A Survey Paper on Timetable Generator Using AI Methods

This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms. Automated Timetable Generator leveraging Decision Tree, K-Means Clustering, and Random Forest algorithms for efficient scheduling. The Decisio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Research Journal on Advanced Engineering Hub (IRJAEH) Ročník 3; číslo 3; s. 860 - 864
Hlavní autoři: Mrs. S. R. Khokale, Akshay Jadhav, Rupali Chavan, Sakshi Wani, Parag Iwanate
Médium: Journal Article
Jazyk:angličtina
Vydáno: 28.03.2025
ISSN:2584-2137, 2584-2137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms. Automated Timetable Generator leveraging Decision Tree, K-Means Clustering, and Random Forest algorithms for efficient scheduling. The Decision Tree algorithm is employed to classify and allocate time slots based on predefined constraints, ensuring that scheduling conflicts are minimized. K-Means Clustering is utilized to group subjects, faculty, and students based on similarities, optimizing resource allocation. The Random Forest model further enhances the accuracy and efficiency of scheduling by analyzing multiple possible allocations and selecting the best-fit timetable while ensuring fairness and balancing workload distribution. The Automated Timetable Generator aims to efficiently generate conflict-free timetables for second-year, third-year, and final-year engineering students, considering their divisions, subject allocations, available faculty, classrooms, and practical labs. This system automates the scheduling process, ensuring that no two subjects, teachers, or classrooms overlap while optimizing resource utilization.   By reviewing different research paper, we identify the techniques, the automated timetable generator can efficiently handle complex scheduling requirements, reduce manual intervention, and produce balanced timetables that meet institutional constraints and preferences.
AbstractList This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms. Automated Timetable Generator leveraging Decision Tree, K-Means Clustering, and Random Forest algorithms for efficient scheduling. The Decision Tree algorithm is employed to classify and allocate time slots based on predefined constraints, ensuring that scheduling conflicts are minimized. K-Means Clustering is utilized to group subjects, faculty, and students based on similarities, optimizing resource allocation. The Random Forest model further enhances the accuracy and efficiency of scheduling by analyzing multiple possible allocations and selecting the best-fit timetable while ensuring fairness and balancing workload distribution. The Automated Timetable Generator aims to efficiently generate conflict-free timetables for second-year, third-year, and final-year engineering students, considering their divisions, subject allocations, available faculty, classrooms, and practical labs. This system automates the scheduling process, ensuring that no two subjects, teachers, or classrooms overlap while optimizing resource utilization.   By reviewing different research paper, we identify the techniques, the automated timetable generator can efficiently handle complex scheduling requirements, reduce manual intervention, and produce balanced timetables that meet institutional constraints and preferences.
Author Sakshi Wani
Mrs. S. R. Khokale
Parag Iwanate
Akshay Jadhav
Rupali Chavan
Author_xml – sequence: 1
  surname: Mrs. S. R. Khokale
  fullname: Mrs. S. R. Khokale
– sequence: 2
  surname: Akshay Jadhav
  fullname: Akshay Jadhav
– sequence: 3
  surname: Rupali Chavan
  fullname: Rupali Chavan
– sequence: 4
  surname: Sakshi Wani
  fullname: Sakshi Wani
– sequence: 5
  surname: Parag Iwanate
  fullname: Parag Iwanate
BookMark eNpNz19LwzAUBfAgE5xzH8C3fIHOm5tmTR7LmFtlomh9Dkl7q4WtHUkV9u3dHx98OgcOHPjdslHXd8TYvYBZmkmDD8XbU75czxBQzUAgXrExKp0mKGQ2-tdv2DTG1oNSag5pJsZsnvP37_BDB_7q9hR43_Gy3dHg_Jb4ijoKbugD_4ht98nzgj_T8NXX8Y5dN24bafqXE1Y-LsvFOtm8rIpFvkkqrTCp0ZuqcTVIAbUy2sgqJRJOGUKvUDeA6TFMSuY4SO8EeA3SeI2Z1xXICROX2yr0MQZq7D60OxcOVoA90-2Fbk90e6LLX7AZTGo
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.47392/IRJAEH.2025.0122
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2584-2137
EndPage 864
ExternalDocumentID 10_47392_IRJAEH_2025_0122
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c852-d2b9cfad0310d59893c4ee1a59e2b528f02452894e9c4e3ba10b8039b827b8c03
ISSN 2584-2137
IngestDate Sat Nov 29 08:00:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c852-d2b9cfad0310d59893c4ee1a59e2b528f02452894e9c4e3ba10b8039b827b8c03
OpenAccessLink https://irjaeh.com/index.php/journal/article/download/613/556
PageCount 5
ParticipantIDs crossref_primary_10_47392_IRJAEH_2025_0122
PublicationCentury 2000
PublicationDate 2025-03-28
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-28
  day: 28
PublicationDecade 2020
PublicationTitle International Research Journal on Advanced Engineering Hub (IRJAEH)
PublicationYear 2025
SSID ssib055560471
Score 1.9036376
Snippet This research paper discusses an innovative Automated Timetable Generator leveraging the synergistic capabilities of AI and advanced optimization algorithms....
SourceID crossref
SourceType Index Database
StartPage 860
Title A Survey Paper on Timetable Generator Using AI Methods
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2584-2137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib055560471
  issn: 2584-2137
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4MAFgQDB-KEcOGElNHbc2McIFXVDnaatErtFtuOo1aa0Sttou-yf4R_l2W7SUIHEDlyiyE2e4r7Pz9_ze35G6NOIcAN-QxLGSUrDhMJQ5ColYSm5KCmMJ6WVO2wiPTvjV1fifDD42e6FaW7SquK3t2L1X1UNbaBsu3X2AeruhEID3IPS4Qpqh-s_KT4DY1A3MNTP5crUNhhgt3ls3BYpX2Qa3GzsUwWyEzx1R0iv-yT191XCNjcPd9y1wlmbOdArZ4gnW-X46sVpNp70Vhim9TrClxG-iPD3-fJa3uxRdr2eyzt8Kou5bLrQz3YFvoHNA2j2yL2U8OgC_5DVor9OQZhN1CI900qA6oQk9iVeIvOHtp09pj3Y0Z5t5f7ggXaa9sXPD2cAQJywJWV9XyP7IZGNHu6nuzbEfzALdrmJ4BU5IbkXkVsRuRXxCD0mKRM2b3B6P26NFmPAGb1j3_XGR8-dlC-HH9LjPz0iM3uOnu20GGQeOS_QwFQv0SgLPGoCh5pgWQUdaoIONYFDTZCdBDvUvEKzb-PZ10m4O1Ij1JyRsCBK6FIWth5sAV0RVCfGxJIJQxQjvHSBeC4SI-AHqmQ8VHxIheIkVVwP6Wt0VC0r8wYFJJHUcKGATxaJANYo2UjDWyXTsWFav0Wf237mK184Jf_rX3v8kIffoad7fL1HR5t6az6gJ7rZLNb1R6ecXyCAYT0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+Paper+on+Timetable+Generator+Using+AI+Methods&rft.jtitle=International+Research+Journal+on+Advanced+Engineering+Hub+%28IRJAEH%29&rft.au=Mrs.+S.+R.+Khokale&rft.au=Akshay+Jadhav&rft.au=Rupali+Chavan&rft.au=Sakshi+Wani&rft.date=2025-03-28&rft.issn=2584-2137&rft.eissn=2584-2137&rft.volume=3&rft.issue=3&rft.spage=860&rft.epage=864&rft_id=info:doi/10.47392%2FIRJAEH.2025.0122&rft.externalDBID=n%2Fa&rft.externalDocID=10_47392_IRJAEH_2025_0122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2584-2137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2584-2137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2584-2137&client=summon