Enhancing Electrical Audits Through AI-Powered for Motor Nameplate Analysis

This project presents a deep learning-powered system for automating the extraction and analysis of electrical motor nameplate parameters, addressing inefficiencies in traditional manual methods used in electrical audits.  Users upload a nameplate image through a React-based interface, initiating a p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Research Journal on Advanced Engineering Hub (IRJAEH) Ročník 3; číslo 1; s. 93 - 97
Hlavní autoři: Tejas R. Sakpal, Dr. Pawan C. Tapre, Dr. Fareed Ahmad
Médium: Journal Article
Jazyk:angličtina
Vydáno: 21.01.2025
ISSN:2584-2137, 2584-2137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This project presents a deep learning-powered system for automating the extraction and analysis of electrical motor nameplate parameters, addressing inefficiencies in traditional manual methods used in electrical audits.  Users upload a nameplate image through a React-based interface, initiating a process where the backend, powered by the Gemini API and OCR-enabled deep learning models, extracts critical parameters such as voltage, power, current rating, RPM, insulation type, and temperature ratings. This extracted data undergoes post-processing to generate actionable insights and audit reports, categorised into a Simple Suggestion Report for basic recommendations and an Overall Detail Report for comprehensive analysis, displayed in a user-friendly output panel. By automating this process, the system significantly reduces time, effort, and errors associated with manual extraction, enabling auditor companies to deliver more accurate and efficient reports, paving the way for advanced automation in electrical audits and optimizing motor performance, maintenance, and energy efficiency in industrial and residential settings.
ISSN:2584-2137
2584-2137
DOI:10.47392/IRJAEH.2025.0012