A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells

Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresista...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Genome Biology Ročník 21; číslo 1; s. 33
Hlavní autori: Lee, Sooncheol, Micalizzi, Douglas, Truesdell, Samuel S., Bukhari, Syed I. A., Boukhali, Myriam, Lombardi-Story, Jennifer, Kato, Yasutaka, Choo, Min-Kyung, Dey-Guha, Ipsita, Ji, Fei, Nicholson, Benjamin T., Myers, David T., Lee, Dongjun, Mazzola, Maria A., Raheja, Radhika, Langenbucher, Adam, Haradhvala, Nicholas J., Lawrence, Michael S., Gandhi, Roopali, Tiedje, Christopher, Diaz-Muñoz, Manuel D., Sweetser, David A., Sadreyev, Ruslan, Sykes, David, Haas, Wilhelm, Haber, Daniel A., Maheswaran, Shyamala, Vasudevan, Shobha
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer Science and Business Media LLC 10.02.2020
BioMed Central
Springer Nature B.V
BMC
Predmet:
TTP
TTP
ISSN:1474-760X, 1474-7596, 1465-6906, 1474-760X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
AbstractList Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Abstract Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.BACKGROUNDQuiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo.RESULTSWe induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo.These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.CONCLUSIONSThese studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
ArticleNumber 33
Author Yasutaka Kato
Ipsita Dey-Guha
Shobha Vasudevan
Adam Langenbucher
Nicholas J. Haradhvala
Roopali Gandhi
Daniel A. Haber
Michael S. Lawrence
Samuel S. Truesdell
Radhika Raheja
Dongjun Lee
Douglas S. Micalizzi
Wilhelm Haas
Sooncheol Lee
David B. Sykes
Fei Ji
Ruslan I. Sadreyev
Myriam Boukhali
Syed I. A. Bukhari
David A. Sweetser
David T. Myers
Jennifer Lombardi-Story
Shyamala Maheswaran
Christopher Tiedje
Benjamin Nicholson
Min-Kyung Choo
Maria Antonietta Mazzola
Manuel D. Díaz-Muñoz
Author_xml – sequence: 1
  givenname: Sooncheol
  surname: Lee
  fullname: Lee, Sooncheol
– sequence: 2
  givenname: Douglas
  surname: Micalizzi
  fullname: Micalizzi, Douglas
– sequence: 3
  givenname: Samuel S.
  surname: Truesdell
  fullname: Truesdell, Samuel S.
– sequence: 4
  givenname: Syed I. A.
  surname: Bukhari
  fullname: Bukhari, Syed I. A.
– sequence: 5
  givenname: Myriam
  surname: Boukhali
  fullname: Boukhali, Myriam
– sequence: 6
  givenname: Jennifer
  surname: Lombardi-Story
  fullname: Lombardi-Story, Jennifer
– sequence: 7
  givenname: Yasutaka
  surname: Kato
  fullname: Kato, Yasutaka
– sequence: 8
  givenname: Min-Kyung
  surname: Choo
  fullname: Choo, Min-Kyung
– sequence: 9
  givenname: Ipsita
  surname: Dey-Guha
  fullname: Dey-Guha, Ipsita
– sequence: 10
  givenname: Fei
  surname: Ji
  fullname: Ji, Fei
– sequence: 11
  givenname: Benjamin T.
  surname: Nicholson
  fullname: Nicholson, Benjamin T.
– sequence: 12
  givenname: David T.
  surname: Myers
  fullname: Myers, David T.
– sequence: 13
  givenname: Dongjun
  surname: Lee
  fullname: Lee, Dongjun
– sequence: 14
  givenname: Maria A.
  surname: Mazzola
  fullname: Mazzola, Maria A.
– sequence: 15
  givenname: Radhika
  surname: Raheja
  fullname: Raheja, Radhika
– sequence: 16
  givenname: Adam
  surname: Langenbucher
  fullname: Langenbucher, Adam
– sequence: 17
  givenname: Nicholas J.
  surname: Haradhvala
  fullname: Haradhvala, Nicholas J.
– sequence: 18
  givenname: Michael S.
  surname: Lawrence
  fullname: Lawrence, Michael S.
– sequence: 19
  givenname: Roopali
  surname: Gandhi
  fullname: Gandhi, Roopali
– sequence: 20
  givenname: Christopher
  surname: Tiedje
  fullname: Tiedje, Christopher
– sequence: 21
  givenname: Manuel D.
  surname: Diaz-Muñoz
  fullname: Diaz-Muñoz, Manuel D.
– sequence: 22
  givenname: David A.
  surname: Sweetser
  fullname: Sweetser, David A.
– sequence: 23
  givenname: Ruslan
  surname: Sadreyev
  fullname: Sadreyev, Ruslan
– sequence: 24
  givenname: David
  surname: Sykes
  fullname: Sykes, David
– sequence: 25
  givenname: Wilhelm
  surname: Haas
  fullname: Haas, Wilhelm
– sequence: 26
  givenname: Daniel A.
  surname: Haber
  fullname: Haber, Daniel A.
– sequence: 27
  givenname: Shyamala
  surname: Maheswaran
  fullname: Maheswaran, Shyamala
– sequence: 28
  givenname: Shobha
  surname: Vasudevan
  fullname: Vasudevan, Shobha
BackLink https://cir.nii.ac.jp/crid/1874242817602568960$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/32039742$$D View this record in MEDLINE/PubMed
https://ut3-toulouseinp.hal.science/hal-03691632$$DView record in HAL
BookMark eNqFk81u1DAUhSNUREvpA7BBlmABi4D_YscbpFEFtNJIsBgkdpbj3My4JPbUTir17XGaUtouysZJbr5z7rVz8rI48MFDUbwm-CMhtfiUCMOVKjHFJVFMlPxZcUS45KUU-NfBvfvD4iQl12DMqZI1xS-KQ0YxU5LTo8Kt0D6ksRyj8clGtx9d8KZH-xi20QwodMjuYAgRkkuj8RZQc41WP8vo7A5BDwP4MSHjW7TZ_EDOo8vJQbK5inqYfsPgLLLQ9-lV8bwzfYKT2-txsfn6ZXN6Vq6_fzs_Xa1LWzM2lnXLFRYWuDWY445Z1nIMQAQRhuZHTIUkTVNJ3jSsM4zVdVtToFWFu4ZTdlycL7ZtMBd6H91g4rUOxumbQohbbeLobA-aGSWVZAy61vK6U7lvXpgxypq2sU32-rx47admgHbeVDT9A9OHb7zb6W240hITQhnJBh8Wg90j2dlqrecaZkIRwejVzL6_bRbD5QRp1INL88kZD2FKmnIpBcOE0v-jrMogllhm9O0j9CJMMX_hG0oKQblgmXpzf6N3o_7NSQbIAtgYUorQ3SEE6zmOeomjznHUcxw1zxr5SGPdaOZ85bNy_ZNKuihT7uK3EP8N_ZTo3SLyzuVO80rqPDunNcm_Aa1ErQRmfwBT4PzB
CitedBy_id crossref_primary_10_1111_sji_13158
crossref_primary_10_3389_fonc_2021_632189
crossref_primary_10_1038_s41467_022_35624_4
crossref_primary_10_1016_j_jare_2025_05_038
crossref_primary_10_1155_2024_2699572
crossref_primary_10_1016_j_critrevonc_2022_103710
crossref_primary_10_1038_s41388_021_02113_9
crossref_primary_10_1007_s00432_021_03874_2
crossref_primary_10_1016_j_cellsig_2020_109868
crossref_primary_10_7717_peerj_12275
crossref_primary_10_3390_ijms21186648
crossref_primary_10_1172_JCI178428
crossref_primary_10_3389_fgene_2021_742902
crossref_primary_10_1186_s12964_023_01317_8
crossref_primary_10_1002_1878_0261_12897
crossref_primary_10_1016_j_semcancer_2021_04_021
Cites_doi 10.1016/j.cell.2009.05.045
10.1073/pnas.0635171100
10.1371/journal.pbio.0040083
10.1038/nprot.2008.211
10.1093/nar/gku1075
10.1371/journal.pgen.1002433
10.1158/1535-7163.MCT-13-0513
10.3109/10409238.2015.1014024
10.1074/jbc.R109.094003
10.1016/j.cell.2015.05.049
10.1056/NEJMoa1402582
10.1016/j.chembiol.2011.11.010
10.1038/nrm1618
10.1016/j.bbamcr.2014.07.012
10.1016/j.cell.2016.08.057
10.1038/sj.emboj.7600163
10.1016/j.molmed.2017.11.002
10.1016/j.bbamcr.2007.03.010
10.1016/j.ccell.2015.09.009
10.1074/jbc.M414221200
10.1172/JCI68101
10.1093/bioinformatics/btg405
10.1016/j.ccell.2016.11.002
10.1016/j.stem.2015.09.020
10.1007/978-3-642-31659-3_7
10.1038/nature08467
10.1038/nature12624
10.1038/msb.2009.68
10.1016/j.tibs.2015.01.002
10.1111/j.1365-2141.2006.06443.x
10.1074/jbc.R110.119743
10.1021/jm030121k
10.1158/1078-0432.CCR-10-2574
10.1158/0008-5472.CAN-12-2395
10.1038/nrm2199
10.1016/j.ejcb.2017.03.013
10.1016/S0092-8674(00)81902-9
10.1016/j.bbagrm.2012.12.002
10.1093/nar/gkv007
10.1016/j.bbamcr.2006.12.002
10.1007/s12033-010-9360-8
10.1016/j.ccell.2016.01.006
10.1158/0008-5472.CAN-09-3407
10.1038/msb.2010.108
10.1261/rna.748408
10.1038/msb.2011.97
10.4049/jimmunol.1002629
10.1183/09059180.00001111
10.1182/blood-2005-02-0553
10.1038/nsb770
10.1093/nar/gkn923
10.1021/pr900392b
10.1126/scitranslmed.3000349
10.1101/gad.17355911
10.1016/j.intimp.2008.01.013
10.1101/gad.1771409
10.1038/nmeth.1714
10.1186/s12935-014-0142-4
10.1016/j.cell.2009.06.034
10.1038/sj.onc.1206755
10.1128/MCB.26.6.2399-2407.2006
10.1101/gad.294769.116
10.1002/art.22080
10.1038/emboj.2013.80
10.1038/nrc3599
10.1016/S0065-230X(08)60703-4
10.1172/JCI82908
10.1093/jmcb/mju008
10.1093/nar/gkx975
10.15252/embj.201696164
10.1182/blood-2004-04-1463
10.1158/1535-7163.MCT-15-0414
10.1261/rna.825008
10.1158/1078-0432.CCR-15-1718
10.1146/annurev-pathol-121808-102144.:99-118
10.1053/j.seminoncol.2007.12.002
10.1371/journal.pone.0059292
10.1038/ng1180
10.1042/bst0300952
10.1158/1535-7163.MCT-12-0707
10.4161/cc.6.20.4911
10.1073/pnas.1320477111
10.1038/nmeth.2729
10.1126/science.284.5413.499
10.1074/jbc.M310486200
10.1016/S0014-2999(02)01758-2
10.1038/sj.onc.1203622
10.1152/ajpcell.00091.2011
10.1002/cyto.990100608
10.1016/j.bbagrm.2013.02.003
10.1101/gad.1212704
10.1042/BJ20121651
10.1038/sj.emboj.7600305
10.1016/j.molcel.2011.06.007
10.1101/gad.231407.113
10.1002/wrna.1230
10.1016/j.immuni.2017.11.016
10.1016/j.ccell.2016.06.008
10.1073/pnas.0506580102
10.1073/pnas.1205575110
10.1021/jm020057r
10.1128/MCB.00717-10
10.1038/nbt.3344
10.4161/cc.6.1.3688
10.1186/gb-2013-14-4-r32
10.1038/sj.cr.7290262
10.1158/1078-0432.CCR-10-1499
10.1016/S0092-8674(00)80984-8
10.1038/nm.4310
10.1074/jbc.M104953200
10.1016/j.canlet.2012.08.006
10.1074/jbc.M109.050120
10.1074/jbc.M607347200
10.1038/nature21036
10.1038/sj.emboj.7600998
10.1016/j.blre.2005.08.003
10.1093/nar/gkq1069
10.1038/nature10912
10.1074/jbc.M111.254888
10.1073/pnas.1520032112
10.1093/nar/gkh103
10.1074/jbc.M114.621730
10.1371/journal.pone.0027509
10.1038/nrm3546
10.1016/j.celrep.2015.10.073
10.1016/j.coi.2015.06.013
10.1172/JCI66553
10.1016/j.cell.2007.01.038
10.1038/nature11083
10.1016/j.cell.2009.01.042
10.1038/nature20598
10.1016/j.molcel.2016.02.013
10.1074/jbc.M112.425553
10.1371/journal.pgen.0030091
10.1126/science.1155390
ContentType Journal Article
Contributor Massachusetts General Hospital [Boston]
Centre de Physiopathologie Toulouse Purpan (CPTP) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Hokuto Hospital
Seoul National University [Seoul] (SNU)
Medizinische Hochschule Hannover = Hannover Medical School (MHH)
Harvard University
Contributor_xml – sequence: 1
  fullname: Massachusetts General Hospital [Boston]
– sequence: 2
  fullname: Harvard University
– sequence: 3
  fullname: Hokuto Hospital
– sequence: 4
  fullname: Seoul National University [Seoul] (SNU)
– sequence: 5
  fullname: Medizinische Hochschule Hannover = Hannover Medical School (MHH)
– sequence: 6
  fullname: Centre de Physiopathologie Toulouse Purpan (CPTP) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Copyright The Author(s). 2020
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s). 2020
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID RYH
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
1XC
VOOES
5PM
DOA
DOI 10.1186/s13059-020-1936-4
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 33
ExternalDocumentID oai_doaj_org_article_3a979733efdc48f9906f993aa9cadbcb
PMC7011231
oai:HAL:hal-03691632v1
32039742
10_1186_s13059_020_1936_4
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA220103
– fundername: NCI NIH HHS
  grantid: R01 CA185086
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: R01 CA129933
– fundername: NIGMS NIH HHS
  grantid: R01 GM100202
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFFHD
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
RYH
SJN
SOJ
SV3
UKHRP
PUEGO
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
123
1XC
8R4
8R5
AHSBF
H13
VOOES
5PM
ID FETCH-LOGICAL-c833t-8d4906ce4ca040f3c3d40ee1616a2f3c02671bb574bb3fa3388d82e2550fb423
IEDL.DBID M7P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520942200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1474-7596
1465-6906
IngestDate Mon Nov 10 04:31:38 EST 2025
Tue Nov 04 01:57:07 EST 2025
Sat Nov 29 15:04:29 EST 2025
Sun Aug 24 04:11:51 EDT 2025
Thu Sep 04 18:27:02 EDT 2025
Tue Oct 14 12:41:00 EDT 2025
Mon Jul 21 05:57:01 EDT 2025
Tue Nov 18 20:55:43 EST 2025
Sat Nov 29 04:55:54 EST 2025
Sat Sep 06 07:24:38 EDT 2025
Mon Nov 10 09:08:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TTP
Post-transcriptional regulation
AU-rich elements
Chemoresistance
Quiescence
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c833t-8d4906ce4ca040f3c3d40ee1616a2f3c02671bb574bb3fa3388d82e2550fb423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7011231
ORCID 0000-0002-3013-6967
0000-0002-0306-9914
0000-0002-9227-7474
OpenAccessLink https://www.proquest.com/docview/2357662463?pq-origsite=%requestingapplication%
PMID 32039742
PQID 2357662463
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3a979733efdc48f9906f993aa9cadbcb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011231
hal_primary_oai_HAL_hal_03691632v1
proquest_miscellaneous_2477630122
proquest_miscellaneous_2353010707
proquest_journals_2357662463
pubmed_primary_32039742
crossref_primary_10_1186_s13059_020_1936_4
crossref_citationtrail_10_1186_s13059_020_1936_4
springer_journals_10_1186_s13059_020_1936_4
nii_cinii_1874242817602568960
PublicationCentury 2000
PublicationDate 2020-02-10
PublicationDateYYYYMMDD 2020-02-10
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2020
Publisher Springer Science and Business Media LLC
BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: Springer Science and Business Media LLC
– name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References LA Crews (1936_CR4) 2013; 338
J Liu (1936_CR93) 2005; 15
PD Bhola (1936_CR5) 2016; 126
FJ Giles (1936_CR10) 2008; 35
1936_CR120
HA Coller (1936_CR1) 2006; 4
A Subramanian (1936_CR111) 2005; 102
T Bakheet (1936_CR54) 2017; 46
PB Gupta (1936_CR7) 2009; 138
Salony (1936_CR8) 2016; 15
A Lal (1936_CR100) 2004; 23
R Sandberg (1936_CR12) 2008; 320
DW Huang (1936_CR110) 2009; 37
TP Chang (1936_CR75) 2014; 1843
VA Levin (1936_CR40) 2010; 9
KJ Grattendick (1936_CR71) 2008; 8
O Ozes (1936_CR116) 2008
F Loayza-Puch (1936_CR18) 2013; 14
CE Meacham (1936_CR3) 2013; 501
L Gautier (1936_CR138) 2004; 20
SI Bukhari (1936_CR14) 2016; 61
T Alain (1936_CR31) 2012; 72
A Korb (1936_CR92) 2006; 54
EM de Kruijf (1936_CR50) 2010; 185
NG Sosale (1936_CR47) 2015; 35
SP Jackson (1936_CR65) 2009; 461
D Senft (1936_CR90) 2015; 40
JP Coppe (1936_CR53) 2010; 5
VK Mootha (1936_CR137) 2003; 34
BD Fonseca (1936_CR35) 2015; 290
M Kesarwani (1936_CR101) 2017; 23
MA Coelho (1936_CR102) 2017; 47
Y Chen (1936_CR105) 2013; 123
K Kojima (1936_CR119) 2005; 106
G Stoecklin (1936_CR112) 2004; 23
1936_CR140
KG Foster (1936_CR39) 2010; 285
A Patnaik (1936_CR69) 2016; 22
J Regan (1936_CR125) 2002; 45
ME Ritchie (1936_CR139) 2015; 43
VV Zeenko (1936_CR22) 2008; 14
N Sonenberg (1936_CR26) 2009; 136
SA Brooks (1936_CR62) 2013; 1829
Y Arava (1936_CR132) 2003; 100
A Batool (1936_CR45) 2017; 96
E Hitti (1936_CR59) 2006; 26
L Li (1936_CR9) 2011; 17
C Tiedje (1936_CR61) 2016; 44
MS Sosa (1936_CR88) 2011; 17
DB Sykes (1936_CR87) 2016; 167
Y Saito (1936_CR16) 2010; 2
B Culjkovic (1936_CR27) 2007; 6
AR Tee (1936_CR64) 2000; 19
ZW Li (1936_CR85) 2006; 20
H Hsu (1936_CR79) 1996; 84
E Carballo (1936_CR94) 2001; 276
C Frelin (1936_CR74) 2005; 105
N Hay (1936_CR42) 2004; 18
R Haq (1936_CR76) 2013; 110
CK Damgaard (1936_CR32) 2011; 25
H Rauert-Wunderlich (1936_CR81) 2013; 8
R Majeti (1936_CR51) 2009; 138
SA Shukla (1936_CR46) 2015; 33
YM Schichl (1936_CR96) 2011; 286
T Zhang (1936_CR127) 2012; 19
C Tate (1936_CR121) 2013; 288
F Xu (1936_CR129) 2014; 14
R Miloslavski (1936_CR34) 2014; 6
JC Zinder (1936_CR57) 2017; 31
DW Huang (1936_CR109) 2008; 4
Y Kagoya (1936_CR73) 2014; 124
S Lee (1936_CR13) 2014; 111
P Villalonga (1936_CR43) 2009; 284
H Nakazato (1936_CR72) 2002; 446
K Han (1936_CR29) 2014; 11
ML Truitt (1936_CR108) 2015; 162
RM Campbell (1936_CR122) 2014; 13
Y Shiloh (1936_CR63) 2013; 14
A Sendoel (1936_CR20) 2017; 541
H Zong (1936_CR103) 2015; 13
E Caron (1936_CR38) 2010; 6
A Cuenda (1936_CR91) 2007; 1773
H Yasui (1936_CR124) 2007; 136
S Vasudevan (1936_CR106) 2007; 128
KB Cook (1936_CR136) 2011; 39
R Nawroth (1936_CR44) 2011; 6
S Pirkmajer (1936_CR41) 2011; 301
C Bodur (1936_CR37) 2018; 37
AE Moore (1936_CR55) 2014; 5
D Karolchik (1936_CR131) 2004; 32
S Ebinger (1936_CR15) 2016; 30
CA Hoy (1936_CR114) 1989; 10
SW Ng (1936_CR2) 2016; 540
T Kurosu (1936_CR77) 2003; 22
N Mukherjee (1936_CR99) 2011; 43
V Gandin (1936_CR107) 2014; 87
L Ting (1936_CR115) 2011; 8
M Spasic (1936_CR135) 2012; 8
CA Chrestensen (1936_CR95) 2004; 279
AC Hsieh (1936_CR19) 2012; 485
J Zuber (1936_CR104) 2009; 23
MA Batey (1936_CR128) 2013; 12
TL Bailey (1936_CR130) 1994; 2
SA Rushworth (1936_CR78) 2010; 70
C Pargellis (1936_CR123) 2002; 9
V Zismanov (1936_CR25) 2016; 18
M Serrano (1936_CR52) 1997; 88
J Regan (1936_CR126) 2003; 46
CJ Schaefer (1936_CR117) 2011; 20
M Piques (1936_CR133) 2009; 5
EJ White (1936_CR56) 2013; 1829
K Kondoh (1936_CR84) 2007; 1773
G Laroia (1936_CR58) 1999; 284
M Holcik (1936_CR21) 2005; 6
CK Damgaard (1936_CR30) 2013; 158
SL Clement (1936_CR60) 2011; 31
C Holohan (1936_CR66) 2013; 13
DR Soto-Pantoja (1936_CR48) 2015; 50
A Annibaldi (1936_CR80) 2018; 24
Elizabeth C. Townsend (1936_CR86) 2016; 30
S Strickson (1936_CR82) 2013; 451
SA Forbes (1936_CR17) 2015; 43
D Ron (1936_CR24) 2007; 8
N Claudio (1936_CR89) 2013; 32
IG Cannell (1936_CR67) 2015; 28
L Sun (1936_CR113) 2007; 282
N Lalaoui (1936_CR68) 2016; 29
H Zhang (1936_CR49) 2015; 112
MJ Liu (1936_CR134) 2012; 8
JR Lorsch (1936_CR23) 2010; 285
J Tcherkezian (1936_CR33) 2014; 28
T Zhang (1936_CR98) 2001; 30
CC Thoreen (1936_CR28) 2012; 485
RC Nichols (1936_CR97) 2011; 48
RT Tavaluc (1936_CR6) 2007; 6
J Emmons (1936_CR83) 2008; 14
TE King (1936_CR118) 2014; 370
H Liu (1936_CR11) 2007; 3
Y Kuma (1936_CR70) 2005; 280
M Koritzinsky (1936_CR36) 2006; 25
References_xml – volume: 138
  start-page: 286
  issue: 2
  year: 2009
  ident: 1936_CR51
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.05.045
– volume: 44
  start-page: 7418
  issue: 15
  year: 2016
  ident: 1936_CR61
  publication-title: Nucleic Acids Res
– volume: 100
  start-page: 3889
  issue: 7
  year: 2003
  ident: 1936_CR132
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0635171100
– volume: 4
  issue: 3
  year: 2006
  ident: 1936_CR1
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040083
– volume: 4
  start-page: 44
  issue: 1
  year: 2008
  ident: 1936_CR109
  publication-title: Nat Protocols
  doi: 10.1038/nprot.2008.211
– volume: 43
  start-page: D805
  issue: Database issue
  year: 2015
  ident: 1936_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1075
– volume: 8
  issue: 1
  year: 2012
  ident: 1936_CR135
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002433
– volume: 13
  start-page: 364
  issue: 2
  year: 2014
  ident: 1936_CR122
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-13-0513
– volume: 50
  start-page: 212
  issue: 3
  year: 2015
  ident: 1936_CR48
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2015.1014024
– volume: 285
  start-page: 14071
  issue: 19
  year: 2010
  ident: 1936_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R109.094003
– volume: 162
  start-page: 59
  issue: 1
  year: 2015
  ident: 1936_CR108
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.05.049
– volume: 370
  start-page: 2083
  issue: 22
  year: 2014
  ident: 1936_CR118
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1402582
– volume: 19
  start-page: 140
  issue: 1
  year: 2012
  ident: 1936_CR127
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2011.11.010
– volume: 6
  start-page: 318
  issue: 4
  year: 2005
  ident: 1936_CR21
  publication-title: Nat Rev Mol Cell Biol.
  doi: 10.1038/nrm1618
– volume: 1843
  start-page: 2620
  issue: 11
  year: 2014
  ident: 1936_CR75
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2014.07.012
– volume: 167
  start-page: 171
  issue: 1
  year: 2016
  ident: 1936_CR87
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.08.057
– volume: 23
  start-page: 1313
  issue: 6
  year: 2004
  ident: 1936_CR112
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600163
– volume: 24
  start-page: 49
  issue: 1
  year: 2018
  ident: 1936_CR80
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2017.11.002
– volume: 1773
  start-page: 1358
  issue: 8
  year: 2007
  ident: 1936_CR91
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2007.03.010
– volume: 28
  start-page: 623
  issue: 5
  year: 2015
  ident: 1936_CR67
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.09.009
– volume: 280
  start-page: 19472
  issue: 20
  year: 2005
  ident: 1936_CR70
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M414221200
– volume: 124
  start-page: 528
  issue: 2
  year: 2014
  ident: 1936_CR73
  publication-title: J Clin Invest
  doi: 10.1172/JCI68101
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  ident: 1936_CR138
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btg405
– volume: 30
  start-page: 849
  issue: 6
  year: 2016
  ident: 1936_CR15
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.11.002
– volume: 18
  start-page: 79
  issue: 1
  year: 2016
  ident: 1936_CR25
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.020
– volume: 158
  start-page: 153
  year: 2013
  ident: 1936_CR30
  publication-title: Cancer Treat Res
  doi: 10.1007/978-3-642-31659-3_7
– volume: 461
  start-page: 1071
  issue: 7267
  year: 2009
  ident: 1936_CR65
  publication-title: Nature.
  doi: 10.1038/nature08467
– volume: 501
  start-page: 328
  issue: 7467
  year: 2013
  ident: 1936_CR3
  publication-title: Nature.
  doi: 10.1038/nature12624
– volume: 5
  start-page: 314
  year: 2009
  ident: 1936_CR133
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2009.68
– volume: 40
  start-page: 141
  issue: 3
  year: 2015
  ident: 1936_CR90
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2015.01.002
– start-page: 1
  volume-title: Use of pirfenidone in therapeutic regimens. United States Patent-US 7,407,973
  year: 2008
  ident: 1936_CR116
– volume: 136
  start-page: 414
  issue: 3
  year: 2007
  ident: 1936_CR124
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2006.06443.x
– volume: 285
  start-page: 21203
  issue: 28
  year: 2010
  ident: 1936_CR23
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R110.119743
– volume: 46
  start-page: 4676
  issue: 22
  year: 2003
  ident: 1936_CR126
  publication-title: J Med Chem
  doi: 10.1021/jm030121k
– volume: 17
  start-page: 5850
  issue: 18
  year: 2011
  ident: 1936_CR88
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-2574
– volume: 72
  start-page: 6468
  issue: 24
  year: 2012
  ident: 1936_CR31
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2395
– volume: 8
  start-page: 519
  issue: 7
  year: 2007
  ident: 1936_CR24
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2199
– volume: 96
  start-page: 325
  issue: 4
  year: 2017
  ident: 1936_CR45
  publication-title: Eur J Cell Biol
  doi: 10.1016/j.ejcb.2017.03.013
– volume: 88
  start-page: 593
  issue: 5
  year: 1997
  ident: 1936_CR52
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)81902-9
– volume: 1829
  start-page: 680
  issue: 6–7
  year: 2013
  ident: 1936_CR56
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagrm.2012.12.002
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 1936_CR139
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 1773
  start-page: 1227
  issue: 8
  year: 2007
  ident: 1936_CR84
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2006.12.002
– volume: 48
  start-page: 210
  issue: 3
  year: 2011
  ident: 1936_CR97
  publication-title: Mol Biotechnol
  doi: 10.1007/s12033-010-9360-8
– volume: 29
  start-page: 145
  issue: 2
  year: 2016
  ident: 1936_CR68
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.01.006
– volume: 70
  start-page: 2973
  issue: 7
  year: 2010
  ident: 1936_CR78
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-3407
– volume: 6
  start-page: 453
  year: 2010
  ident: 1936_CR38
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.108
– volume: 14
  start-page: 888
  issue: 5
  year: 2008
  ident: 1936_CR83
  publication-title: RNA.
  doi: 10.1261/rna.748408
– volume: 8
  start-page: 566
  year: 2012
  ident: 1936_CR134
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.97
– volume: 185
  start-page: 7452
  issue: 12
  year: 2010
  ident: 1936_CR50
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1002629
– volume: 20
  start-page: 85
  issue: 120
  year: 2011
  ident: 1936_CR117
  publication-title: Eur Respir Rev
  doi: 10.1183/09059180.00001111
– volume: 106
  start-page: 3150
  issue: 9
  year: 2005
  ident: 1936_CR119
  publication-title: Blood.
  doi: 10.1182/blood-2005-02-0553
– volume: 9
  start-page: 268
  issue: 4
  year: 2002
  ident: 1936_CR123
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb770
– volume: 37
  start-page: 1
  issue: 1
  year: 2009
  ident: 1936_CR110
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn923
– volume: 9
  start-page: 179
  issue: 1
  year: 2010
  ident: 1936_CR40
  publication-title: J Proteome Res
  doi: 10.1021/pr900392b
– volume: 2
  start-page: 17ra9
  issue: 17
  year: 2010
  ident: 1936_CR16
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000349
– volume: 25
  start-page: 2057
  issue: 19
  year: 2011
  ident: 1936_CR32
  publication-title: Genes Dev
  doi: 10.1101/gad.17355911
– volume: 8
  start-page: 679
  issue: 5
  year: 2008
  ident: 1936_CR71
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2008.01.013
– volume: 23
  start-page: 877
  issue: 7
  year: 2009
  ident: 1936_CR104
  publication-title: Genes Dev
  doi: 10.1101/gad.1771409
– volume: 8
  start-page: 937
  issue: 11
  year: 2011
  ident: 1936_CR115
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1714
– volume: 14
  start-page: 538
  issue: 1
  year: 2014
  ident: 1936_CR129
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-014-0142-4
– volume: 138
  start-page: 645
  issue: 4
  year: 2009
  ident: 1936_CR7
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.06.034
– volume: 22
  start-page: 4459
  issue: 29
  year: 2003
  ident: 1936_CR77
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1206755
– volume: 26
  start-page: 2399
  issue: 6
  year: 2006
  ident: 1936_CR59
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.6.2399-2407.2006
– volume: 31
  start-page: 88
  issue: 2
  year: 2017
  ident: 1936_CR57
  publication-title: Genes Dev
  doi: 10.1101/gad.294769.116
– volume: 54
  start-page: 2745
  issue: 9
  year: 2006
  ident: 1936_CR92
  publication-title: Arthritis Rheum
  doi: 10.1002/art.22080
– volume: 32
  start-page: 1214
  issue: 9
  year: 2013
  ident: 1936_CR89
  publication-title: EMBO J
  doi: 10.1038/emboj.2013.80
– volume: 13
  start-page: 714
  issue: 10
  year: 2013
  ident: 1936_CR66
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3599
– ident: 1936_CR120
  doi: 10.1016/S0065-230X(08)60703-4
– volume: 126
  start-page: 3827
  issue: 10
  year: 2016
  ident: 1936_CR5
  publication-title: J Clin Invest
  doi: 10.1172/JCI82908
– volume: 6
  start-page: 255
  issue: 3
  year: 2014
  ident: 1936_CR34
  publication-title: J Mol Cell Biol
  doi: 10.1093/jmcb/mju008
– volume: 46
  start-page: D218
  issue: D1
  year: 2017
  ident: 1936_CR54
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx975
– volume: 2
  start-page: 28
  issue: 28–36
  year: 1994
  ident: 1936_CR130
  publication-title: Proc Int Conf Intell Syst Mol Biol
– volume: 37
  start-page: 19
  issue: 1
  year: 2018
  ident: 1936_CR37
  publication-title: EMBO J
  doi: 10.15252/embj.201696164
– ident: 1936_CR140
– volume: 105
  start-page: 804
  issue: 2
  year: 2005
  ident: 1936_CR74
  publication-title: Blood.
  doi: 10.1182/blood-2004-04-1463
– volume: 15
  start-page: 142
  issue: 1
  year: 2016
  ident: 1936_CR8
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0414
– volume: 14
  start-page: 593
  issue: 3
  year: 2008
  ident: 1936_CR22
  publication-title: RNA.
  doi: 10.1261/rna.825008
– volume: 22
  start-page: 1095
  issue: 5
  year: 2016
  ident: 1936_CR69
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-1718
– volume: 5
  start-page: 99
  year: 2010
  ident: 1936_CR53
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-121808-102144.:99-118
– volume: 35
  start-page: S1
  issue: 1 Suppl 1
  year: 2008
  ident: 1936_CR10
  publication-title: Semin Oncol
  doi: 10.1053/j.seminoncol.2007.12.002
– volume: 8
  issue: 3
  year: 2013
  ident: 1936_CR81
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059292
– volume: 87
  start-page: 10
  year: 2014
  ident: 1936_CR107
  publication-title: J Vis Exp
– volume: 34
  start-page: 267
  issue: 3
  year: 2003
  ident: 1936_CR137
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 30
  start-page: 952
  issue: 6
  year: 2001
  ident: 1936_CR98
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0300952
– volume: 12
  start-page: 959
  issue: 6
  year: 2013
  ident: 1936_CR128
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-12-0707
– volume: 6
  start-page: 2554
  issue: 20
  year: 2007
  ident: 1936_CR6
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.20.4911
– volume: 111
  start-page: E4315
  issue: 41
  year: 2014
  ident: 1936_CR13
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1320477111
– volume: 11
  start-page: 86
  issue: 1
  year: 2014
  ident: 1936_CR29
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2729
– volume: 284
  start-page: 499
  issue: 5413
  year: 1999
  ident: 1936_CR58
  publication-title: Science.
  doi: 10.1126/science.284.5413.499
– volume: 279
  start-page: 10176
  issue: 11
  year: 2004
  ident: 1936_CR95
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M310486200
– volume: 446
  start-page: 177
  issue: 1–3
  year: 2002
  ident: 1936_CR72
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(02)01758-2
– volume: 19
  start-page: 3021
  issue: 26
  year: 2000
  ident: 1936_CR64
  publication-title: Oncogene.
  doi: 10.1038/sj.onc.1203622
– volume: 301
  start-page: C272
  issue: 2
  year: 2011
  ident: 1936_CR41
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00091.2011
– volume: 10
  start-page: 718
  issue: 6
  year: 1989
  ident: 1936_CR114
  publication-title: Cytometry.
  doi: 10.1002/cyto.990100608
– volume: 1829
  start-page: 666
  issue: 6–7
  year: 2013
  ident: 1936_CR62
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagrm.2013.02.003
– volume: 18
  start-page: 1926
  issue: 16
  year: 2004
  ident: 1936_CR42
  publication-title: Genes Dev
  doi: 10.1101/gad.1212704
– volume: 451
  start-page: 427
  year: 2013
  ident: 1936_CR82
  publication-title: Biochem J
  doi: 10.1042/BJ20121651
– volume: 23
  start-page: 3092
  issue: 15
  year: 2004
  ident: 1936_CR100
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600305
– volume: 43
  start-page: 327
  issue: 3
  year: 2011
  ident: 1936_CR99
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.06.007
– volume: 28
  start-page: 357
  issue: 4
  year: 2014
  ident: 1936_CR33
  publication-title: Genes Dev
  doi: 10.1101/gad.231407.113
– volume: 5
  start-page: 549
  issue: 4
  year: 2014
  ident: 1936_CR55
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1230
– volume: 47
  start-page: 1083
  issue: 6
  year: 2017
  ident: 1936_CR102
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2017.11.016
– volume: 30
  start-page: 183
  issue: 1
  year: 2016
  ident: 1936_CR86
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.008
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 1936_CR111
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0506580102
– volume: 110
  start-page: 4321
  issue: 11
  year: 2013
  ident: 1936_CR76
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1205575110
– volume: 45
  start-page: 2994
  issue: 14
  year: 2002
  ident: 1936_CR125
  publication-title: J Med Chem
  doi: 10.1021/jm020057r
– volume: 31
  start-page: 256
  issue: 2
  year: 2011
  ident: 1936_CR60
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00717-10
– volume: 33
  start-page: 1152
  issue: 11
  year: 2015
  ident: 1936_CR46
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3344
– volume: 6
  start-page: 65
  issue: 1
  year: 2007
  ident: 1936_CR27
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.1.3688
– volume: 14
  start-page: R32
  issue: 4
  year: 2013
  ident: 1936_CR18
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r32
– volume: 15
  start-page: 36
  year: 2005
  ident: 1936_CR93
  publication-title: Cell Res
  doi: 10.1038/sj.cr.7290262
– volume: 17
  start-page: 4936
  issue: 15
  year: 2011
  ident: 1936_CR9
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-1499
– volume: 84
  start-page: 299
  issue: 2
  year: 1996
  ident: 1936_CR79
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)80984-8
– volume: 23
  start-page: 472
  year: 2017
  ident: 1936_CR101
  publication-title: Nat Med
  doi: 10.1038/nm.4310
– volume: 276
  start-page: 42580
  issue: 45
  year: 2001
  ident: 1936_CR94
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M104953200
– volume: 338
  start-page: 15
  issue: 1
  year: 2013
  ident: 1936_CR4
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2012.08.006
– volume: 284
  start-page: 35287
  issue: 51
  year: 2009
  ident: 1936_CR43
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.050120
– volume: 282
  start-page: 3766
  issue: 6
  year: 2007
  ident: 1936_CR113
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M607347200
– volume: 541
  start-page: 494
  issue: 7638
  year: 2017
  ident: 1936_CR20
  publication-title: Nature.
  doi: 10.1038/nature21036
– volume: 25
  start-page: 1114
  issue: 5
  year: 2006
  ident: 1936_CR36
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600998
– volume: 20
  start-page: 333
  issue: 6
  year: 2006
  ident: 1936_CR85
  publication-title: Blood Rev
  doi: 10.1016/j.blre.2005.08.003
– volume: 39
  start-page: D301
  issue: Database issue
  year: 2011
  ident: 1936_CR136
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1069
– volume: 485
  start-page: 55
  issue: 7396
  year: 2012
  ident: 1936_CR19
  publication-title: Nature.
  doi: 10.1038/nature10912
– volume: 286
  start-page: 38466
  issue: 44
  year: 2011
  ident: 1936_CR96
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.254888
– volume: 112
  start-page: E6215
  issue: 45
  year: 2015
  ident: 1936_CR49
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1520032112
– volume: 32
  start-page: D493
  issue: Database issue
  year: 2004
  ident: 1936_CR131
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh103
– volume: 290
  start-page: 15996
  issue: 26
  year: 2015
  ident: 1936_CR35
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.621730
– volume: 6
  issue: 11
  year: 2011
  ident: 1936_CR44
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027509
– volume: 14
  start-page: 197
  issue: 4
  year: 2013
  ident: 1936_CR63
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3546
– volume: 13
  start-page: 2159
  issue: 10
  year: 2015
  ident: 1936_CR103
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.10.073
– volume: 35
  start-page: 107
  year: 2015
  ident: 1936_CR47
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2015.06.013
– volume: 123
  start-page: 2395
  issue: 6
  year: 2013
  ident: 1936_CR105
  publication-title: J Clin Invest
  doi: 10.1172/JCI66553
– volume: 128
  start-page: 1105
  issue: 6
  year: 2007
  ident: 1936_CR106
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.01.038
– volume: 485
  start-page: 109
  issue: 7396
  year: 2012
  ident: 1936_CR28
  publication-title: Nature.
  doi: 10.1038/nature11083
– volume: 136
  start-page: 731
  issue: 4
  year: 2009
  ident: 1936_CR26
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.01.042
– volume: 540
  start-page: 433
  issue: 7633
  year: 2016
  ident: 1936_CR2
  publication-title: Nature.
  doi: 10.1038/nature20598
– volume: 61
  start-page: 760
  issue: 5
  year: 2016
  ident: 1936_CR14
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.02.013
– volume: 288
  start-page: 6743
  issue: 9
  year: 2013
  ident: 1936_CR121
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.425553
– volume: 3
  issue: 6
  year: 2007
  ident: 1936_CR11
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030091
– volume: 320
  start-page: 1643
  issue: 5883
  year: 2008
  ident: 1936_CR12
  publication-title: Science.
  doi: 10.1126/science.1155390
SSID ssib004297820
ssj0019426
ssj0017866
Score 2.432091
Snippet Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and...
Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse....
Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and...
BACKGROUND: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and...
Background: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and...
Abstract Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms [SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases
Animal Genetics and Genomics
Animals
AU Rich Elements
Bioinformatics
Biology (General)
Biomedical and Life Sciences
blood serum
Cancer
Cell culture
Cell Cycle
Cells, Cultured
Chemoresistance
Chemotherapy
Drug Resistance, Neoplasm
drug therapy
Dual Specificity Phosphatase 1
Dual Specificity Phosphatase 1 - genetics
Dual Specificity Phosphatase 1 - metabolism
Evolutionary Biology
Gene expression
Gene regulation
Genetics
genome
Hep G2 Cells
Human Genetics
Human health and pathology
Humans
Infectious diseases
Inflammation
Intracellular Signaling Peptides and Proteins
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
K562 Cells
Kinases
Leukemia
Life Sciences
MAP kinase
MCF-7 Cells
MESH: AU Rich Elements
MESH: Cells, Cultured
MESH: Drug Resistance, Neoplasm
MESH: Dual Specificity Phosphatase 1 / metabolism
MESH: Hep G2 Cells
MESH: Humans
MESH: Intracellular Signaling Peptides and Proteins / metabolism
MESH: K562 Cells
MESH: MCF-7 Cells
MESH: p38 Mitogen-Activated Protein Kinases / metabolism
MESH: Protein Serine-Threonine Kinases / metabolism
MESH: RNA Processing, Post-Transcriptional
MESH: Transcriptome
MESH: Tristetraprolin / genetics
MESH: Tumor Necrosis Factor-alpha / metabolism
Mice
Mice, Inbred C57BL
Microbial Genetics and Genomics
mitogen-activated protein kinase
mRNA turnover
Mutants
p38 Mitogen-Activated Protein Kinases
p38 Mitogen-Activated Protein Kinases - genetics
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Plant Genetics and Genomics
Post-transcription
Post-transcriptional regulation
Protein Serine-Threonine Kinases
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteome
Proteome - genetics
Proteome - metabolism
Proteomes
QH301-705.5
QH426-470
Quiescence
relapse
RNA Processing, Post-Transcriptional
Signal transduction
starvation
Stem cells
THP-1 Cells
Transcriptome
Translation initiation
Tristetraprolin
Tristetraprolin - genetics
Tristetraprolin - metabolism
TTP
Tumor Necrosis Factor-alpha
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-α
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLagAokLKu9AiwbECRQ1yUwmk-MWUfWAqh4WqbfRvKKNqLKlyVbqv8fOY9vwKBcukTbjRDO2x_6c8doAH6SnKMLQX5SDjIVPTGxzw2OOhtGJkFdZafpmE8XJiTo7K09vtfqinLChPPDAuANuyqIsOA-Vd0JVaDwlXrgxpTPeOkvWF1HPFEyN5wclOp7xDDNV8qBFS52XMYVKCFhwTjMv1BfrR9-yolTI-01d_wlt_p40-cvJae-Qjnbh8Ygk2WJYwRO4F5qn8HDoLXn9DOoFu1i3XdyRM5pMA9KPCVlsXTGUF6XZtgQhUfbMXrPFtxgN44qFIau8ZabxbLk8ZXXDfmzqofYTOw-b75RUz-izf_sclkdflp-P47GvQuwU512svEAuuiCcwS1ccce9SEJA7CdNhj-pKVVqbV4Ia3llMIhVHkWJwUdSWYRfL2CnWTfhFTAqJ2dzlVjvcoxjvBJV4iqLEkp9KWQSQTKxWbux5ji1vjjXfeyhpB4ko1EymiSjRQQft49cDAU37iI-JNltCalWdn8DNUiPGqT_pUERvEfJz95xvPiq6R66d4TPPLtKI9hHxcBF0JX6GCK0UWkhCTKqkla6N6mMHq1Aq6mUkJSZkDyCd9th3L8kHdOE9aanQRtLRZfuoBEFugE6BI3g5aCF2-nyLEFIKXCkmOnnbD3zkaZe9XXEC7TtCO8j-DRp8s3U_8ry1_-D5W_gUUabkRrrJHuw011uwj48cFdd3V6-7bfyT2axSR8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5sVfDF-yXayio-KcGc7Gaz-3gUSx-kFD1K35a9xRMsST3JKfTfO5ObRGtBXwLJTsJe5vINM5kh5JXw6EUY_EU5iJj7xMQ2MyxmoBgdD1mRKtM1m8iPjuTJiToe_uNuxmz3MSTZaepOrKV424C2zVSM7g6ADvjuDrkO1k6iNH76_HUKHSiwOUP48tLXZgaoq9MPZmWNWZA7VVleBjT_zJf8LWja2aKDO_-1irvk9gA96bLnlXvkWqjuk5t9M8qLB6Rc0rO6aeMWrdeoS4B-yOCidUHhgDEvt0HMCcxC7QVdfolBk65p6NPQG2oqT1erY1pW9Me27ItF0dOw_Y5Z-BTjBM1Dsjr4sHp_GA-NGGInGWtj6blKhAvcGZD5gjnmeRICgEVhUrjFLlYLa7OcW8sKA16v9HD24K0khQW89ojsVnUVnhCK9edsJhPrXQaOj5e8SFxhRaEWXnGRRCQZD0e7oUg59so41Z2zIoXuN1DDBmrcQM0j8np65ayv0HEV8Ts88YkQi2t3D-rNNz3IqmZG5SpnLBTecVmAvYb5KWaMcsZbZyPyEvhl9o3D5UeNzwAPAN5m6fkiIvvATrAIvGLjQ8BCcpELxJhS4Ur3RkbTg9poNNYeEiLlgkXkxTQMAo-nY6pQbzsaUMpYpekKGp6D3cCoaUQe97w7TZelCWBQDiP5jKtn65mPVOW6KzyegzEAfyAib0be_jX1v27503-ifkZupSgc2HIn2SO77WYb9skNd96WzeZ5J-k_AemqS0s
  priority: 102
  providerName: Springer Nature
Title A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells
URI https://cir.nii.ac.jp/crid/1874242817602568960
https://link.springer.com/article/10.1186/s13059-020-1936-4
https://www.ncbi.nlm.nih.gov/pubmed/32039742
https://www.proquest.com/docview/2357662463
https://www.proquest.com/docview/2353010707
https://www.proquest.com/docview/2477630122
https://ut3-toulouseinp.hal.science/hal-03691632
https://pubmed.ncbi.nlm.nih.gov/PMC7011231
https://doaj.org/article/3a979733efdc48f9906f993aa9cadbcb
Volume 21
WOSCitedRecordID wos000520942200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfoBhIvfA8CW2UQT6Boaew49hNq0aYhQRWNggovkWMnNGJKuqadtP-eOyftVD76woslx25l5853v_Nd7gh5LSxaERo_Uc6Fz22g_SzSzGcgGA3PoyJU2hWbiMdjOZ2qpLtwa7qwyrVMdILa1gbvyI8xLYsQIRfs3fzSx6pR6F3tSmj0yD5mSWAudC_ZeBFiiVil6ygetp8aYQBipETn4hxIcdyAII-Uj5YU4BlY8paScrn8QfXMMFKyV5Xl38DonzGVvzlWnb46vf-_O31A7nVIlQ5b1npIbuXVI3KnrV15_ZiUQzqvm6W_RGW3Fj0wvwv4onVBgR8wjLdBiAq8RbNrOvzig-Cd0byNWm-oriydTBJaVvRyVba5pehFvvqJQfsU3QrNEzI5PZm8P_O7ug2-kYwtfWm5CoTJudEgIgpmmOVBngO2FDqELha9GmRZFPMsY4UGI1laYBUwboIiA3h3QPaqusqfEYrp6rJIBpk1EdhJVvIiMEUmCjWwiovAI8GaTqnpcppjaY2L1Nk2UqQtaVMgbYqkTblH3mx-Mm8TeuyaPELibyZiLm73oF78SLujnTKtYhUzlhfWcFmAeof1Kaa1MtpmJvPIK2Cdrf84G35M8RnAB4DnLLwaeOQIOAs2gS3WSQToJAexQEgqFe70cM0saSdlmvSGUzzycjMM8gGpo6u8Xrk5IMMxqdOOOTwGNYNOVo88bdl4s1wWBgBZOYzEWwy-tZ_tkaqcuTzlMegOMB888nZ9FG6W_s9X_nz3Rl-QuyGeUyzJExySveVilR-R2-ZqWTaLPunF09i1sk_2Ryfj5Lzvbln6TjDAs-TDp-Qb9M5H37H9_PUX7-5iwQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBQQX3o_ALhgEF1C0aew49gGh8lh1taXqoUh7sxzHoRGrpNu0i_qj-I_M5NFVefS2By6VEruVJ_k8801nPEPIK5GiF2HwiLITPk8D4yeRYT4DxWi5i7JQmbrZRDwayZMTNd4hP7uzMJhW2enEWlGnpcX_yA-wLIsQIRfs_ezMx65RGF3tWmg0sDh2qx_gslXvjj7B-30dhoefJx8HfttVwLeSsYUvU64CYR23BgCcMctSHjgHzEeYEC6xJVMvSaKYJwnLDLhwMgVBgHoHWcKxzgFo_KvAIkJZZwqO10GLWCI1ai8UD5uTTZjvGCnRRlR7UhxUYDci5aPjBvQJntCGTaxbB4Clm2Ji5pUiz__Gff9M4fwtjlubx8Pb_9mDvUNutTyc9puNc5fsuOIeud505lzdJ3mfzspq4S_QlHeKFea36Wy0zCigHZOUKyTgsHNosqL9rz6YlSl1TU5-RU2R0slkTPOCni3zpnIWPXXL73gkgWLQpHpAJpch5kOyW5SFe0woFuNLIhkkqY3AC0wlzwKbJSJTvVRxEXgk6GChbVuxHRuHnOrac5NCN0jSgCSNSNLcI2_WX5k15Uq2Tf6AWFtPxErj9Y1y_k23ikszo2IVM-ay1HKZAXmB9SlmjLImTWzikZeA1I3fGPSHGu8BOQLng4XnPY_sA5BBCPzELpBADGUvFki4pUJJ9zps6laHVvoCmB55sR4G7YdvxxSuXNZzwEJhyaotc3gMRhRDyB551Oya9XJZGAAh5zASb-ynDXk2R4p8Wldhj8EygnPkkbfdzrtY-j8f-ZPtgj4nNwaTL0M9PBodPyU3Q1QR2Hwo2CO7i_nS7ZNr9nyRV_NnteahRF_yhvwFOu21rA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF7RcogX7sPQwoJ4All1vOu19zEcVRFVFImA-rbak1hUToidSv33zPgICpRKiJdI8Y6TPcYz32jG3xDySjiMIjS-ouxFzF2iY5NpFjMwjJb7LKRSt80m8smkODmR077PaT1Uuw8pye6dBmRpqpqDpQvdI16IgxosbyZjDH0AgMB_7JCrHHsGYbj--esmjSDB__SpzAtv23JGLWc_uJg5VkTuVGV5Eej8s3bytwRq65cOb__3iu6QWz0kpeNOh-6SK766R653TSrP75NyTJeLuokb9GqDjQH5vrKLLgKFg8d63RqxKCgRNed0_CUGCzunvitPr6muHJ3NprSs6I912ZFI0VO__o7V-RTzB_UDMjv8MHt3FPcNGmJbMNbEheMyEdZzq8EWBGaZ44n3ACKFTuErdrcaGZPl3BgWNETDhQOdgCgmCQZw3EOyWy0q_5hQ5KUzWZEYZzMIiFzBQ2KDEUGOnOQiiUgyHJSyPXk59tA4VW0QUwjVbaCCDVS4gYpH5PXmlmXH3HGZ8Fs8_Y0gkm63Fxarb6p_hhXTMpc5Yz44y4sAfhzmJ5nW0mpnrInIS9Cdrd84Gh8rvAY4AXA4S89GEdkH1YJF4Cc2RASMVIxygdizkLjSvUHpVG9OaoWcREKkXLCIvNgMgyHA09GVX6xbGTDWyN50iQzPwZ9gNjUijzo93kyXpQlgUw4j-ZaGb61ne6Qq5y0heQ5OAuKEiLwZ9PzX1P-65U_-Sfo5uTF9f6iOP04-PSU3U3xOsCtPskd2m9Xa75Nr9qwp69Wz1gD8BGlZVxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+post-transcriptional+program+of+chemoresistance+by+AU-rich+elements+and+TTP+in+quiescent+leukemic+cells&rft.jtitle=Genome+Biology&rft.au=Syed+I.+A.+Bukhari&rft.au=David+B.+Sykes&rft.au=Adam+Langenbucher&rft.au=Dongjun+Lee&rft.date=2020-02-10&rft.pub=Springer+Science+and+Business+Media+LLC&rft.eissn=1474-760X&rft.volume=21&rft_id=info:doi/10.1186%2Fs13059-020-1936-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon