499110051:CAS:528:DC%2BC38XhtFOgsbzJ22885924343339410.1038/ng.2385
– reference: ErnstJMapping and analysis of chromatin state dynamics in nine human cell typesNature201147343491:CAS:528:DC%2BC3MXjvVOitL0%3D21441907308877310.1038/nature09906
– reference: AndroulakisIIPatients with apparently nonfunctioning adrenal incidentalomas may be at increased cardiovascular risk due to excessive cortisol secretionJ. Clin. Endocrinol. Metab.201499275427621:CAS:528:DC%2BC2cXhsVSgu7jK2471256510.1210/jc.2013-4064
– reference: AgusDBVitamin C crosses the blood-brain barrier in the oxidized form through the glucose transportersJ. Clin. Invest.1997100284228481:CAS:528:DyaK2sXotVehs7k%3D938975050849010.1172/JCI119832
– reference: SpanakisEKGoldenSHRace/ethnic difference in diabetes and diabetic complicationsCurr. Diabetes Rep.20131381482310.1007/s11892-013-0421-9
– reference: HodonskyCJGenome-wide association study of red blood cell traits in Hispanics/Latinos: The Hispanic Community Health Study/Study of LatinosPLoS Genet.201713e100676028453575542897910.1371/journal.pgen.10067601:CAS:528:DC%2BC2sXhvFCgsLzJ
– reference: VarshneyAGenetic regulatory signatures underlying islet gene expression and type 2 diabetesProc. Natl Acad. Sci. USA2017114230123061:CAS:528:DC%2BC2sXisFSjsLc%3D2819385910.1073/pnas.16211921145338551
– reference: WhincupPHEarly emergence of ethnic differences in type 2 diabetes precursors in the UK: the Child Heart and Health Study in England (CHASE Study)PLoS Med.20107e100026320421924285765210.1371/journal.pmed.10002631:CAS:528:DC%2BC3cXlsVyms7w%3D
– reference: PickrellJKJoint analysis of functional genomic data and genome-wide association studies of 18 human traitsAm. J. Hum. Genet.2014945595731:CAS:528:DC%2BC2cXls1Oru70%3D24702953398052310.1016/j.ajhg.2014.03.004
– reference: SoranzoNCommon variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathwaysDiabetes201059322932391:CAS:528:DC%2BC3MXlsVaktA%3D%3D20858683299278710.2337/db10-0502
– reference: ScottLJThe genetic regulatory signature of type 2 diabetes in human skeletal muscleNat. Commun.201671:CAS:528:DC%2BC28XhtFSqt7%2FL27353450493125010.1038/ncomms11764
– reference: ScottRAAn expanded genome-wide association study of type 2 diabetes in EuropeansDiabetes201766288829021:CAS:528:DC%2BC1cXosVynsb4%3D28566273565260210.2337/db16-1253
– reference: GaultonKJGenetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility lociNat. Genet.201547141514251:CAS:528:DC%2BC2MXhvVSgt7bO26551672466673410.1038/ng.3437
– reference: ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNat. Methods201292152161:CAS:528:DC%2BC38XivV2rtLk%3D22373907357793210.1038/nmeth.1906
– reference: ManningAKA genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistanceNat. Genet.2012446596691:CAS:528:DC%2BC38XmvFCjtbw%3D22581228361312710.1038/ng.2274
– reference: WillerCJLiYAbecasisGRMETAL: fast and efficient meta-analysis of genomewide association scansBioinformatics201026219021911:CAS:528:DC%2BC3cXhtVGru73F20616382292288710.1093/bioinformatics/btq340
– reference: SchmidtEMGREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approachBioinformatics201531260126061:CAS:528:DC%2BC28Xht1Cit7%2FI25886982461239010.1093/bioinformatics/btv201
– reference: The 1000 Genomes Project ConsortiumAn integrated map of genetic variation from 1,092 human genomesNature20124915665349806610.1038/nature116321:CAS:528:DC%2BC38Xhs1ajsbjL
– reference: SpracklenCNIdentification and functional analysis of glycemic trait loci in the China Health and Nutrition SurveyPLoS Genet.201814e100727529621232588638310.1371/journal.pgen.10072751:CAS:528:DC%2BC1cXhslyisLfL
– reference: BineshNRezghiMFuzzy clustering in community detection based on nonnegative matrix factoriztion with two novel evaluation criteriaAppl. Soft Comput.20186968970310.1016/j.asoc.2016.12.019
– reference: WestraHJSystematic identification of trans eQTLs as putative drivers of known disease associationsNat. Genet.201345123812431:CAS:528:DC%2BC3sXhtl2ksLzK24013639399156210.1038/ng.2756
– reference: Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation Report No. WHO/NMH/CHP/CPM/11.1 (World Health Organization, 2011).
– reference: Canela-XandriORawlikKTenesaAAn atlas of genetic associations in UK BiobankNat. Genet.201850159315991:CAS:528:DC%2BC1cXhvF2lsbrJ30349118670781410.1038/s41588-018-0248-z
– reference: PottekatAInsulin biosynthetic interaction network component, TMEM24, facilitates insulin reserve pool releaseCell Rep.201349219301:CAS:528:DC%2BC3sXhsVWju77L2401275910.1016/j.celrep.2013.07.050
– reference: The Emerging Risk Factors CollaborationDiabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studiesLancet201037522152222290487810.1016/S0140-6736(10)60484-91:CAS:528:DC%2BC3cXotVagtr0%3D
– reference: PeiYFZhangLLiJDengHWAnalyses and comparison of imputation-based association methodsPLoS ONE20105e1082720520814287708210.1371/journal.pone.00108271:CAS:528:DC%2BC3cXmvFersLs%3D
– reference: UdlerMSType 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysisPLoS Med.201815e100265430240442615046310.1371/journal.pmed.10026541:CAS:528:DC%2BC1MXhvFSlt7jJ
– reference: HwangJYGenome-wide association meta-analysis identifies novel variants associated with fasting plasma glucose in East AsiansDiabetes2015642912981:CAS:528:DC%2BC2MXktVOrsg%3D%3D2518737410.2337/db14-0563
– reference: WesselJLow-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibilityNat. Commun.201561:CAS:528:DC%2BC2MXhtF2lu7jO2563160810.1038/ncomms6897
– reference: HorikoshiMDiscovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputationPLoS Genet.201511e100523026132169448884510.1371/journal.pgen.10052301:CAS:528:DC%2BC28XhtVaqsrnN
– reference: YangJConditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traitsNat. Genet.2012443693751:CAS:528:DC%2BC38XktVaksr0%3D22426310359315810.1038/ng.2213
– reference: BenyaminBNovel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosisNat. Commun.201451:CAS:528:DC%2BC2MXktFens7s%3D2535234010.1038/ncomms5926
– reference: MorrisAPTransethnic meta-analysis of genomewide association studiesGenet. Epidemiol.20113580982222125221346022510.1002/gepi.20630
– reference: SavageJEGenome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligenceNat. Genet.2018509129191:CAS:528:DC%2BC1cXht1WqsLvF29942086641104110.1038/s41588-018-0152-6
– reference: GeTChenCYNiYFengYASmollerJWPolygenic prediction via Bayesian regression and continuous shrinkage priorsNat. Commun.20191030992449646799810.1038/s41467-019-09718-51:CAS:528:DC%2BC1MXoslKmtLs%3D
– reference: Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife9, e48376 (2020).
– reference: YangJLeeSHGoddardMEVisscherPMGCTA: a tool for genome-wide complex trait analysisAm. J. Hum. Genet.20118876821:CAS:528:DC%2BC3MXktVejtg%3D%3D21167468301436310.1016/j.ajhg.2010.11.011
– reference: BennerCFINEMAP: efficient variable selection using summary data from genome-wide association studiesBioinformatics201632149315011:CAS:528:DC%2BC28XhsVygsrfL26773131486652210.1093/bioinformatics/btw018
– reference: KundajeAIntegrative analysis of 111 reference human epigenomesNature20155183173301:CAS:528:DC%2BC2MXjtVSktbc%3D25693563453001010.1038/nature14248
– reference: AltieriBAdrenocortical tumors and insulin resistance: what is the first step?Int. J. Cancer2016138278527941:CAS:528:DC%2BC2MXitVCqs7zP2663795510.1002/ijc.29950
– reference: RavenhallMNovel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern TanzaniaPLoS Genet.201814e100717229381699580689510.1371/journal.pgen.10071721:CAS:528:DC%2BC1cXhs1OhsLrF
– reference: PersTHBiological interpretation of genome-wide association studies using predicted gene functionsNat. Commun.201561:CAS:528:DC%2BC2MXhtF2itrjE2559783010.1038/ncomms6890
– reference: WolkingSFocal epilepsy in glucose transporter type 1 (Glut1) defects: case reports and a review of literatureJ. Neurol.2014261188118862502294210.1007/s00415-014-7433-5
– reference: VoightBFThe metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traitsPLoS Genet.20128e10027931:CAS:528:DC%2BC38XhtFKlurjE22876189341090710.1371/journal.pgen.1002793
– reference: YooYTET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiationInt. J. Obes.2017416526591:CAS:528:DC%2BC2sXjtVeqtrc%3D10.1038/ijo.2017.8
– reference: ReesMGCellular characterisation of the GCKR P446L variant associated with type 2 diabetes riskDiabetologia2012551141221:CAS:528:DC%2BC3MXhsFOqurfO2203852010.1007/s00125-011-2348-5
– reference: LiYWillerCJDingJScheetPAbecasisGRMaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypesGenet. Epidemiol.20103481683421058334317561810.1002/gepi.20533
– reference: Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
– reference: BracciniLPI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signallingNat. Commun.201561:CAS:528:DC%2BC2MXhtF2kt7vJ2610007510.1038/ncomms8400
– reference: ParkerSCChromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variantsProc. Natl Acad. Sci. USA201311017921179261:CAS:528:DC%2BC3sXhvVWmur%2FE2412759110.1073/pnas.13170231103816444
– reference: WinklerTWQuality control and conduct of genome-wide association meta-analysesNat. Protoc.201491192121224762786408321710.1038/nprot.2014.071
– reference: BonomoJAThe ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney diseaseHum. Mol. Genet.201423644164471:CAS:528:DC%2BC2MXitl2ntLY%3D25027322424019710.1093/hmg/ddu362
– reference: MikkelsenTSComparative epigenomic analysis of murine and human adipogenesisCell20101431561691:CAS:528:DC%2BC3cXht1Cmu7zK20887899295083310.1016/j.cell.2010.09.006
– reference: MartinARClinical use of current polygenic risk scores may exacerbate health disparitiesNat. Genet.2019515845911:CAS:528:DC%2BC1MXoslGltLw%3D30926966656383810.1038/s41588-019-0379-x
– reference: ChenPMultiple nonglycemic genomic loci are newly associated with blood level of glycated hemoglobin in East AsiansDiabetes2014632551256224647736428440210.2337/db13-1815
– reference: JoehanesRIntegrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studiesGenome Biol.20171828122634526446610.1186/s13059-016-1142-6
– reference: UdlerMSMcCarthyMIFlorezJCMahajanAGenetic risk scores for diabetes diagnosis and precision medicineEndocr. Rev.2019401500152031322649676029410.1210/er.2019-00088
– reference: ChoiSWMakTSO’ReillyPFTutorial: a guide to performing polygenic risk score analysesNat. Protoc.202015275927721:CAS:528:DC%2BB3cXhsVGltLbI3270998810.1038/s41596-020-0353-17612115
– reference: WheelerEImpact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysisPLoS Med.201714e100238328898252559528210.1371/journal.pmed.1002383
– reference: KramerHJAfrican ancestry-specific alleles and kidney disease risk in Hispanics/LatinosJ. Am. Soc. Nephrol.2017289159221:CAS:528:DC%2BC1cXitlehsrjE2765048310.1681/ASN.2016030357
– reference: Ng, N. H. J. et al. Tissue-specific alteration of metabolic pathways influences glycemic regulation. Preprint at bioRxivhttps://doi.org/10.1101/790618 (2019).
– reference: GuallarDRNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cellsNat. Genet.2018504434511:CAS:528:DC%2BC1cXltVyitrk%3D29483655586275610.1038/s41588-018-0060-9
– reference: Lees, J. A. et al. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science355, eaah6171 (2017).
– reference: NolteIMMissing heritability: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort StudyEur. J. Hum. Genet.20172587788528401901552006310.1038/ejhg.2017.50
– reference: GurdasaniDUganda genome resource enables insights into population history and genomic discovery in AfricaCell201917998410021:CAS:528:DC%2BC1MXitFSjsrrP31675503720213410.1016/j.cell.2019.10.004
– reference: LeongAMendelian randomization analysis of hemoglobin A1C as a risk factor for coronary artery diseaseDiabetes Care201942120212081:CAS:528:DC%2BC1MXitVCru7bN30659074660996210.2337/dc18-1712
– reference: GTEx ConsortiumGenetic effects on gene expression across human tissuesNature2017550204213577675610.1038/nature24277
– reference: NagelMMeta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathwaysNat. Genet.2018509209271:CAS:528:DC%2BC1cXht1WqsLvN2994208510.1038/s41588-018-0151-7
– volume: 5
  start-page: e10827
  year: 2010
  ident: 852_CR84
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010827
– ident: 852_CR78
  doi: 10.7554/eLife.48376
– volume: 6
  year: 2015
  ident: 852_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6897
– volume: 26
  start-page: 2190
  year: 2010
  ident: 852_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 35
  start-page: 809
  year: 2011
  ident: 852_CR87
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20630
– volume: 114
  start-page: 2301
  year: 2017
  ident: 852_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1621192114
– volume: 15
  start-page: e1002654
  year: 2018
  ident: 852_CR4
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002654
– volume: 47
  start-page: 1415
  year: 2015
  ident: 852_CR36
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3437
– volume: 9
  start-page: e99049
  year: 2014
  ident: 852_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099049
– volume: 6
  year: 2015
  ident: 852_CR102
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6890
– volume: 11
  start-page: e1004876
  year: 2015
  ident: 852_CR12
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004876
– volume: 55
  start-page: 114
  year: 2012
  ident: 852_CR45
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2348-5
– ident: 852_CR23
  doi: 10.1038/nature05911
– volume: 41
  start-page: 652
  year: 2017
  ident: 852_CR68
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2017.8
– volume: 31
  start-page: 2601
  year: 2015
  ident: 852_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv201
– volume: 179
  start-page: 984
  year: 2019
  ident: 852_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.004
– volume: 50
  start-page: 1505
  year: 2018
  ident: 852_CR25
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0241-6
– ident: 852_CR1
– volume: 15
  start-page: 2759
  year: 2020
  ident: 852_CR79
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0353-1
– volume: 11
  start-page: e1005230
  year: 2015
  ident: 852_CR11
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005230
– volume: 94
  start-page: 559
  year: 2014
  ident: 852_CR58
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.03.004
– volume: 4
  start-page: 921
  year: 2013
  ident: 852_CR70
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.050
– volume: 100
  start-page: 2842
  year: 1997
  ident: 852_CR64
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI119832
– volume: 110
  start-page: 17921
  year: 2013
  ident: 852_CR57
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1317023110
– volume: 18
  year: 2017
  ident: 852_CR101
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-1142-6
– volume: 40
  start-page: 1500
  year: 2019
  ident: 852_CR5
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2019-00088
– volume: 9
  start-page: 1192
  year: 2014
  ident: 852_CR85
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.071
– volume: 96
  start-page: 329
  year: 2015
  ident: 852_CR30
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.12.021
– volume: 375
  start-page: 2215
  year: 2010
  ident: 852_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60484-9
– volume: 65
  start-page: 3200
  year: 2016
  ident: 852_CR10
  publication-title: Diabetes
  doi: 10.2337/db16-0199
– volume: 550
  start-page: 204
  year: 2017
  ident: 852_CR98
  publication-title: Nature
  doi: 10.1038/nature24277
– volume: 102
  start-page: 547
  year: 2018
  ident: 852_CR40
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.02.003
– volume: 473
  start-page: 43
  year: 2011
  ident: 852_CR95
  publication-title: Nature
  doi: 10.1038/nature09906
– volume: 47
  start-page: 291
  year: 2015
  ident: 852_CR88
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 36
  start-page: 383
  year: 2013
  ident: 852_CR17
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0544
– volume: 50
  start-page: 912
  year: 2018
  ident: 852_CR55
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0152-6
– volume: 100
  start-page: 428
  year: 2017
  ident: 852_CR61
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.01.027
– volume: 49
  start-page: 139
  year: 2017
  ident: 852_CR99
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3737
– volume: 44
  start-page: 659
  year: 2012
  ident: 852_CR9
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2274
– ident: 852_CR69
  doi: 10.1126/science.aah6171
– volume: 261
  start-page: 1881
  year: 2014
  ident: 852_CR65
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7433-5
– volume: 51
  start-page: 343
  year: 2019
  ident: 852_CR59
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0322-6
– volume: 105
  start-page: 706
  year: 2019
  ident: 852_CR52
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.08.010
– volume: 42
  start-page: 1202
  year: 2019
  ident: 852_CR76
  publication-title: Diabetes Care
  doi: 10.2337/dc18-1712
– volume: 16
  start-page: e1002724
  year: 2019
  ident: 852_CR73
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002724
– volume: 52
  start-page: 680
  year: 2020
  ident: 852_CR27
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0637-y
– volume: 143
  start-page: 156
  year: 2010
  ident: 852_CR96
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.006
– volume: 582
  start-page: 240
  year: 2020
  ident: 852_CR26
  publication-title: Nature
  doi: 10.1038/s41586-020-2263-3
– volume: 6
  year: 2015
  ident: 852_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8400
– volume: 51
  start-page: 1573
  year: 2005
  ident: 852_CR80
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2005.051979
– volume: 167
  start-page: 1415
  year: 2016
  ident: 852_CR90
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.042
– volume: 69
  start-page: 689
  year: 2018
  ident: 852_CR93
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.019
– volume: 63
  start-page: 2551
  year: 2014
  ident: 852_CR14
  publication-title: Diabetes
  doi: 10.2337/db13-1815
– volume: 50
  start-page: 443
  year: 2018
  ident: 852_CR66
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0060-9
– volume: 42
  start-page: 105
  year: 2010
  ident: 852_CR8
  publication-title: Nat. Genet.
  doi: 10.1038/ng.520
– volume: 45
  start-page: 1238
  year: 2013
  ident: 852_CR100
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2756
– volume: 14
  start-page: e1007275
  year: 2018
  ident: 852_CR37
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007275
– volume: 8
  start-page: e1002793
  year: 2012
  ident: 852_CR81
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002793
– volume: 99
  start-page: 2754
  year: 2014
  ident: 852_CR71
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2013-4064
– volume: 44
  start-page: 981
  year: 2012
  ident: 852_CR75
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2383
– volume: 518
  start-page: 317
  year: 2015
  ident: 852_CR53
  publication-title: Nature
  doi: 10.1038/nature14248
– volume: 10
  year: 2019
  ident: 852_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11112-0
– volume: 8
  start-page: 341ra76
  year: 2016
  ident: 852_CR48
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad3744
– volume: 63
  start-page: 2158
  year: 2014
  ident: 852_CR3
  publication-title: Diabetes
  doi: 10.2337/db13-0949
– volume: 7
  start-page: e1000263
  year: 2010
  ident: 852_CR18
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000263
– volume: 11
  start-page: e1005694
  year: 2015
  ident: 852_CR60
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005694
– volume: 5
  year: 2014
  ident: 852_CR92
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5926
– volume: 32
  start-page: 1493
  year: 2016
  ident: 852_CR89
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw018
– volume: 301
  start-page: E402
  year: 2011
  ident: 852_CR2
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00013.2011
– volume: 14
  start-page: e1002383
  year: 2017
  ident: 852_CR7
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002383
– volume: 25
  start-page: 877
  year: 2017
  ident: 852_CR32
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2017.50
– volume: 13
  start-page: 814
  year: 2013
  ident: 852_CR16
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-013-0421-9
– volume: 89
  start-page: 39
  year: 2018
  ident: 852_CR67
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2018.08.006
– volume: 14
  start-page: e1007172
  year: 2018
  ident: 852_CR42
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007172
– volume: 50
  start-page: 1112
  year: 2018
  ident: 852_CR31
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0147-3
– volume: 50
  start-page: 1593
  year: 2018
  ident: 852_CR91
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0248-z
– ident: 852_CR50
  doi: 10.1101/790618
– volume: 8
  start-page: e1002607
  year: 2012
  ident: 852_CR34
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002607
– volume: 118
  start-page: 4459
  year: 2011
  ident: 852_CR49
  publication-title: Blood
  doi: 10.1182/blood-2011-06-364034
– volume: 51
  start-page: 584
  year: 2019
  ident: 852_CR35
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0379-x
– volume: 10
  year: 2019
  ident: 852_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 138
  start-page: 2785
  year: 2016
  ident: 852_CR72
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29950
– volume: 50
  start-page: 920
  year: 2018
  ident: 852_CR54
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0151-7
– volume: 64
  start-page: 291
  year: 2015
  ident: 852_CR13
  publication-title: Diabetes
  doi: 10.2337/db14-0563
– volume: 9
  start-page: 215
  year: 2012
  ident: 852_CR97
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1906
– volume: 59
  start-page: 3229
  year: 2010
  ident: 852_CR51
  publication-title: Diabetes
  doi: 10.2337/db10-0502
– volume: 7
  year: 2016
  ident: 852_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11764
– volume: 23
  start-page: 6441
  year: 2014
  ident: 852_CR46
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu362
– volume: 34
  start-page: 816
  year: 2010
  ident: 852_CR83
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20533
– ident: 852_CR63
– volume: 28
  start-page: 915
  year: 2017
  ident: 852_CR41
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2016030357
– volume: 44
  start-page: 991
  year: 2012
  ident: 852_CR15
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2385
– ident: 852_CR24
  doi: 10.1101/2020.09.22.20198937
– volume: 66
  start-page: 2888
  year: 2017
  ident: 852_CR94
  publication-title: Diabetes
  doi: 10.2337/db16-1253
– volume: 526
  start-page: 68
  year: 2015
  ident: 852_CR19
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 44
  start-page: 369
  year: 2012
  ident: 852_CR22
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2213
– volume: 13
  start-page: e1006760
  year: 2017
  ident: 852_CR43
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006760
– volume: 55
  start-page: 997
  year: 1999
  ident: 852_CR86
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00997.x
– volume: 491
  start-page: 56
  year: 2012
  ident: 852_CR82
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 104
  start-page: 65
  year: 2019
  ident: 852_CR39
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.11.008
– volume: 88
  start-page: 76
  year: 2011
  ident: 852_CR21
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 33
  start-page: 981
  year: 2012
  ident: 852_CR74
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2011-1034
SSID ssj0014408
Score 2.730133
Snippet Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on...
Glycemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on...
SourceID swepub
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 840
SubjectTerms 45/43
631/208
692/699
African Americans
Agriculture
Alleles
Animal Genetics and Genomics
Biological effects
Biomedical and Life Sciences
Biomedicine
Blood Glucose - genetics
Cancer Research
Clinical Medicine
Demographic aspects
Diabetes
Diabetes mellitus (non-insulin dependent)
Endocrinology and Diabetes
Endokrinologi och diabetes
Epigenesis, Genetic
Equivalence
Europeans
Fasting
Gene expression
Gene Expression Profiling
Gene Function
Gene mapping
Genetic aspects
Genome, Human
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Glucose
Glycated Hemoglobin - metabolism
Glycemic index
Health aspects
Hemoglobin
Heterogeneity
Hispanic people
Human Genetics
Humans
Insulin
Insulin resistance
Klinisk medicin
Laboratory testing
Life Sciences
Medical and Health Sciences
Medicin och hälsovetenskap
Meta-analysis
Multifactorial Inheritance - genetics
Pathophysiology
Physical Chromosome Mapping
Quantitative Trait Loci - genetics
Quantitative Trait, Heritable
White People - genetics
Title The trans-ancestral genomic architecture of glycemic traits
URI https://link.springer.com/article/10.1038/s41588-021-00852-9
https://www.ncbi.nlm.nih.gov/pubmed/34059833
https://www.proquest.com/docview/2540565923
https://www.proquest.com/docview/2535833743
https://hal.science/hal-04535845
https://pubmed.ncbi.nlm.nih.gov/PMC7610958
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185083
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454592
http://kipublications.ki.se/Default.aspx?queryparsed=id:146730751
Volume 53
WOSCitedRecordID wos000656384400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: M7P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: 8C1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0KIbSLzw_ZExqoD4eIBoje3EtnhAZWwa0uiqAdPEyylxnK1ia8fSTNq_5y5Ju4WNvvASKfHZvvjOd2ff-czYK5SJCaVlCxIVJoGMMxmYylOoeNaTaWJEVB0U3laDgd7fN8Nmw61owipnMrES1NnE0h75GifTgnyA4uPJ74BujSLvanOFRocth7wnaWLq9XmIB_kt66NwMa2TyE25Uh8z12sFKi7kEQpQIKuDB6almBrx3Dmk6MirpufVCMq5G_WvlKOVmtq8-78_eI_daQxUv19z1H12w40fsFv1lZXnD9kH5Ct_SgouIH6pNkp8SvR6PLL-Za-EP8n9g6NzS8H3VGE0LR6xH5sb39e3guYChsBq05sGqYjzkFvuuNJJnEpU7dZynTglU6Qhd5pQFmHqhJXC4tw3LtMy6iVWOKVD8ZgtjSdj95T5sTMqzPPIpSkuYIwzWqJ2zmKT58LYuOexcDb6YJvs5ITbEVRecqGhphggxaCiGBiPvZvXOalzcyyEfklEBUp6MaaomoOkLAr4srMH_ZhS6iC7iH8BfdttAb1tgPIJ4miT5iQD_ikl02pBrrYgceradm_IYHPcKdP3Vn8b6Bta2gJtw-gsxDZm_AKNfCngglk89mJeTM1TzNzYTUqCEXSkTlE_T2p2nXclsLrBQo-pFiO3cGmXjEeHVfZxRQn6I-2x9zOWv0Br0ei_qadFq4fPo70-TE4PoDwuAS1HXA947PVCwBIkGv2Ge-znNXD1mhWaRFmHcFRC4eDk0g44WC4jm0Up6NAZkCIJIc1sDDJLciFwUIxIrse2-fRrRG3KOIx5vLKYOM_YbV6JGNq1W2VL09PSPWc37dl0VJx2WUftq-qpu5Xg6rLlTxuD4S6-feU79FTDP0_2nvw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1db9Mw0NoGCF74_sgYEBCDB4jW2M6HhRCqGNOmlYHGmCpejsRxtoouLU0z1D_Fb-QuSbuFjb7tgdf4bF_su_Od78OMPUeZGFFZNicK3MiRfiIdVXoKA560ZBwp4ZWJwp1gZyfsdtXnBfZ7mgtDYZVTmVgK6mSg6Y58jZNqQT5A8W7406FXo8i7On1CoyKLbTP5hSZb_nZrHfd3lfOND3vvN536VQFHh6o1dmLhpy7X3PAgjPxY4nmlNQ8jE8gYEeMmpImEGxuhpdBI0MokofRakRYmCF2B4y6ySyjHAwohC7ozA4_8pFXqnU92GblFl6u09nAtx4MSaZICIkjL4Y5qHIT1cbB4SNGYZ1XdsxGbM7ftXyVOy2Nx48b_tqA32fVaAbfbFcfcYgsmu82uVE9yTu6wN8g39pgOcIf4obwIsqmQ7VFP26e9LvYgtQ_6E03JBdShN87vsq8Xgvk9tpQNMvOA2b5RgZumnoljNNCUUaFE7SPxVZoKpf2WxdzpboOuq68Tbn0oowBECBWFAFIIlBQCymKvZn2GVe2RudDPiIiAinpkFDV0EBV5Dluf9qHtU8kgJE_xL6Avuw2glzVQOkAcdVRnauCfUrGwBuRKAxJFk27OhgQ9w50qmW-2O0Df0JIQqPt6xy6OMaVPqOVnDifEabGns2YanmICMzMoCEZQymBA89yv2GM2lcDuChstFjQYp4FLsyXrHZbV1QN6gMALLfZ6ymInaM1b_RcVGzZmWO_tt2EwOoDiqADUjNHesdjqXMACJBo1ilvs2zlwlU0OdSGwQ-gXkBsYnrrhB82lpxMvhtA1CqSIXIgT7YNMolQIXBQlovOxrT_96NGY0nd97i_P35wn7Orm3scOdLZ2th-ya7wUb3RDucKWxqPCPGKX9fG4l48el4LSZt8vWpD8ATOz9ZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1db9Mw0NoHIF74_sgYEBCDB4ja2M6HhRAqbNWqTWUaME28HInjbBVdW5ZmqH-NX8ddknYLG33bA6_x2b7Yd-c734cZe4EyMaKybE4UuJEj_UQ6qvAUBjxpyjhSwisShbeDbjfc31c7C-z3NBeGwiqnMrEQ1MlQ0x15g5NqQT5A0UirsIid9fb70U-HXpAiT-v0OY2SRLbM5Beab9m7zjru9Rrn7Y0vHzed6oUBR4eqOXZi4acu19zwIIz8WOLZpTUPIxPIGJHkJqRJhRsboaXQSNzKJKH0mpEWJghdgeMusuUAlQzkruUPG92d3ZkPg95yLnytPllp5CRdKZPcw0aGxyZSKIVHkM7DHVU7FqvDYfGQYjPPK77n4zdnTty_Cp4Wh2T75v-8vLfYjUo1t1slL91mC2Zwh10tH-uc3GVvkaPsMR3tDnFKcUVkU4nbo562z_pj7GFqH_QnmtIOqENvnN1jXy8F8_tsaTAcmIfM9o0K3DT1TByj6aaMCiXqJYmv0lQo7Tct5k53HnRVl51w60MRHyBCKKkFkFqgoBZQFns96zMqq5LMhX5OBAVU7mNAO3sQ5VkGnU970PKpmBCSqvgX0OfdGtCrCigdIo46qnI48E-pjFgNcrUGiUJL12dD4p7hTjXON1vbQN_QxhCoFXsnLo4xpVWoJGsGp4RqsWezZhqeogUHZpgTjKBkwoDmeVCyymwqgd0VNlosqDFRDZd6y6B3WNRdD-hpAi-02Jspu52iNW_1X5YsWZthvbfXguHxAeRHOaDOjJaQxdbmAuYg0dxR3GLfLoArrXWoSoQdQj-HzMDozN0_aC49nXgxhK5RIEXkQpxoH2QSpULgoigRXYxt9elHj8aUvutzf2X-5jxl11B-wHanu_WIXeeFpKOry1W2ND7OzWN2RZ-Me9nxk0pq2uz7ZUuSP5F1_7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+trans-ancestral+genomic+architecture+of+glycemic+traits&rft.jtitle=Nature+genetics&rft.au=Marenne%2C+Ga%C3%ABlle&rft.au=Horikoshi%2C+Momoko&rft.au=Chu%2C+Audrey+Y.&rft.au=Hong%2C+Jaeyoung&rft.date=2021-06-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=53&rft.issue=6&rft.spage=840&rft.epage=860&rft_id=info:doi/10.1038%2Fs41588-021-00852-9&rft.externalDocID=10_1038_s41588_021_00852_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon