Clustering What Matters in Constrained Settings Improved Outlier to Outlier-Free Reductions
Constrained clustering problems generalize classical clustering formulations, e.g., k -median , k -means , by imposing additional constraints on the feasibility of a clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric an...
Gespeichert in:
| Veröffentlicht in: | Algorithmica Jg. 87; H. 8; S. 1178 - 1198 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2025
|
| Schlagworte: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Constrained clustering problems generalize classical clustering formulations, e.g.,
k
-median
,
k
-means
, by imposing additional constraints on the feasibility of a clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric and the Euclidean settings. However, the outlier version of these problems, where the solution is allowed to leave out
m
points from the clustering, is not well understood. In this work, we give a general framework for reducing the outlier version of a constrained
k
-median
or
k
-means
problem to the corresponding outlier-free version with only
(
1
+
ε
)
-loss in the approximation ratio. The reduction is obtained by mapping the original instance of the problem to
f
(
k
,
m
,
ε
)
instances of the outlier-free version, where
f
(
k
,
m
,
ε
)
=
k
+
m
ε
O
(
m
)
. As specific applications, we get the following results:
First FPT (
in the parameters k and m
)
(
1
+
ε
)
-approximation algorithm for the outlier version of capacitated
k
-median
and
k
-means
in Euclidean spaces with
hard
capacities.
First FPT (
in the parameters k and m
)
(
3
+
ε
)
and
(
9
+
ε
)
approximation algorithms for the outlier version of capacitated
k
-median
and
k
-means
, respectively, in general metric spaces with
hard
capacities.
First FPT (
in the parameters k and m
)
(
2
-
δ
)
-approximation algorithm for the outlier version of the
k
-median
problem under the Ulam metric.
Our work generalizes the results of Bhattacharya et al. and Agrawal et al. to a larger class of constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces. |
|---|---|
| AbstractList | Constrained clustering problems generalize classical clustering formulations, e.g.,
k
-median
,
k
-means
, by imposing additional constraints on the feasibility of a clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric and the Euclidean settings. However, the outlier version of these problems, where the solution is allowed to leave out
m
points from the clustering, is not well understood. In this work, we give a general framework for reducing the outlier version of a constrained
k
-median
or
k
-means
problem to the corresponding outlier-free version with only
(
1
+
ε
)
-loss in the approximation ratio. The reduction is obtained by mapping the original instance of the problem to
f
(
k
,
m
,
ε
)
instances of the outlier-free version, where
f
(
k
,
m
,
ε
)
=
k
+
m
ε
O
(
m
)
. As specific applications, we get the following results:
First FPT (
in the parameters k and m
)
(
1
+
ε
)
-approximation algorithm for the outlier version of capacitated
k
-median
and
k
-means
in Euclidean spaces with
hard
capacities.
First FPT (
in the parameters k and m
)
(
3
+
ε
)
and
(
9
+
ε
)
approximation algorithms for the outlier version of capacitated
k
-median
and
k
-means
, respectively, in general metric spaces with
hard
capacities.
First FPT (
in the parameters k and m
)
(
2
-
δ
)
-approximation algorithm for the outlier version of the
k
-median
problem under the Ulam metric.
Our work generalizes the results of Bhattacharya et al. and Agrawal et al. to a larger class of constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces. |
| Author | Jaiswal, Ragesh Kumar, Amit |
| Author_xml | – sequence: 1 givenname: Ragesh orcidid: 0009-0002-4475-0922 surname: Jaiswal fullname: Jaiswal, Ragesh email: rjaiswal@cse.iitd.ac.in organization: CSE, IIT Delhi – sequence: 2 givenname: Amit orcidid: 0000-0002-3965-6627 surname: Kumar fullname: Kumar, Amit organization: CSE, IIT Delhi |
| BookMark | eNp9j8tOwzAQRS1UJNLCD7DKD5jO2I4fSxTxqFTEgkosLTdxIFVxKttd8Pe4lDWr0Uhz5t4zJ7MwBU_ILcIdAqhlAhANp8AaCshRUXNBKhScUWgEzkgFqDQVEtUVmae0A0CmjKzIst0fU_ZxDB_1-6fL9YvLZU31GOp2CilHNwbf128-53KTrsnl4PbJ3_zNBdk8PmzaZ7p-fVq192vaaWXoFtFJ3vWiMRKBdcgEcOSCmy2gHhgv6d6gNE5pxZzWXeN7LnsO0nuQA18Qdn7bxSml6Ad7iOOXi98WwZ6M7dnYFmP7a2xNgfgZSoeTj492Nx1jKDX_o34ACfRY1g |
| Cites_doi | 10.1145/1798596.1798602 10.4230/LIPIcs.FSTTCS.2020.13 10.1007/978-3-030-39479-0_13 10.4230/LIPIcs.ICALP.2021.23 10.4230/LIPIcs.ITCS.2023.31 10.4230/LIPIcs.ICALP.2019.42 10.1145/3188745.3188882 10.1016/j.tcs.2020.07.022 10.1145/1247069.1247072 10.1007/s00224-017-9820-7 10.1109/FOCS.2017.15 10.1137/S0097539702416402 10.1109/FOCS54457.2022.00051 10.1137/1.9781611973082.84 10.4230/LIPIcs.APPROX-RANDOM.2019.18 10.1145/1667053.1667054 10.1145/2854153 10.1145/3406325.3451022 10.2139/ssrn.4781350 10.4230/LIPIcs.ICALP.2018.96 10.1006/jcss.2002.1882 10.4230/LIPIcs.ICALP.2019.41 10.4230/LIPIcs.IPEC.2020.14 10.1137/070699007 10.1613/jair.1.14883 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00453-025-01317-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 1198 |
| ExternalDocumentID | 10_1007_s00453_025_01317_9 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~EX AAYXX CITATION |
| ID | FETCH-LOGICAL-c879-b11a63cd4596102c1240313439b018f23127e9169a7872a88c5ed36d306ee06f3 |
| IEDL.DBID | RSV |
| ISSN | 0178-4617 |
| IngestDate | Sat Nov 29 07:35:51 EST 2025 Tue Aug 19 01:10:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Outlier Theory of computation Constrained Clustering Facility location and clustering |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c879-b11a63cd4596102c1240313439b018f23127e9169a7872a88c5ed36d306ee06f3 |
| ORCID | 0009-0002-4475-0922 0000-0002-3965-6627 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1007_s00453_025_01317_9 springer_journals_10_1007_s00453_025_01317_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20250800 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2025 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | M Hajiaghayi (1317_CR21) 2016 A Agrawal (1317_CR2) 2023 1317_CR16 1317_CR15 1317_CR14 1317_CR19 1317_CR17 1317_CR11 1317_CR10 T Inamdar (1317_CR23) 2020 1317_CR3 1317_CR5 H Ding (1317_CR18) 2020; 842 Ke Chen (1317_CR13) 2009; 39 Amit Kumar (1317_CR26) 2010; 57 1317_CR27 1317_CR25 1317_CR24 G Aggarwal (1317_CR1) 2010 Vijay Arya (1317_CR4) 2004; 33 Anup Bhattacharya (1317_CR9) 2018; 62 1317_CR6 1317_CR7 1317_CR8 1317_CR22 M Charikar (1317_CR12) 2002; 65 1317_CR20 |
| References_xml | – year: 2010 ident: 1317_CR1 publication-title: ACM Trans. Algorithms doi: 10.1145/1798596.1798602 – ident: 1317_CR22 – ident: 1317_CR8 doi: 10.4230/LIPIcs.FSTTCS.2020.13 – start-page: 188 volume-title: Approximation and Online Algorithms year: 2020 ident: 1317_CR23 doi: 10.1007/978-3-030-39479-0_13 – ident: 1317_CR5 doi: 10.4230/LIPIcs.ICALP.2021.23 – ident: 1317_CR11 doi: 10.4230/LIPIcs.ITCS.2023.31 – ident: 1317_CR14 doi: 10.4230/LIPIcs.ICALP.2019.42 – ident: 1317_CR25 doi: 10.1145/3188745.3188882 – volume: 842 start-page: 28 year: 2020 ident: 1317_CR18 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.07.022 – ident: 1317_CR19 doi: 10.1145/1247069.1247072 – volume: 62 start-page: 93 issue: 1 year: 2018 ident: 1317_CR9 publication-title: Theor. Comp. Sys. doi: 10.1007/s00224-017-9820-7 – ident: 1317_CR3 doi: 10.1109/FOCS.2017.15 – volume: 33 start-page: 544 issue: 3 year: 2004 ident: 1317_CR4 publication-title: SIAM J. Comput. doi: 10.1137/S0097539702416402 – ident: 1317_CR10 doi: 10.1109/FOCS54457.2022.00051 – ident: 1317_CR24 doi: 10.1137/1.9781611973082.84 – ident: 1317_CR7 doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.18 – ident: 1317_CR6 – volume: 57 start-page: 5:1 issue: 2 year: 2010 ident: 1317_CR26 publication-title: J. ACM doi: 10.1145/1667053.1667054 – year: 2016 ident: 1317_CR21 publication-title: ACM Trans. Algorithms doi: 10.1145/2854153 – ident: 1317_CR16 doi: 10.1145/3406325.3451022 – ident: 1317_CR17 doi: 10.2139/ssrn.4781350 – ident: 1317_CR27 doi: 10.4230/LIPIcs.ICALP.2018.96 – volume: 65 start-page: 129 issue: 1 year: 2002 ident: 1317_CR12 publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.2002.1882 – ident: 1317_CR15 doi: 10.4230/LIPIcs.ICALP.2019.41 – ident: 1317_CR20 doi: 10.4230/LIPIcs.IPEC.2020.14 – volume: 39 start-page: 923 issue: 3 year: 2009 ident: 1317_CR13 publication-title: SIAM J. Comput. doi: 10.1137/070699007 – year: 2023 ident: 1317_CR2 publication-title: J. Artif. Int. Res. doi: 10.1613/jair.1.14883 |
| SSID | ssj0012796 |
| Score | 2.41335 |
| Snippet | Constrained clustering problems generalize classical clustering formulations, e.g.,
k
-median
,
k
-means
, by imposing additional constraints on the... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 1178 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Mathematics of Computing Theory of Computation |
| Subtitle | Improved Outlier to Outlier-Free Reductions |
| Title | Clustering What Matters in Constrained Settings |
| URI | https://link.springer.com/article/10.1007/s00453-025-01317-9 |
| Volume | 87 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3o9MEX5yfOL_Lgmwabpm2SRxkOH3SIG2NvZWlvYSBV1s3f703aDgYi6HsI5ZCbc9L7cQBuhBKF1TZyNqkhjzJdcB0XyDG3cRwTAwf-f8fkWQ2Hejo1r01TWNVWu7cpSX9Tr5vdnPpwOUdXbEasx8027BDdaReOb6PJOncQKu_K5XzneUQE3bTK_LzHJh1t5kI9xQy6__u4A9hvJCV7qM_AIWxheQTd1q6BNdF7DPf995Ubi0D7Mjexm73UszXZvGTOt9O7RWDORuhroasTGA8ex_0n3vgl8Ewrw60Qs0RmeRQb0kRhJtyoPSFJcdhA6IKEXKiQ1KCZUZCGM62zGHOZ5PRoQAySQp5Cp_wo8QyYMiiRrkIK9zxKrLT06EkKlAJJEagAe3DbopZ-1lMx0vX8Yw9FSlCkHorU9OCuBS1tIqT6Zfn535ZfwF7ocXdFeZfQWS5WeAW72ddyXi2u_dH4BlS1r1M |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CnrxW6yfOXjT4GazH8lRiqViW8SW0tvS7M5CQVbptv5-J-luoSCC3kNYJpm8l53JewC3Iha5USawNqk-D1KVcxXmyDEzYRgSAnvuf8eoG_f7ajzWr9WjsLLudq9Lku6kXj12s-zD1hxtsxmhHtebsBUQYtlGvrfBaFU78GPnymV953lAAF09lfl5jnU4Wq-FOohp7__v4w5gr6KU7HG5Bw5hA4sj2K_tGliVvcfw0HpfWFkEmpdZxW7WW2prsmnBrG-nc4vAjA3Q9UKXJzBsPw1bHV75JfBUxZobISaRTLMg1MSJ_FRYqT0hiXEYT6iciJwfI7FBPaEk9SdKpSFmMsro0oDoRbk8hUbxUeAZsFijRDoKKd2zIDLS0KUnylEKJEYQe9iEuzpqyedSFSNZ6R-7UCQUisSFItFNuK-DllQZUv4y_Pxvw29gpzPsdZPuc__lAnZ9twa2Qe8SGvPZAq9gO_2aT8vZtdsm35gMsjc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrE-9-BNl2bz3BylWhRrKbSU3pZuMoFCiaUPf7-zm6RYEEG8L8ky2dn5JjPzfQB3IhKZlto3Mqku9xOZcRlkyDHVQRBQBHbs_45hJ-p25WgU975N8dtu96okWcw0GJamfNmcpVlzPfhmkIipP5rGM4qAPN6GHd-IBpl8vT9c1xHcyCp0GQ167lOwLsdmfn7GZmjarIvacNOu_3-jh3BQQk32WJyNI9jC_BjqlYwDK736BJqt6crQJdA7mGHyZu8F5yab5MzoeVoVCUxZH22P9OIUBu3nQeuFlzoKPJFRzLUQ49BLUj-ICSu5iTAUfMIjJKIdITMCeG6EhBLjMTmvO5YyCTD1wpSSCUQnzLwzqOUfOZ4Di2L0kK5IugZSP9SepmQozNATSEghcrAB95UF1axgy1BrXmRrCkWmUNYUKm7AQ2VAVXrO4pflF39bfgt7vae26rx23y5h37WfwPTtXUFtOV_hNewmn8vJYn5jT8wXj8O7Gw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+What+Matters+in+Constrained+Settings&rft.jtitle=Algorithmica&rft.au=Jaiswal%2C+Ragesh&rft.au=Kumar%2C+Amit&rft.date=2025-08-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=87&rft.issue=8&rft.spage=1178&rft.epage=1198&rft_id=info:doi/10.1007%2Fs00453-025-01317-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_025_01317_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |