Regional Analysis of Earthquakes and Earthquake Magnitude Estimation with Machine Learning Techniques

Natural disasters, which have been increasing in recent years due to the impact of climate change, pose a significant threat worldwide. Natural disasters, which can cause a large number of human losses and material damages due to their uncertain nature and sudden effects, vary depending on the locat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sinop Üniversitesi Fen Bilimleri Dergisi Ročník 9; číslo 2; s. 266 - 286
Hlavní autoři: Habek, Gül Cihan, Kahramanli Örnek, Humar
Médium: Journal Article
Jazyk:angličtina
Vydáno: 29.12.2024
ISSN:2536-4383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Natural disasters, which have been increasing in recent years due to the impact of climate change, pose a significant threat worldwide. Natural disasters, which can cause a large number of human losses and material damages due to their uncertain nature and sudden effects, vary depending on the location and natural environment of the countries. Türkiye located in the Alpine-Himalayan Earthquake Zone, is one of the countries most exposed to earthquake disasters. Although timely prediction of earthquakes is of vital importance in minimizing the destructive effects that may occur during the disaster and increasing resistance to the destructive effects of the disaster, it cannot yet be predicted successfully due to its non-linear chaotic behavior. However, many researchers continue to work on the subject, and earthquake prediction models are actively used in some countries where earthquake disasters occur frequently and cause great destruction. In this study, the magnitudes of future earthquakes were predicted using various machine learning models: Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Random Forests (RF), Gradient Boosting Algorithm (GB), Extreme Gradient Boosting Algorithm (XGBoost), 2-hidden-layer Artificial Neural Networks (ANN), and an ANN-KNN hybrid learning model. The performances of the established models were evaluated with MSE, MAE, RMSE, and R² metrics; and the ANN-KNN model showed that it was more effective than other models by exhibiting the highest performance with 0.0418 MSE, 0.0030 MAE, 0.0552 RMSE, and 0.7138 R² values. Additionally, unlike other studies, seven regions of Türkiye were considered separately and earthquakes were analyzed in detail according to their geography. The analysis results aim to add a new perspective to the literature.
AbstractList Natural disasters, which have been increasing in recent years due to the impact of climate change, pose a significant threat worldwide. Natural disasters, which can cause a large number of human losses and material damages due to their uncertain nature and sudden effects, vary depending on the location and natural environment of the countries. Türkiye located in the Alpine-Himalayan Earthquake Zone, is one of the countries most exposed to earthquake disasters. Although timely prediction of earthquakes is of vital importance in minimizing the destructive effects that may occur during the disaster and increasing resistance to the destructive effects of the disaster, it cannot yet be predicted successfully due to its non-linear chaotic behavior. However, many researchers continue to work on the subject, and earthquake prediction models are actively used in some countries where earthquake disasters occur frequently and cause great destruction. In this study, the magnitudes of future earthquakes were predicted using various machine learning models: Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Random Forests (RF), Gradient Boosting Algorithm (GB), Extreme Gradient Boosting Algorithm (XGBoost), 2-hidden-layer Artificial Neural Networks (ANN), and an ANN-KNN hybrid learning model. The performances of the established models were evaluated with MSE, MAE, RMSE, and R² metrics; and the ANN-KNN model showed that it was more effective than other models by exhibiting the highest performance with 0.0418 MSE, 0.0030 MAE, 0.0552 RMSE, and 0.7138 R² values. Additionally, unlike other studies, seven regions of Türkiye were considered separately and earthquakes were analyzed in detail according to their geography. The analysis results aim to add a new perspective to the literature.
Author Kahramanli Örnek, Humar
Habek, Gül Cihan
Author_xml – sequence: 1
  givenname: Gül Cihan
  orcidid: 0000-0003-1748-3486
  surname: Habek
  fullname: Habek, Gül Cihan
– sequence: 2
  givenname: Humar
  orcidid: 0000-0003-2336-7924
  surname: Kahramanli Örnek
  fullname: Kahramanli Örnek, Humar
BookMark eNpNkM1qwzAQhHVIoWmaB-hNL-BUa8myfAzB_YGUQvHdSPLKFk3lxLIpefuaNoFedlmGWWa-O7IIfUBCHoBtOBdKPEYf-qMzzQaEZCKFBVmmGZeJ4IrfknWM3jAhcgmM50uCH9j6PugD3c7jHH2kvaOlHsbuNOlPjFSH5t9N33Qb_Dg1SMs4-i89zm767cduVmznA9I96iH40NIKbRf8acJ4T26cPkRcX_aKVE9ltXtJ9u_Pr7vtPrEqg0RCo01mpEBolEpNavICoYAmN5iDkhlPhZVWOwXccSPnvinkWBihNBcM-YrA31s79DEO6OrjMEcczjWw-pdOfaVTX-jwH1ChX4I
Cites_doi 10.1109/ICT-DM47966.2019.9032983
10.25092/baunfbed.876338
10.3390/en15062243
10.1016/j.tcrr.2021.09.003
10.1007/s11227-023-05369-y
10.1145/2939672.2939785
10.1038/nclimate2893
10.1016/j.jestch.2017.12.010
10.1038/nature14539
10.1371/journal.pone.0279774
10.1214/aos/1013203451
10.1007/s10518-009-9147-0
10.17714/gumusfenbil.1268504
10.1109/72.279181
10.17823/gusb.352
10.3390/app13116424
10.2307/2344977
10.1109/MWSCAS.2019.8884912
10.1080/19475705.2020.1784297
10.3390/sym9090179
10.1007/s10518-016-0041-2
10.3390/f10020157
10.1007/s10462-020-09896-5
10.1023/A:1010933404324
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.33484/sinopfbd.1460421
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EndPage 286
ExternalDocumentID 10_33484_sinopfbd_1460421
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c851-61dab5b64e1d882b2b79e191d7be71865324c6caf813f3b6334217e9b48a340e3
ISSN 2536-4383
IngestDate Sat Nov 29 03:46:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c851-61dab5b64e1d882b2b79e191d7be71865324c6caf813f3b6334217e9b48a340e3
ORCID 0000-0003-1748-3486
0000-0003-2336-7924
OpenAccessLink https://doi.org/10.33484/sinopfbd.1460421
PageCount 21
ParticipantIDs crossref_primary_10_33484_sinopfbd_1460421
PublicationCentury 2000
PublicationDate 2024-12-29
PublicationDateYYYYMMDD 2024-12-29
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-29
  day: 29
PublicationDecade 2020
PublicationTitle Sinop Üniversitesi Fen Bilimleri Dergisi
PublicationYear 2024
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
– ident: ref5
– ident: ref10
  doi: 10.1109/ICT-DM47966.2019.9032983
– ident: ref32
  doi: 10.25092/baunfbed.876338
– ident: ref26
  doi: 10.3390/en15062243
– ident: ref3
  doi: 10.1016/j.tcrr.2021.09.003
– ident: ref7
  doi: 10.1007/s11227-023-05369-y
– ident: ref22
  doi: 10.1145/2939672.2939785
– ident: ref4
  doi: 10.1038/nclimate2893
– ident: ref25
  doi: 10.1016/j.jestch.2017.12.010
– ident: ref28
  doi: 10.1038/nature14539
– ident: ref34
  doi: 10.1371/journal.pone.0279774
– ident: ref19
– ident: ref20
  doi: 10.1214/aos/1013203451
– ident: ref6
  doi: 10.1007/s10518-009-9147-0
– ident: ref12
  doi: 10.17714/gumusfenbil.1268504
– ident: ref17
– ident: ref15
– ident: ref2
– ident: ref27
  doi: 10.1109/72.279181
– ident: ref9
  doi: 10.17823/gusb.352
– ident: ref11
  doi: 10.3390/app13116424
– ident: ref30
  doi: 10.2307/2344977
– ident: ref21
– ident: ref29
  doi: 10.1109/MWSCAS.2019.8884912
– ident: ref36
  doi: 10.1080/19475705.2020.1784297
– ident: ref31
  doi: 10.3390/sym9090179
– ident: ref13
  doi: 10.1007/s10518-016-0041-2
– ident: ref8
– ident: ref18
– ident: ref33
  doi: 10.3390/f10020157
– ident: ref23
  doi: 10.1007/s10462-020-09896-5
– ident: ref16
– ident: ref35
– ident: ref24
  doi: 10.1023/A:1010933404324
– ident: ref14
SSID ssib044761037
ssib030430341
Score 1.8943402
Snippet Natural disasters, which have been increasing in recent years due to the impact of climate change, pose a significant threat worldwide. Natural disasters,...
SourceID crossref
SourceType Index Database
StartPage 266
Title Regional Analysis of Earthquakes and Earthquake Magnitude Estimation with Machine Learning Techniques
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2536-4383
  databaseCode: M~E
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044761037
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELAgHiufKBE1FEY6d2fGSrLkjQFYIK7a2yE2cbkU1Lul3tiR_BL2YmjhurEhJ74BI1kTOqM18-z8MzIeRNycZWFgWL01LzGDNLsRJMx2MrCsbN2GRdKPv7Z3l2lp2fqy-j0W9fC3Ndy6bJbm7U5r-qGq6BsrF09hbq3guFC_AblA5HUDsc_0nxX-2FC--F_UZmMHD1c6d_WNeTeTiP5ho3EO0KG83gdXeVjC48O-82Wlrfg_XCxeGx4es2tGm_Vc16E2HGXU39Ng-7rSJ4KtFJVVeXNUwbiK3FGMnAeMZ2RPwBbzyZ1tG0Wg1I_aRXrb7UTV05waJt3HBMOrRhqIJ1DRH7eEbHaGzCRYy9UUP6VQHKWEilQgSrMnMNsw8JH-uIU1QjzrQ0BRI_0FAyrG4-o3-w6O23IoIT1AlZehHLXsQdcpfJiUKmnP-aeY7i2CONDyZkmkqBpZb4DUM_O5c876S-O_xjgfkT2DGLh-RB74DQ9w44j8jINo-J9aChHjR0XdIANBRAE5zTPWjoABqKoKE9aKgHDR1A84QsTmeL6ce4_wBHnIMhHouk0GZiRGqTAhwxw4xUFvz7QhoLJo2YgDGei1yXWcJLbgTMGBxcq0yaaZ6OLX9Kjpp1Y58RmieZlErpUhr0sXNtUlhYM5Ur8Gd1yp-Tt_6xLDeuzcryr5p5cZvBL8n9AYqvyNFVu7Ovyb38-qratsedbv8AIJ54vg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+Analysis+of+Earthquakes+and+Earthquake+Magnitude+Estimation+with+Machine+Learning+Techniques&rft.jtitle=Sinop+%C3%9Cniversitesi+Fen+Bilimleri+Dergisi&rft.au=Habek%2C+G%C3%BCl+Cihan&rft.au=Kahramanli+%C3%96rnek%2C+Humar&rft.date=2024-12-29&rft.issn=2536-4383&rft.volume=9&rft.issue=2&rft.spage=266&rft.epage=286&rft_id=info:doi/10.33484%2Fsinopfbd.1460421&rft.externalDBID=n%2Fa&rft.externalDocID=10_33484_sinopfbd_1460421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2536-4383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2536-4383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2536-4383&client=summon