Clustering What Matters in Constrained Settings Improved Outlier to Outlier-Free Reductions

Constrained clustering problems generalize classical clustering formulations, e.g., k -median , k -means , by imposing additional constraints on the feasibility of a clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 87; H. 8; S. 1178 - 1198
Hauptverfasser: Jaiswal, Ragesh, Kumar, Amit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2025
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Constrained clustering problems generalize classical clustering formulations, e.g., k -median , k -means , by imposing additional constraints on the feasibility of a clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric and the Euclidean settings. However, the outlier version of these problems, where the solution is allowed to leave out m points from the clustering, is not well understood. In this work, we give a general framework for reducing the outlier version of a constrained k -median or k -means problem to the corresponding outlier-free version with only ( 1 + ε ) -loss in the approximation ratio. The reduction is obtained by mapping the original instance of the problem to f ( k , m , ε ) instances of the outlier-free version, where f ( k , m , ε ) = k + m ε O ( m ) . As specific applications, we get the following results: First FPT ( in the parameters k and m ) ( 1 + ε ) -approximation algorithm for the outlier version of capacitated k -median and k -means in Euclidean spaces with hard capacities. First FPT ( in the parameters k and m ) ( 3 + ε ) and ( 9 + ε ) approximation algorithms for the outlier version of capacitated k -median and k -means , respectively, in general metric spaces with hard capacities. First FPT ( in the parameters k and m ) ( 2 - δ ) -approximation algorithm for the outlier version of the k -median problem under the Ulam metric. Our work generalizes the results of Bhattacharya et al. and Agrawal et al. to a larger class of constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces.
AbstractList Constrained clustering problems generalize classical clustering formulations, e.g., k -median , k -means , by imposing additional constraints on the feasibility of a clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric and the Euclidean settings. However, the outlier version of these problems, where the solution is allowed to leave out m points from the clustering, is not well understood. In this work, we give a general framework for reducing the outlier version of a constrained k -median or k -means problem to the corresponding outlier-free version with only ( 1 + ε ) -loss in the approximation ratio. The reduction is obtained by mapping the original instance of the problem to f ( k , m , ε ) instances of the outlier-free version, where f ( k , m , ε ) = k + m ε O ( m ) . As specific applications, we get the following results: First FPT ( in the parameters k and m ) ( 1 + ε ) -approximation algorithm for the outlier version of capacitated k -median and k -means in Euclidean spaces with hard capacities. First FPT ( in the parameters k and m ) ( 3 + ε ) and ( 9 + ε ) approximation algorithms for the outlier version of capacitated k -median and k -means , respectively, in general metric spaces with hard capacities. First FPT ( in the parameters k and m ) ( 2 - δ ) -approximation algorithm for the outlier version of the k -median problem under the Ulam metric. Our work generalizes the results of Bhattacharya et al. and Agrawal et al. to a larger class of constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces.
Author Jaiswal, Ragesh
Kumar, Amit
Author_xml – sequence: 1
  givenname: Ragesh
  orcidid: 0009-0002-4475-0922
  surname: Jaiswal
  fullname: Jaiswal, Ragesh
  email: rjaiswal@cse.iitd.ac.in
  organization: CSE, IIT Delhi
– sequence: 2
  givenname: Amit
  orcidid: 0000-0002-3965-6627
  surname: Kumar
  fullname: Kumar, Amit
  organization: CSE, IIT Delhi
BookMark eNp9j8tOwzAQRS1UJNLCD7DKD5jO2I4fSxTxqFTEgkosLTdxIFVxKttd8Pe4lDWr0Uhz5t4zJ7MwBU_ILcIdAqhlAhANp8AaCshRUXNBKhScUWgEzkgFqDQVEtUVmae0A0CmjKzIst0fU_ZxDB_1-6fL9YvLZU31GOp2CilHNwbf128-53KTrsnl4PbJ3_zNBdk8PmzaZ7p-fVq192vaaWXoFtFJ3vWiMRKBdcgEcOSCmy2gHhgv6d6gNE5pxZzWXeN7LnsO0nuQA18Qdn7bxSml6Ad7iOOXi98WwZ6M7dnYFmP7a2xNgfgZSoeTj492Nx1jKDX_o34ACfRY1g
Cites_doi 10.1145/1798596.1798602
10.4230/LIPIcs.FSTTCS.2020.13
10.1007/978-3-030-39479-0_13
10.4230/LIPIcs.ICALP.2021.23
10.4230/LIPIcs.ITCS.2023.31
10.4230/LIPIcs.ICALP.2019.42
10.1145/3188745.3188882
10.1016/j.tcs.2020.07.022
10.1145/1247069.1247072
10.1007/s00224-017-9820-7
10.1109/FOCS.2017.15
10.1137/S0097539702416402
10.1109/FOCS54457.2022.00051
10.1137/1.9781611973082.84
10.4230/LIPIcs.APPROX-RANDOM.2019.18
10.1145/1667053.1667054
10.1145/2854153
10.1145/3406325.3451022
10.2139/ssrn.4781350
10.4230/LIPIcs.ICALP.2018.96
10.1006/jcss.2002.1882
10.4230/LIPIcs.ICALP.2019.41
10.4230/LIPIcs.IPEC.2020.14
10.1137/070699007
10.1613/jair.1.14883
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00453-025-01317-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1198
ExternalDocumentID 10_1007_s00453_025_01317_9
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c879-b11a63cd4596102c1240313439b018f23127e9169a7872a88c5ed36d306ee06f3
IEDL.DBID RSV
ISSN 0178-4617
IngestDate Sat Nov 29 07:35:51 EST 2025
Tue Aug 19 01:10:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Outlier
Theory of computation
Constrained
Clustering
Facility location and clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c879-b11a63cd4596102c1240313439b018f23127e9169a7872a88c5ed36d306ee06f3
ORCID 0009-0002-4475-0922
0000-0002-3965-6627
PageCount 21
ParticipantIDs crossref_primary_10_1007_s00453_025_01317_9
springer_journals_10_1007_s00453_025_01317_9
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2025
Publisher Springer US
Publisher_xml – name: Springer US
References M Hajiaghayi (1317_CR21) 2016
A Agrawal (1317_CR2) 2023
1317_CR16
1317_CR15
1317_CR14
1317_CR19
1317_CR17
1317_CR11
1317_CR10
T Inamdar (1317_CR23) 2020
1317_CR3
1317_CR5
H Ding (1317_CR18) 2020; 842
Ke Chen (1317_CR13) 2009; 39
Amit Kumar (1317_CR26) 2010; 57
1317_CR27
1317_CR25
1317_CR24
G Aggarwal (1317_CR1) 2010
Vijay Arya (1317_CR4) 2004; 33
Anup Bhattacharya (1317_CR9) 2018; 62
1317_CR6
1317_CR7
1317_CR8
1317_CR22
M Charikar (1317_CR12) 2002; 65
1317_CR20
References_xml – year: 2010
  ident: 1317_CR1
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1798596.1798602
– ident: 1317_CR22
– ident: 1317_CR8
  doi: 10.4230/LIPIcs.FSTTCS.2020.13
– start-page: 188
  volume-title: Approximation and Online Algorithms
  year: 2020
  ident: 1317_CR23
  doi: 10.1007/978-3-030-39479-0_13
– ident: 1317_CR5
  doi: 10.4230/LIPIcs.ICALP.2021.23
– ident: 1317_CR11
  doi: 10.4230/LIPIcs.ITCS.2023.31
– ident: 1317_CR14
  doi: 10.4230/LIPIcs.ICALP.2019.42
– ident: 1317_CR25
  doi: 10.1145/3188745.3188882
– volume: 842
  start-page: 28
  year: 2020
  ident: 1317_CR18
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.07.022
– ident: 1317_CR19
  doi: 10.1145/1247069.1247072
– volume: 62
  start-page: 93
  issue: 1
  year: 2018
  ident: 1317_CR9
  publication-title: Theor. Comp. Sys.
  doi: 10.1007/s00224-017-9820-7
– ident: 1317_CR3
  doi: 10.1109/FOCS.2017.15
– volume: 33
  start-page: 544
  issue: 3
  year: 2004
  ident: 1317_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539702416402
– ident: 1317_CR10
  doi: 10.1109/FOCS54457.2022.00051
– ident: 1317_CR24
  doi: 10.1137/1.9781611973082.84
– ident: 1317_CR7
  doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.18
– ident: 1317_CR6
– volume: 57
  start-page: 5:1
  issue: 2
  year: 2010
  ident: 1317_CR26
  publication-title: J. ACM
  doi: 10.1145/1667053.1667054
– year: 2016
  ident: 1317_CR21
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2854153
– ident: 1317_CR16
  doi: 10.1145/3406325.3451022
– ident: 1317_CR17
  doi: 10.2139/ssrn.4781350
– ident: 1317_CR27
  doi: 10.4230/LIPIcs.ICALP.2018.96
– volume: 65
  start-page: 129
  issue: 1
  year: 2002
  ident: 1317_CR12
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2002.1882
– ident: 1317_CR15
  doi: 10.4230/LIPIcs.ICALP.2019.41
– ident: 1317_CR20
  doi: 10.4230/LIPIcs.IPEC.2020.14
– volume: 39
  start-page: 923
  issue: 3
  year: 2009
  ident: 1317_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/070699007
– year: 2023
  ident: 1317_CR2
  publication-title: J. Artif. Int. Res.
  doi: 10.1613/jair.1.14883
SSID ssj0012796
Score 2.41335
Snippet Constrained clustering problems generalize classical clustering formulations, e.g., k -median , k -means , by imposing additional constraints on the...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1178
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Theory of Computation
Subtitle Improved Outlier to Outlier-Free Reductions
Title Clustering What Matters in Constrained Settings
URI https://link.springer.com/article/10.1007/s00453-025-01317-9
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3o9MEX5yfOL_Lgmwabpm2SRxkOH3SIG2NvZWlvYSBV1s3f703aDgYi6HsI5ZCbc9L7cQBuhBKF1TZyNqkhjzJdcB0XyDG3cRwTAwf-f8fkWQ2Hejo1r01TWNVWu7cpSX9Tr5vdnPpwOUdXbEasx8027BDdaReOb6PJOncQKu_K5XzneUQE3bTK_LzHJh1t5kI9xQy6__u4A9hvJCV7qM_AIWxheQTd1q6BNdF7DPf995Ubi0D7Mjexm73UszXZvGTOt9O7RWDORuhroasTGA8ex_0n3vgl8Ewrw60Qs0RmeRQb0kRhJtyoPSFJcdhA6IKEXKiQ1KCZUZCGM62zGHOZ5PRoQAySQp5Cp_wo8QyYMiiRrkIK9zxKrLT06EkKlAJJEagAe3DbopZ-1lMx0vX8Yw9FSlCkHorU9OCuBS1tIqT6Zfn535ZfwF7ocXdFeZfQWS5WeAW72ddyXi2u_dH4BlS1r1M
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CnrxW6yfOXjT4GazH8lRiqViW8SW0tvS7M5CQVbptv5-J-luoSCC3kNYJpm8l53JewC3Iha5USawNqk-D1KVcxXmyDEzYRgSAnvuf8eoG_f7ajzWr9WjsLLudq9Lku6kXj12s-zD1hxtsxmhHtebsBUQYtlGvrfBaFU78GPnymV953lAAF09lfl5jnU4Wq-FOohp7__v4w5gr6KU7HG5Bw5hA4sj2K_tGliVvcfw0HpfWFkEmpdZxW7WW2prsmnBrG-nc4vAjA3Q9UKXJzBsPw1bHV75JfBUxZobISaRTLMg1MSJ_FRYqT0hiXEYT6iciJwfI7FBPaEk9SdKpSFmMsro0oDoRbk8hUbxUeAZsFijRDoKKd2zIDLS0KUnylEKJEYQe9iEuzpqyedSFSNZ6R-7UCQUisSFItFNuK-DllQZUv4y_Pxvw29gpzPsdZPuc__lAnZ9twa2Qe8SGvPZAq9gO_2aT8vZtdsm35gMsjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrE-9-BNl2bz3BylWhRrKbSU3pZuMoFCiaUPf7-zm6RYEEG8L8ky2dn5JjPzfQB3IhKZlto3Mqku9xOZcRlkyDHVQRBQBHbs_45hJ-p25WgU975N8dtu96okWcw0GJamfNmcpVlzPfhmkIipP5rGM4qAPN6GHd-IBpl8vT9c1xHcyCp0GQ167lOwLsdmfn7GZmjarIvacNOu_3-jh3BQQk32WJyNI9jC_BjqlYwDK736BJqt6crQJdA7mGHyZu8F5yab5MzoeVoVCUxZH22P9OIUBu3nQeuFlzoKPJFRzLUQ49BLUj-ICSu5iTAUfMIjJKIdITMCeG6EhBLjMTmvO5YyCTD1wpSSCUQnzLwzqOUfOZ4Di2L0kK5IugZSP9SepmQozNATSEghcrAB95UF1axgy1BrXmRrCkWmUNYUKm7AQ2VAVXrO4pflF39bfgt7vae26rx23y5h37WfwPTtXUFtOV_hNewmn8vJYn5jT8wXj8O7Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+What+Matters+in+Constrained+Settings&rft.jtitle=Algorithmica&rft.au=Jaiswal%2C+Ragesh&rft.au=Kumar%2C+Amit&rft.date=2025-08-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=87&rft.issue=8&rft.spage=1178&rft.epage=1198&rft_id=info:doi/10.1007%2Fs00453-025-01317-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_025_01317_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon