Simulation of Student Study Group Formation Design Using K-Means Clustering

This research focuses on developing a simulation model for forming student study groups using an enhanced K-Means algorithm, addressing the challenge of optimizing group dynamics to improve learning outcomes. By analyzing the effectiveness of the formed study groups through RMSE (Root Mean Square Er...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MALCOM: Indonesian Journal of Machine Learning and Computer Science Jg. 5; H. 2; S. 598 - 608
Hauptverfasser: Putra, Yudistira Ardi Nugraha Setyawan, Margono, Hendro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 21.03.2025
ISSN:2797-2313, 2775-8575
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research focuses on developing a simulation model for forming student study groups using an enhanced K-Means algorithm, addressing the challenge of optimizing group dynamics to improve learning outcomes. By analyzing the effectiveness of the formed study groups through RMSE (Root Mean Square Error) after dimensionality reduction with various regression models—including Linear Regression, Ridge Regression, Lasso Regression, Elastic Net, Random Forest Regressor, Gradient Boosting Regressor, and XGBoost Regressor—we aim to provide educators with a robust tool for assessing group configurations. The study identifies four distinct clusters, revealing that "Previous_Score" and "Attendance" are critical variables, achieving a highest Silhouette Score of 0.64 with five selected features. The ridge regression model also yielded a low RMSE of 0.045, explaining 72.39% of the variance in "Exam_Score." The findings suggest that targeted interventions tailored to each cluster—yellow, purple, blue, and green—can enhance academic outcomes by addressing specific student needs. This data-driven approach optimizes group dynamics and fosters a more inclusive learning environment, enhancing academic performance and cultivating essential social skills. The study underscores the potential of machine learning techniques in education and suggests avenues for future research into alternative clustering methods and their long-term impact on student engagement and success.
AbstractList This research focuses on developing a simulation model for forming student study groups using an enhanced K-Means algorithm, addressing the challenge of optimizing group dynamics to improve learning outcomes. By analyzing the effectiveness of the formed study groups through RMSE (Root Mean Square Error) after dimensionality reduction with various regression models—including Linear Regression, Ridge Regression, Lasso Regression, Elastic Net, Random Forest Regressor, Gradient Boosting Regressor, and XGBoost Regressor—we aim to provide educators with a robust tool for assessing group configurations. The study identifies four distinct clusters, revealing that "Previous_Score" and "Attendance" are critical variables, achieving a highest Silhouette Score of 0.64 with five selected features. The ridge regression model also yielded a low RMSE of 0.045, explaining 72.39% of the variance in "Exam_Score." The findings suggest that targeted interventions tailored to each cluster—yellow, purple, blue, and green—can enhance academic outcomes by addressing specific student needs. This data-driven approach optimizes group dynamics and fosters a more inclusive learning environment, enhancing academic performance and cultivating essential social skills. The study underscores the potential of machine learning techniques in education and suggests avenues for future research into alternative clustering methods and their long-term impact on student engagement and success.
Author Margono, Hendro
Putra, Yudistira Ardi Nugraha Setyawan
Author_xml – sequence: 1
  givenname: Yudistira Ardi Nugraha Setyawan
  surname: Putra
  fullname: Putra, Yudistira Ardi Nugraha Setyawan
– sequence: 2
  givenname: Hendro
  surname: Margono
  fullname: Margono, Hendro
BookMark eNotkMFOAjEURRuDiYh8gLv-wGBfy6PTpUEBA8YFuJ50Oi1pMtOSdsaEv1fA1bm5ubmL80hGIQZLyDOwGUpA_tLp1sRu9oOez0AqvCNjLiUWJUocXbKSBRcgHsg0Z18zZFKgkDAm273vhlb3PgYaHd33Q2NDf-WZrlMcTnQVU3cbvNnsj4F-Zx-OdFt8Wh0yXbZD7m36q57IvdNtttN_Tshh9X5Ybord1_pj-borTIlYLEyDyrm6YTXjwhlh57YGzhyoZoHGKgO61ELWIBaohYJaoUUDXM2Fm7tSTAjcbk2KOSfrqlPynU7nClh19VHdfFQXH9XFh_gF_idYOw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.57152/malcom.v5i2.1795
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2775-8575
EndPage 608
ExternalDocumentID 10_57152_malcom_v5i2_1795
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c855-6cd59ffbd0b023fc3e4eb120f19d65ce9c1a8a37b1365a391b95e5c12943f4f83
ISSN 2797-2313
IngestDate Sat Nov 29 08:01:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c855-6cd59ffbd0b023fc3e4eb120f19d65ce9c1a8a37b1365a391b95e5c12943f4f83
OpenAccessLink https://journal.irpi.or.id/index.php/malcom/article/download/1795/937
PageCount 11
ParticipantIDs crossref_primary_10_57152_malcom_v5i2_1795
PublicationCentury 2000
PublicationDate 2025-03-21
PublicationDateYYYYMMDD 2025-03-21
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-21
  day: 21
PublicationDecade 2020
PublicationTitle MALCOM: Indonesian Journal of Machine Learning and Computer Science
PublicationYear 2025
SSID ssib050735371
Score 1.9026339
Snippet This research focuses on developing a simulation model for forming student study groups using an enhanced K-Means algorithm, addressing the challenge of...
SourceID crossref
SourceType Index Database
StartPage 598
Title Simulation of Student Study Group Formation Design Using K-Means Clustering
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2775-8575
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050735371
  issn: 2797-2313
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWwoELKgLEZ-UDJ6JAE8exfVytWrVqd0FihcopcvyBVtpuq2WzdC_8Hn4mYztOoiIkeuCSrKzVKMk8vZk4M_MQeqshCFOR12khNLyglKVMa2nL1MqS5JLykvj-ii_nbDbjFxfi02j0K_bCbJdsteI3N-L6v7oa1sDZrnX2Du7ujMIC_AanwxHcDsd_cvznxWUryeUbUsLsSn_etVtPx7FhEdjG1W8koW7gLJ0aCFzJZNm46QkxpkW5p_H55OPUbSCcOgEQ45svB-ns1FdlmjiwNXQ-Rs2ISCEdETcbr2-UfG20I5m1TMaA1GTWfHOd28Bgm5380QPXyfEGkXCIk27EwnCzIqeuWit0QAdOy5lgKaSUgdNMu8Zo6oRCh6RMB9jLBwRLg2Z1G6tLPxPijzBAGWQl4KdLuXQlQVu6yN8D8dA-5sXv_LdCYVegCK9G3kgVTFTOROVM3EP3cwYX4YpEfx5F5oKkmlDi3-67Owyf0L2VD7cvZJAEDbKZ-T561PoNjwN8HqORWT1BZz108JXFLXT8eYc9dHAHHRyggz10cAsd3EPnKZofH80nJ2krtpEqTmlaKk2FtbU-rCGLs4qYAqJ4fmgzoUuqjFCZ5JKw2pVFSiKyWlBDFWSLBbGF5eQZ2lsB-J4jTKhima4zo6kqNBe1YsADhtuM15DwqxfoXbz56jqMVKn--rxf3uXPr9DDHnSv0d5m3Zg36IHabhbf1wfeY78BhXh0_A
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+Student+Study+Group+Formation+Design+Using+K-Means+Clustering&rft.jtitle=MALCOM%3A+Indonesian+Journal+of+Machine+Learning+and+Computer+Science&rft.au=Putra%2C+Yudistira+Ardi+Nugraha+Setyawan&rft.au=Margono%2C+Hendro&rft.date=2025-03-21&rft.issn=2797-2313&rft.eissn=2775-8575&rft.volume=5&rft.issue=2&rft.spage=598&rft.epage=608&rft_id=info:doi/10.57152%2Fmalcom.v5i2.1795&rft.externalDBID=n%2Fa&rft.externalDocID=10_57152_malcom_v5i2_1795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2797-2313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2797-2313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2797-2313&client=summon