Internet of Things Based Air Quality Monitoring System with Automatic Notification

Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for real-time monitoring of pollutants. The results showed that the integration of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:MALCOM: Indonesian Journal of Machine Learning and Computer Science Ročník 5; číslo 3; s. 776 - 787
Hlavní autoři: Azizah, Devi Nur, Heranurweni, Sri, Idris, La Ode Muhamad
Médium: Journal Article
Jazyk:angličtina
Vydáno: 19.06.2025
ISSN:2797-2313, 2775-8575
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for real-time monitoring of pollutants. The results showed that the integration of IoT technology with cloud computing and machine learning algorithms successfully created a responsive and accurate monitoring system. The model achieved maximum accuracy during the training process, with promising predictive capabilities in real-world implementation. The main findings of the study confirmed that the Weighted Class (WC) approach significantly improved performance in the testing and prediction process by addressing class imbalance in the dataset, while the Data Augmentation (DA) technique did not show the expected improvement due to the intrinsic characteristics of air quality data. The automatic notification system successfully provides early warnings when air quality exceeds specified thresholds, enabling proactive responses from authorities and the public. The implementation of a web-based monitoring dashboard provides comprehensive visualization of data for long-term analysis. This research contributes to the development of smart cities by providing an effective framework for air quality management, supporting data-driven decision-making, and increasing public awareness of environmental conditions.
AbstractList Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for real-time monitoring of pollutants. The results showed that the integration of IoT technology with cloud computing and machine learning algorithms successfully created a responsive and accurate monitoring system. The model achieved maximum accuracy during the training process, with promising predictive capabilities in real-world implementation. The main findings of the study confirmed that the Weighted Class (WC) approach significantly improved performance in the testing and prediction process by addressing class imbalance in the dataset, while the Data Augmentation (DA) technique did not show the expected improvement due to the intrinsic characteristics of air quality data. The automatic notification system successfully provides early warnings when air quality exceeds specified thresholds, enabling proactive responses from authorities and the public. The implementation of a web-based monitoring dashboard provides comprehensive visualization of data for long-term analysis. This research contributes to the development of smart cities by providing an effective framework for air quality management, supporting data-driven decision-making, and increasing public awareness of environmental conditions.
Author Azizah, Devi Nur
Heranurweni, Sri
Idris, La Ode Muhamad
Author_xml – sequence: 1
  givenname: Devi Nur
  surname: Azizah
  fullname: Azizah, Devi Nur
– sequence: 2
  givenname: Sri
  surname: Heranurweni
  fullname: Heranurweni, Sri
– sequence: 3
  givenname: La Ode Muhamad
  surname: Idris
  fullname: Idris, La Ode Muhamad
BookMark eNot0M1OAyEUBWBiamKtfQB3vMBUGObOLcva-NOkatTuJ8CAJemAAarp22utq3OSk5zFd0lGIQZLyDVnM0AO9c2gdiYOsy_wYsZlA2dkXCNCNQeE0bFLrGrBxQWZ5uw1A4YCBPIxeVuFYlOwhUZHN1sfPjK9Vdn2dOETfd2rnS8H-hSDLzH9rvT9kIsd6LcvW7rYlzio4g19jsU7b357DFfk3KldttP_nJDN_d1m-VitXx5Wy8W6MnOAqtVW171DzbQAVIpB0yL2dc9apo1hkjnpJOOtcNAD09golFLNe6vBNg2ICeGnW5Nizsm67jP5QaVDx1n3x9KdWLojS3dkET_SZVrx
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.57152/malcom.v5i3.1945
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2775-8575
EndPage 787
ExternalDocumentID 10_57152_malcom_v5i3_1945
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c855-6beb2df7b0b357aa054677d2d060bcc090f9f90163f5d50b74a799a8deb5e4453
ISSN 2797-2313
IngestDate Sat Nov 29 07:39:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c855-6beb2df7b0b357aa054677d2d060bcc090f9f90163f5d50b74a799a8deb5e4453
OpenAccessLink https://doi.org/10.57152/malcom.v5i3.1945
PageCount 12
ParticipantIDs crossref_primary_10_57152_malcom_v5i3_1945
PublicationCentury 2000
PublicationDate 2025-06-19
PublicationDateYYYYMMDD 2025-06-19
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-19
  day: 19
PublicationDecade 2020
PublicationTitle MALCOM: Indonesian Journal of Machine Learning and Computer Science
PublicationYear 2025
SSID ssib050735371
Score 1.9120191
Snippet Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban environmental management. This research implements a...
SourceID crossref
SourceType Index Database
StartPage 776
Title Internet of Things Based Air Quality Monitoring System with Automatic Notification
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2775-8575
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050735371
  issn: 2797-2313
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELKgLEs_KBE6tA4sSZ-LhURSB1twj20Ftkx44aqd2twu5SeuB_9d91bCdZsxISPXCJIisaJfm-zCvjGULeiqSK41oXEZikwgBFxpGCREQV4ynoRGei1m7YBMxmxemp-Doa3fR7YTbnsFgUV1fi8r9CjWsItt06ewe4B6G4gOcIOh4Rdjz-E_A-x2fcH_5uKudHNFV6PGnasW-Z8av7lF3tne9Z7hOyk_Vq6Xu4zpauiGiLWz_1aXJ8eDK1eYQvdg6IcXswA6926oozTd-31W-A7EdH9JpkYNl1cy3PvNrbNDZzsU3Nog1dtz-Nmzg1_t42A4d169siHMvxiUaltD6TF1KH2QvGbZVVpyOdkmMgIEIf0ys5060Bj-zk0FBL84CMaaBxAfLAeIO33rt2gQO6KQjchTy3NUIb3qTvE-H7WP7Zg3vHNg4VixgrOSGlF1FaEaUVcY_cZ8CFrSac_j7qVRl62SmS3Yb7wxP6f-pOyofdGwm8osC9me-TRx2CdOL59JiMzOIJ-dZziS5r6rlEHZcocol2XKJbLlHPJWq5RAcu0ZBLT8n809H88HPUDeGIqoLzKFdGMV2DilXKQUr08HMAzXScx6qqYhHXokafMk9rrnmsIJMghCy0UdxkGU-fkb0FsvE5oZlWSgsj0ixnmc5MkSvBeM0xZNcY5bMX5F3_DspL32ql_Otrf3mXi1-Rh1vuvSZ7q3Zt3pAH1WbV_GgPHHC31hJ8pA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internet+of+Things+Based+Air+Quality+Monitoring+System+with+Automatic+Notification&rft.jtitle=MALCOM%3A+Indonesian+Journal+of+Machine+Learning+and+Computer+Science&rft.au=Azizah%2C+Devi+Nur&rft.au=Heranurweni%2C+Sri&rft.au=Idris%2C+La+Ode+Muhamad&rft.date=2025-06-19&rft.issn=2797-2313&rft.eissn=2775-8575&rft.volume=5&rft.issue=3&rft.spage=776&rft.epage=787&rft_id=info:doi/10.57152%2Fmalcom.v5i3.1945&rft.externalDBID=n%2Fa&rft.externalDocID=10_57152_malcom_v5i3_1945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2797-2313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2797-2313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2797-2313&client=summon