A Survey Paper on Timetable Generator Using AI Methods
This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms. Automated Timetable Generator leveraging Decision Tree, K-Means Clustering, and Random Forest algorithms for efficient scheduling. The Decisio...
Uloženo v:
| Vydáno v: | International Research Journal on Advanced Engineering Hub (IRJAEH) Ročník 3; číslo 3; s. 860 - 864 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
28.03.2025
|
| ISSN: | 2584-2137, 2584-2137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms. Automated Timetable Generator leveraging Decision Tree, K-Means Clustering, and Random Forest algorithms for efficient scheduling. The Decision Tree algorithm is employed to classify and allocate time slots based on predefined constraints, ensuring that scheduling conflicts are minimized. K-Means Clustering is utilized to group subjects, faculty, and students based on similarities, optimizing resource allocation. The Random Forest model further enhances the accuracy and efficiency of scheduling by analyzing multiple possible allocations and selecting the best-fit timetable while ensuring fairness and balancing workload distribution. The Automated Timetable Generator aims to efficiently generate conflict-free timetables for second-year, third-year, and final-year engineering students, considering their divisions, subject allocations, available faculty, classrooms, and practical labs. This system automates the scheduling process, ensuring that no two subjects, teachers, or classrooms overlap while optimizing resource utilization. By reviewing different research paper, we identify the techniques, the automated timetable generator can efficiently handle complex scheduling requirements, reduce manual intervention, and produce balanced timetables that meet institutional constraints and preferences. |
|---|---|
| AbstractList | This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms. Automated Timetable Generator leveraging Decision Tree, K-Means Clustering, and Random Forest algorithms for efficient scheduling. The Decision Tree algorithm is employed to classify and allocate time slots based on predefined constraints, ensuring that scheduling conflicts are minimized. K-Means Clustering is utilized to group subjects, faculty, and students based on similarities, optimizing resource allocation. The Random Forest model further enhances the accuracy and efficiency of scheduling by analyzing multiple possible allocations and selecting the best-fit timetable while ensuring fairness and balancing workload distribution. The Automated Timetable Generator aims to efficiently generate conflict-free timetables for second-year, third-year, and final-year engineering students, considering their divisions, subject allocations, available faculty, classrooms, and practical labs. This system automates the scheduling process, ensuring that no two subjects, teachers, or classrooms overlap while optimizing resource utilization. By reviewing different research paper, we identify the techniques, the automated timetable generator can efficiently handle complex scheduling requirements, reduce manual intervention, and produce balanced timetables that meet institutional constraints and preferences. |
| Author | Sakshi Wani Mrs. S. R. Khokale Parag Iwanate Akshay Jadhav Rupali Chavan |
| Author_xml | – sequence: 1 surname: Mrs. S. R. Khokale fullname: Mrs. S. R. Khokale – sequence: 2 surname: Akshay Jadhav fullname: Akshay Jadhav – sequence: 3 surname: Rupali Chavan fullname: Rupali Chavan – sequence: 4 surname: Sakshi Wani fullname: Sakshi Wani – sequence: 5 surname: Parag Iwanate fullname: Parag Iwanate |
| BookMark | eNpNz19LwzAUBfAgE5xzH8C3fIHOm5tmTR7LmFtlomh9Dkl7q4WtHUkV9u3dHx98OgcOHPjdslHXd8TYvYBZmkmDD8XbU75czxBQzUAgXrExKp0mKGQ2-tdv2DTG1oNSag5pJsZsnvP37_BDB_7q9hR43_Gy3dHg_Jb4ijoKbugD_4ht98nzgj_T8NXX8Y5dN24bafqXE1Y-LsvFOtm8rIpFvkkqrTCp0ZuqcTVIAbUy2sgqJRJOGUKvUDeA6TFMSuY4SO8EeA3SeI2Z1xXICROX2yr0MQZq7D60OxcOVoA90-2Fbk90e6LLX7AZTGo |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.47392/IRJAEH.2025.0122 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2584-2137 |
| EndPage | 864 |
| ExternalDocumentID | 10_47392_IRJAEH_2025_0122 |
| GroupedDBID | AAYXX CITATION M~E |
| ID | FETCH-LOGICAL-c852-d2b9cfad0310d59893c4ee1a59e2b528f02452894e9c4e3ba10b8039b827b8c03 |
| ISSN | 2584-2137 |
| IngestDate | Sat Nov 29 08:00:31 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c852-d2b9cfad0310d59893c4ee1a59e2b528f02452894e9c4e3ba10b8039b827b8c03 |
| OpenAccessLink | https://irjaeh.com/index.php/journal/article/download/613/556 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_47392_IRJAEH_2025_0122 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-28 |
| PublicationDateYYYYMMDD | 2025-03-28 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| PublicationYear | 2025 |
| SSID | ssib055560471 |
| Score | 1.9036376 |
| Snippet | This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms.... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 860 |
| Title | A Survey Paper on Timetable Generator Using AI Methods |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2584-2137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib055560471 issn: 2584-2137 databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4MAFgQDB-KEcOGElNHbc2McIFXVDnaatErtFtuOo1aa0Sttou-yf4R_l2W7SUIHEDlyiyE2e4r7Pz9_ze35G6NOIcAN-QxLGSUrDhMJQ5ColYSm5KCmMJ6WVO2wiPTvjV1fifDD42e6FaW7SquK3t2L1X1UNbaBsu3X2AeruhEID3IPS4Qpqh-s_KT4DY1A3MNTP5crUNhhgt3ls3BYpX2Qa3GzsUwWyEzx1R0iv-yT191XCNjcPd9y1wlmbOdArZ4gnW-X46sVpNp70Vhim9TrClxG-iPD3-fJa3uxRdr2eyzt8Kou5bLrQz3YFvoHNA2j2yL2U8OgC_5DVor9OQZhN1CI900qA6oQk9iVeIvOHtp09pj3Y0Z5t5f7ggXaa9sXPD2cAQJywJWV9XyP7IZGNHu6nuzbEfzALdrmJ4BU5IbkXkVsRuRXxCD0mKRM2b3B6P26NFmPAGb1j3_XGR8-dlC-HH9LjPz0iM3uOnu20GGQeOS_QwFQv0SgLPGoCh5pgWQUdaoIONYFDTZCdBDvUvEKzb-PZ10m4O1Ij1JyRsCBK6FIWth5sAV0RVCfGxJIJQxQjvHSBeC4SI-AHqmQ8VHxIheIkVVwP6Wt0VC0r8wYFJJHUcKGATxaJANYo2UjDWyXTsWFav0Wf237mK184Jf_rX3v8kIffoad7fL1HR5t6az6gJ7rZLNb1R6ecXyCAYT0 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+Paper+on+Timetable+Generator+Using+AI+Methods&rft.jtitle=International+Research+Journal+on+Advanced+Engineering+Hub+%28IRJAEH%29&rft.au=Mrs.+S.+R.+Khokale&rft.au=Akshay+Jadhav&rft.au=Rupali+Chavan&rft.au=Sakshi+Wani&rft.date=2025-03-28&rft.issn=2584-2137&rft.eissn=2584-2137&rft.volume=3&rft.issue=3&rft.spage=860&rft.epage=864&rft_id=info:doi/10.47392%2FIRJAEH.2025.0122&rft.externalDBID=n%2Fa&rft.externalDocID=10_47392_IRJAEH_2025_0122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2584-2137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2584-2137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2584-2137&client=summon |