A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells
Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresista...
Uložené v:
| Vydané v: | Genome Biology Ročník 21; číslo 1; s. 33 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer Science and Business Media LLC
10.02.2020
BioMed Central Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1474-760X, 1474-7596, 1465-6906, 1474-760X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.
Results
We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo.
Conclusions
These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival. |
|---|---|
| AbstractList | Background
Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.
Results
We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo.
Conclusions
These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival. Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival. Abstract Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival. Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.BACKGROUNDQuiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo.RESULTSWe induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo.These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.CONCLUSIONSThese studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival. Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival. |
| ArticleNumber | 33 |
| Author | Yasutaka Kato Ipsita Dey-Guha Shobha Vasudevan Adam Langenbucher Nicholas J. Haradhvala Roopali Gandhi Daniel A. Haber Michael S. Lawrence Samuel S. Truesdell Radhika Raheja Dongjun Lee Douglas S. Micalizzi Wilhelm Haas Sooncheol Lee David B. Sykes Fei Ji Ruslan I. Sadreyev Myriam Boukhali Syed I. A. Bukhari David A. Sweetser David T. Myers Jennifer Lombardi-Story Shyamala Maheswaran Christopher Tiedje Benjamin Nicholson Min-Kyung Choo Maria Antonietta Mazzola Manuel D. Díaz-Muñoz |
| Author_xml | – sequence: 1 givenname: Sooncheol surname: Lee fullname: Lee, Sooncheol – sequence: 2 givenname: Douglas surname: Micalizzi fullname: Micalizzi, Douglas – sequence: 3 givenname: Samuel S. surname: Truesdell fullname: Truesdell, Samuel S. – sequence: 4 givenname: Syed I. A. surname: Bukhari fullname: Bukhari, Syed I. A. – sequence: 5 givenname: Myriam surname: Boukhali fullname: Boukhali, Myriam – sequence: 6 givenname: Jennifer surname: Lombardi-Story fullname: Lombardi-Story, Jennifer – sequence: 7 givenname: Yasutaka surname: Kato fullname: Kato, Yasutaka – sequence: 8 givenname: Min-Kyung surname: Choo fullname: Choo, Min-Kyung – sequence: 9 givenname: Ipsita surname: Dey-Guha fullname: Dey-Guha, Ipsita – sequence: 10 givenname: Fei surname: Ji fullname: Ji, Fei – sequence: 11 givenname: Benjamin T. surname: Nicholson fullname: Nicholson, Benjamin T. – sequence: 12 givenname: David T. surname: Myers fullname: Myers, David T. – sequence: 13 givenname: Dongjun surname: Lee fullname: Lee, Dongjun – sequence: 14 givenname: Maria A. surname: Mazzola fullname: Mazzola, Maria A. – sequence: 15 givenname: Radhika surname: Raheja fullname: Raheja, Radhika – sequence: 16 givenname: Adam surname: Langenbucher fullname: Langenbucher, Adam – sequence: 17 givenname: Nicholas J. surname: Haradhvala fullname: Haradhvala, Nicholas J. – sequence: 18 givenname: Michael S. surname: Lawrence fullname: Lawrence, Michael S. – sequence: 19 givenname: Roopali surname: Gandhi fullname: Gandhi, Roopali – sequence: 20 givenname: Christopher surname: Tiedje fullname: Tiedje, Christopher – sequence: 21 givenname: Manuel D. surname: Diaz-Muñoz fullname: Diaz-Muñoz, Manuel D. – sequence: 22 givenname: David A. surname: Sweetser fullname: Sweetser, David A. – sequence: 23 givenname: Ruslan surname: Sadreyev fullname: Sadreyev, Ruslan – sequence: 24 givenname: David surname: Sykes fullname: Sykes, David – sequence: 25 givenname: Wilhelm surname: Haas fullname: Haas, Wilhelm – sequence: 26 givenname: Daniel A. surname: Haber fullname: Haber, Daniel A. – sequence: 27 givenname: Shyamala surname: Maheswaran fullname: Maheswaran, Shyamala – sequence: 28 givenname: Shobha surname: Vasudevan fullname: Vasudevan, Shobha |
| BackLink | https://cir.nii.ac.jp/crid/1874242817602568960$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/32039742$$D View this record in MEDLINE/PubMed https://ut3-toulouseinp.hal.science/hal-03691632$$DView record in HAL |
| BookMark | eNqFk81u1DAUhSNUREvpA7BBlmABi4D_YscbpFEFtNJIsBgkdpbj3My4JPbUTir17XGaUtouysZJbr5z7rVz8rI48MFDUbwm-CMhtfiUCMOVKjHFJVFMlPxZcUS45KUU-NfBvfvD4iQl12DMqZI1xS-KQ0YxU5LTo8Kt0D6ksRyj8clGtx9d8KZH-xi20QwodMjuYAgRkkuj8RZQc41WP8vo7A5BDwP4MSHjW7TZ_EDOo8vJQbK5inqYfsPgLLLQ9-lV8bwzfYKT2-txsfn6ZXN6Vq6_fzs_Xa1LWzM2lnXLFRYWuDWY445Z1nIMQAQRhuZHTIUkTVNJ3jSsM4zVdVtToFWFu4ZTdlycL7ZtMBd6H91g4rUOxumbQohbbeLobA-aGSWVZAy61vK6U7lvXpgxypq2sU32-rx47admgHbeVDT9A9OHb7zb6W240hITQhnJBh8Wg90j2dlqrecaZkIRwejVzL6_bRbD5QRp1INL88kZD2FKmnIpBcOE0v-jrMogllhm9O0j9CJMMX_hG0oKQblgmXpzf6N3o_7NSQbIAtgYUorQ3SEE6zmOeomjznHUcxw1zxr5SGPdaOZ85bNy_ZNKuihT7uK3EP8N_ZTo3SLyzuVO80rqPDunNcm_Aa1ErQRmfwBT4PzB |
| CitedBy_id | crossref_primary_10_1111_sji_13158 crossref_primary_10_3389_fonc_2021_632189 crossref_primary_10_1038_s41467_022_35624_4 crossref_primary_10_1016_j_jare_2025_05_038 crossref_primary_10_1155_2024_2699572 crossref_primary_10_1016_j_critrevonc_2022_103710 crossref_primary_10_1038_s41388_021_02113_9 crossref_primary_10_1007_s00432_021_03874_2 crossref_primary_10_1016_j_cellsig_2020_109868 crossref_primary_10_7717_peerj_12275 crossref_primary_10_3390_ijms21186648 crossref_primary_10_1172_JCI178428 crossref_primary_10_3389_fgene_2021_742902 crossref_primary_10_1186_s12964_023_01317_8 crossref_primary_10_1002_1878_0261_12897 crossref_primary_10_1016_j_semcancer_2021_04_021 |
| Cites_doi | 10.1016/j.cell.2009.05.045 10.1073/pnas.0635171100 10.1371/journal.pbio.0040083 10.1038/nprot.2008.211 10.1093/nar/gku1075 10.1371/journal.pgen.1002433 10.1158/1535-7163.MCT-13-0513 10.3109/10409238.2015.1014024 10.1074/jbc.R109.094003 10.1016/j.cell.2015.05.049 10.1056/NEJMoa1402582 10.1016/j.chembiol.2011.11.010 10.1038/nrm1618 10.1016/j.bbamcr.2014.07.012 10.1016/j.cell.2016.08.057 10.1038/sj.emboj.7600163 10.1016/j.molmed.2017.11.002 10.1016/j.bbamcr.2007.03.010 10.1016/j.ccell.2015.09.009 10.1074/jbc.M414221200 10.1172/JCI68101 10.1093/bioinformatics/btg405 10.1016/j.ccell.2016.11.002 10.1016/j.stem.2015.09.020 10.1007/978-3-642-31659-3_7 10.1038/nature08467 10.1038/nature12624 10.1038/msb.2009.68 10.1016/j.tibs.2015.01.002 10.1111/j.1365-2141.2006.06443.x 10.1074/jbc.R110.119743 10.1021/jm030121k 10.1158/1078-0432.CCR-10-2574 10.1158/0008-5472.CAN-12-2395 10.1038/nrm2199 10.1016/j.ejcb.2017.03.013 10.1016/S0092-8674(00)81902-9 10.1016/j.bbagrm.2012.12.002 10.1093/nar/gkv007 10.1016/j.bbamcr.2006.12.002 10.1007/s12033-010-9360-8 10.1016/j.ccell.2016.01.006 10.1158/0008-5472.CAN-09-3407 10.1038/msb.2010.108 10.1261/rna.748408 10.1038/msb.2011.97 10.4049/jimmunol.1002629 10.1183/09059180.00001111 10.1182/blood-2005-02-0553 10.1038/nsb770 10.1093/nar/gkn923 10.1021/pr900392b 10.1126/scitranslmed.3000349 10.1101/gad.17355911 10.1016/j.intimp.2008.01.013 10.1101/gad.1771409 10.1038/nmeth.1714 10.1186/s12935-014-0142-4 10.1016/j.cell.2009.06.034 10.1038/sj.onc.1206755 10.1128/MCB.26.6.2399-2407.2006 10.1101/gad.294769.116 10.1002/art.22080 10.1038/emboj.2013.80 10.1038/nrc3599 10.1016/S0065-230X(08)60703-4 10.1172/JCI82908 10.1093/jmcb/mju008 10.1093/nar/gkx975 10.15252/embj.201696164 10.1182/blood-2004-04-1463 10.1158/1535-7163.MCT-15-0414 10.1261/rna.825008 10.1158/1078-0432.CCR-15-1718 10.1146/annurev-pathol-121808-102144.:99-118 10.1053/j.seminoncol.2007.12.002 10.1371/journal.pone.0059292 10.1038/ng1180 10.1042/bst0300952 10.1158/1535-7163.MCT-12-0707 10.4161/cc.6.20.4911 10.1073/pnas.1320477111 10.1038/nmeth.2729 10.1126/science.284.5413.499 10.1074/jbc.M310486200 10.1016/S0014-2999(02)01758-2 10.1038/sj.onc.1203622 10.1152/ajpcell.00091.2011 10.1002/cyto.990100608 10.1016/j.bbagrm.2013.02.003 10.1101/gad.1212704 10.1042/BJ20121651 10.1038/sj.emboj.7600305 10.1016/j.molcel.2011.06.007 10.1101/gad.231407.113 10.1002/wrna.1230 10.1016/j.immuni.2017.11.016 10.1016/j.ccell.2016.06.008 10.1073/pnas.0506580102 10.1073/pnas.1205575110 10.1021/jm020057r 10.1128/MCB.00717-10 10.1038/nbt.3344 10.4161/cc.6.1.3688 10.1186/gb-2013-14-4-r32 10.1038/sj.cr.7290262 10.1158/1078-0432.CCR-10-1499 10.1016/S0092-8674(00)80984-8 10.1038/nm.4310 10.1074/jbc.M104953200 10.1016/j.canlet.2012.08.006 10.1074/jbc.M109.050120 10.1074/jbc.M607347200 10.1038/nature21036 10.1038/sj.emboj.7600998 10.1016/j.blre.2005.08.003 10.1093/nar/gkq1069 10.1038/nature10912 10.1074/jbc.M111.254888 10.1073/pnas.1520032112 10.1093/nar/gkh103 10.1074/jbc.M114.621730 10.1371/journal.pone.0027509 10.1038/nrm3546 10.1016/j.celrep.2015.10.073 10.1016/j.coi.2015.06.013 10.1172/JCI66553 10.1016/j.cell.2007.01.038 10.1038/nature11083 10.1016/j.cell.2009.01.042 10.1038/nature20598 10.1016/j.molcel.2016.02.013 10.1074/jbc.M112.425553 10.1371/journal.pgen.0030091 10.1126/science.1155390 |
| ContentType | Journal Article |
| Contributor | Massachusetts General Hospital [Boston] Centre de Physiopathologie Toulouse Purpan (CPTP) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) Hokuto Hospital Seoul National University [Seoul] (SNU) Medizinische Hochschule Hannover = Hannover Medical School (MHH) Harvard University |
| Contributor_xml | – sequence: 1 fullname: Massachusetts General Hospital [Boston] – sequence: 2 fullname: Harvard University – sequence: 3 fullname: Hokuto Hospital – sequence: 4 fullname: Seoul National University [Seoul] (SNU) – sequence: 5 fullname: Medizinische Hochschule Hannover = Hannover Medical School (MHH) – sequence: 6 fullname: Centre de Physiopathologie Toulouse Purpan (CPTP) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) |
| Copyright | The Author(s). 2020 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s). 2020 – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | RYH C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 1XC VOOES 5PM DOA |
| DOI | 10.1186/s13059-020-1936-4 |
| DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1474-760X |
| EndPage | 33 |
| ExternalDocumentID | oai_doaj_org_article_3a979733efdc48f9906f993aa9cadbcb PMC7011231 oai:HAL:hal-03691632v1 32039742 10_1186_s13059_020_1936_4 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R21 CA220103 – fundername: NCI NIH HHS grantid: R01 CA185086 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: R01 CA129933 – fundername: NIGMS NIH HHS grantid: R01 GM100202 |
| GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFFHD AFKRA AFPKN AHBYD AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO ROL RPM RSV RYH SJN SOJ SV3 UKHRP PUEGO AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 123 1XC 8R4 8R5 AHSBF H13 VOOES 5PM |
| ID | FETCH-LOGICAL-c833t-8d4906ce4ca040f3c3d40ee1616a2f3c02671bb574bb3fa3388d82e2550fb423 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000520942200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-760X 1474-7596 1465-6906 |
| IngestDate | Mon Nov 10 04:31:38 EST 2025 Tue Nov 04 01:57:07 EST 2025 Sat Nov 29 15:04:29 EST 2025 Sun Aug 24 04:11:51 EDT 2025 Thu Sep 04 18:27:02 EDT 2025 Tue Oct 14 12:41:00 EDT 2025 Mon Jul 21 05:57:01 EDT 2025 Tue Nov 18 20:55:43 EST 2025 Sat Nov 29 04:55:54 EST 2025 Sat Sep 06 07:24:38 EDT 2025 Mon Nov 10 09:08:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | TTP Post-transcriptional regulation AU-rich elements Chemoresistance Quiescence |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c833t-8d4906ce4ca040f3c3d40ee1616a2f3c02671bb574bb3fa3388d82e2550fb423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC7011231 |
| ORCID | 0000-0002-3013-6967 0000-0002-0306-9914 0000-0002-9227-7474 |
| OpenAccessLink | https://www.proquest.com/docview/2357662463?pq-origsite=%requestingapplication% |
| PMID | 32039742 |
| PQID | 2357662463 |
| PQPubID | 2040232 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3a979733efdc48f9906f993aa9cadbcb pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011231 hal_primary_oai_HAL_hal_03691632v1 proquest_miscellaneous_2477630122 proquest_miscellaneous_2353010707 proquest_journals_2357662463 pubmed_primary_32039742 crossref_primary_10_1186_s13059_020_1936_4 crossref_citationtrail_10_1186_s13059_020_1936_4 springer_journals_10_1186_s13059_020_1936_4 nii_cinii_1874242817602568960 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-10 |
| PublicationDateYYYYMMDD | 2020-02-10 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Genome Biology |
| PublicationTitleAbbrev | Genome Biol |
| PublicationTitleAlternate | Genome Biol |
| PublicationYear | 2020 |
| Publisher | Springer Science and Business Media LLC BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: Springer Science and Business Media LLC – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | LA Crews (1936_CR4) 2013; 338 J Liu (1936_CR93) 2005; 15 PD Bhola (1936_CR5) 2016; 126 FJ Giles (1936_CR10) 2008; 35 1936_CR120 HA Coller (1936_CR1) 2006; 4 A Subramanian (1936_CR111) 2005; 102 T Bakheet (1936_CR54) 2017; 46 PB Gupta (1936_CR7) 2009; 138 Salony (1936_CR8) 2016; 15 A Lal (1936_CR100) 2004; 23 R Sandberg (1936_CR12) 2008; 320 DW Huang (1936_CR110) 2009; 37 TP Chang (1936_CR75) 2014; 1843 VA Levin (1936_CR40) 2010; 9 KJ Grattendick (1936_CR71) 2008; 8 O Ozes (1936_CR116) 2008 F Loayza-Puch (1936_CR18) 2013; 14 CE Meacham (1936_CR3) 2013; 501 L Gautier (1936_CR138) 2004; 20 SI Bukhari (1936_CR14) 2016; 61 T Alain (1936_CR31) 2012; 72 A Korb (1936_CR92) 2006; 54 EM de Kruijf (1936_CR50) 2010; 185 NG Sosale (1936_CR47) 2015; 35 SP Jackson (1936_CR65) 2009; 461 D Senft (1936_CR90) 2015; 40 JP Coppe (1936_CR53) 2010; 5 VK Mootha (1936_CR137) 2003; 34 BD Fonseca (1936_CR35) 2015; 290 M Kesarwani (1936_CR101) 2017; 23 MA Coelho (1936_CR102) 2017; 47 Y Chen (1936_CR105) 2013; 123 K Kojima (1936_CR119) 2005; 106 G Stoecklin (1936_CR112) 2004; 23 1936_CR140 KG Foster (1936_CR39) 2010; 285 A Patnaik (1936_CR69) 2016; 22 J Regan (1936_CR125) 2002; 45 ME Ritchie (1936_CR139) 2015; 43 VV Zeenko (1936_CR22) 2008; 14 N Sonenberg (1936_CR26) 2009; 136 SA Brooks (1936_CR62) 2013; 1829 Y Arava (1936_CR132) 2003; 100 A Batool (1936_CR45) 2017; 96 E Hitti (1936_CR59) 2006; 26 L Li (1936_CR9) 2011; 17 C Tiedje (1936_CR61) 2016; 44 MS Sosa (1936_CR88) 2011; 17 DB Sykes (1936_CR87) 2016; 167 Y Saito (1936_CR16) 2010; 2 B Culjkovic (1936_CR27) 2007; 6 AR Tee (1936_CR64) 2000; 19 ZW Li (1936_CR85) 2006; 20 H Hsu (1936_CR79) 1996; 84 E Carballo (1936_CR94) 2001; 276 C Frelin (1936_CR74) 2005; 105 N Hay (1936_CR42) 2004; 18 R Haq (1936_CR76) 2013; 110 CK Damgaard (1936_CR32) 2011; 25 H Rauert-Wunderlich (1936_CR81) 2013; 8 R Majeti (1936_CR51) 2009; 138 SA Shukla (1936_CR46) 2015; 33 YM Schichl (1936_CR96) 2011; 286 T Zhang (1936_CR127) 2012; 19 C Tate (1936_CR121) 2013; 288 F Xu (1936_CR129) 2014; 14 R Miloslavski (1936_CR34) 2014; 6 JC Zinder (1936_CR57) 2017; 31 DW Huang (1936_CR109) 2008; 4 Y Kagoya (1936_CR73) 2014; 124 S Lee (1936_CR13) 2014; 111 P Villalonga (1936_CR43) 2009; 284 H Nakazato (1936_CR72) 2002; 446 K Han (1936_CR29) 2014; 11 ML Truitt (1936_CR108) 2015; 162 RM Campbell (1936_CR122) 2014; 13 Y Shiloh (1936_CR63) 2013; 14 A Sendoel (1936_CR20) 2017; 541 H Zong (1936_CR103) 2015; 13 E Caron (1936_CR38) 2010; 6 A Cuenda (1936_CR91) 2007; 1773 H Yasui (1936_CR124) 2007; 136 S Vasudevan (1936_CR106) 2007; 128 KB Cook (1936_CR136) 2011; 39 R Nawroth (1936_CR44) 2011; 6 S Pirkmajer (1936_CR41) 2011; 301 C Bodur (1936_CR37) 2018; 37 AE Moore (1936_CR55) 2014; 5 D Karolchik (1936_CR131) 2004; 32 S Ebinger (1936_CR15) 2016; 30 CA Hoy (1936_CR114) 1989; 10 SW Ng (1936_CR2) 2016; 540 T Kurosu (1936_CR77) 2003; 22 N Mukherjee (1936_CR99) 2011; 43 V Gandin (1936_CR107) 2014; 87 L Ting (1936_CR115) 2011; 8 M Spasic (1936_CR135) 2012; 8 CA Chrestensen (1936_CR95) 2004; 279 AC Hsieh (1936_CR19) 2012; 485 J Zuber (1936_CR104) 2009; 23 MA Batey (1936_CR128) 2013; 12 TL Bailey (1936_CR130) 1994; 2 SA Rushworth (1936_CR78) 2010; 70 C Pargellis (1936_CR123) 2002; 9 V Zismanov (1936_CR25) 2016; 18 M Serrano (1936_CR52) 1997; 88 J Regan (1936_CR126) 2003; 46 CJ Schaefer (1936_CR117) 2011; 20 M Piques (1936_CR133) 2009; 5 EJ White (1936_CR56) 2013; 1829 K Kondoh (1936_CR84) 2007; 1773 G Laroia (1936_CR58) 1999; 284 M Holcik (1936_CR21) 2005; 6 CK Damgaard (1936_CR30) 2013; 158 SL Clement (1936_CR60) 2011; 31 C Holohan (1936_CR66) 2013; 13 DR Soto-Pantoja (1936_CR48) 2015; 50 A Annibaldi (1936_CR80) 2018; 24 Elizabeth C. Townsend (1936_CR86) 2016; 30 S Strickson (1936_CR82) 2013; 451 SA Forbes (1936_CR17) 2015; 43 D Ron (1936_CR24) 2007; 8 N Claudio (1936_CR89) 2013; 32 IG Cannell (1936_CR67) 2015; 28 L Sun (1936_CR113) 2007; 282 N Lalaoui (1936_CR68) 2016; 29 H Zhang (1936_CR49) 2015; 112 MJ Liu (1936_CR134) 2012; 8 JR Lorsch (1936_CR23) 2010; 285 J Tcherkezian (1936_CR33) 2014; 28 T Zhang (1936_CR98) 2001; 30 CC Thoreen (1936_CR28) 2012; 485 RC Nichols (1936_CR97) 2011; 48 RT Tavaluc (1936_CR6) 2007; 6 J Emmons (1936_CR83) 2008; 14 TE King (1936_CR118) 2014; 370 H Liu (1936_CR11) 2007; 3 Y Kuma (1936_CR70) 2005; 280 M Koritzinsky (1936_CR36) 2006; 25 |
| References_xml | – volume: 138 start-page: 286 issue: 2 year: 2009 ident: 1936_CR51 publication-title: Cell. doi: 10.1016/j.cell.2009.05.045 – volume: 44 start-page: 7418 issue: 15 year: 2016 ident: 1936_CR61 publication-title: Nucleic Acids Res – volume: 100 start-page: 3889 issue: 7 year: 2003 ident: 1936_CR132 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0635171100 – volume: 4 issue: 3 year: 2006 ident: 1936_CR1 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040083 – volume: 4 start-page: 44 issue: 1 year: 2008 ident: 1936_CR109 publication-title: Nat Protocols doi: 10.1038/nprot.2008.211 – volume: 43 start-page: D805 issue: Database issue year: 2015 ident: 1936_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1075 – volume: 8 issue: 1 year: 2012 ident: 1936_CR135 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002433 – volume: 13 start-page: 364 issue: 2 year: 2014 ident: 1936_CR122 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-13-0513 – volume: 50 start-page: 212 issue: 3 year: 2015 ident: 1936_CR48 publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2015.1014024 – volume: 285 start-page: 14071 issue: 19 year: 2010 ident: 1936_CR39 publication-title: J Biol Chem doi: 10.1074/jbc.R109.094003 – volume: 162 start-page: 59 issue: 1 year: 2015 ident: 1936_CR108 publication-title: Cell. doi: 10.1016/j.cell.2015.05.049 – volume: 370 start-page: 2083 issue: 22 year: 2014 ident: 1936_CR118 publication-title: N Engl J Med doi: 10.1056/NEJMoa1402582 – volume: 19 start-page: 140 issue: 1 year: 2012 ident: 1936_CR127 publication-title: Chem Biol doi: 10.1016/j.chembiol.2011.11.010 – volume: 6 start-page: 318 issue: 4 year: 2005 ident: 1936_CR21 publication-title: Nat Rev Mol Cell Biol. doi: 10.1038/nrm1618 – volume: 1843 start-page: 2620 issue: 11 year: 2014 ident: 1936_CR75 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2014.07.012 – volume: 167 start-page: 171 issue: 1 year: 2016 ident: 1936_CR87 publication-title: Cell. doi: 10.1016/j.cell.2016.08.057 – volume: 23 start-page: 1313 issue: 6 year: 2004 ident: 1936_CR112 publication-title: EMBO J doi: 10.1038/sj.emboj.7600163 – volume: 24 start-page: 49 issue: 1 year: 2018 ident: 1936_CR80 publication-title: Trends Mol Med doi: 10.1016/j.molmed.2017.11.002 – volume: 1773 start-page: 1358 issue: 8 year: 2007 ident: 1936_CR91 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2007.03.010 – volume: 28 start-page: 623 issue: 5 year: 2015 ident: 1936_CR67 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.09.009 – volume: 280 start-page: 19472 issue: 20 year: 2005 ident: 1936_CR70 publication-title: J Biol Chem doi: 10.1074/jbc.M414221200 – volume: 124 start-page: 528 issue: 2 year: 2014 ident: 1936_CR73 publication-title: J Clin Invest doi: 10.1172/JCI68101 – volume: 20 start-page: 307 issue: 3 year: 2004 ident: 1936_CR138 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btg405 – volume: 30 start-page: 849 issue: 6 year: 2016 ident: 1936_CR15 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.002 – volume: 18 start-page: 79 issue: 1 year: 2016 ident: 1936_CR25 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.020 – volume: 158 start-page: 153 year: 2013 ident: 1936_CR30 publication-title: Cancer Treat Res doi: 10.1007/978-3-642-31659-3_7 – volume: 461 start-page: 1071 issue: 7267 year: 2009 ident: 1936_CR65 publication-title: Nature. doi: 10.1038/nature08467 – volume: 501 start-page: 328 issue: 7467 year: 2013 ident: 1936_CR3 publication-title: Nature. doi: 10.1038/nature12624 – volume: 5 start-page: 314 year: 2009 ident: 1936_CR133 publication-title: Mol Syst Biol doi: 10.1038/msb.2009.68 – volume: 40 start-page: 141 issue: 3 year: 2015 ident: 1936_CR90 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2015.01.002 – start-page: 1 volume-title: Use of pirfenidone in therapeutic regimens. United States Patent-US 7,407,973 year: 2008 ident: 1936_CR116 – volume: 136 start-page: 414 issue: 3 year: 2007 ident: 1936_CR124 publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2006.06443.x – volume: 285 start-page: 21203 issue: 28 year: 2010 ident: 1936_CR23 publication-title: J Biol Chem doi: 10.1074/jbc.R110.119743 – volume: 46 start-page: 4676 issue: 22 year: 2003 ident: 1936_CR126 publication-title: J Med Chem doi: 10.1021/jm030121k – volume: 17 start-page: 5850 issue: 18 year: 2011 ident: 1936_CR88 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-2574 – volume: 72 start-page: 6468 issue: 24 year: 2012 ident: 1936_CR31 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2395 – volume: 8 start-page: 519 issue: 7 year: 2007 ident: 1936_CR24 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2199 – volume: 96 start-page: 325 issue: 4 year: 2017 ident: 1936_CR45 publication-title: Eur J Cell Biol doi: 10.1016/j.ejcb.2017.03.013 – volume: 88 start-page: 593 issue: 5 year: 1997 ident: 1936_CR52 publication-title: Cell. doi: 10.1016/S0092-8674(00)81902-9 – volume: 1829 start-page: 680 issue: 6–7 year: 2013 ident: 1936_CR56 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2012.12.002 – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 1936_CR139 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 1773 start-page: 1227 issue: 8 year: 2007 ident: 1936_CR84 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2006.12.002 – volume: 48 start-page: 210 issue: 3 year: 2011 ident: 1936_CR97 publication-title: Mol Biotechnol doi: 10.1007/s12033-010-9360-8 – volume: 29 start-page: 145 issue: 2 year: 2016 ident: 1936_CR68 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.01.006 – volume: 70 start-page: 2973 issue: 7 year: 2010 ident: 1936_CR78 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-3407 – volume: 6 start-page: 453 year: 2010 ident: 1936_CR38 publication-title: Mol Syst Biol doi: 10.1038/msb.2010.108 – volume: 14 start-page: 888 issue: 5 year: 2008 ident: 1936_CR83 publication-title: RNA. doi: 10.1261/rna.748408 – volume: 8 start-page: 566 year: 2012 ident: 1936_CR134 publication-title: Mol Syst Biol doi: 10.1038/msb.2011.97 – volume: 185 start-page: 7452 issue: 12 year: 2010 ident: 1936_CR50 publication-title: J Immunol doi: 10.4049/jimmunol.1002629 – volume: 20 start-page: 85 issue: 120 year: 2011 ident: 1936_CR117 publication-title: Eur Respir Rev doi: 10.1183/09059180.00001111 – volume: 106 start-page: 3150 issue: 9 year: 2005 ident: 1936_CR119 publication-title: Blood. doi: 10.1182/blood-2005-02-0553 – volume: 9 start-page: 268 issue: 4 year: 2002 ident: 1936_CR123 publication-title: Nat Struct Biol doi: 10.1038/nsb770 – volume: 37 start-page: 1 issue: 1 year: 2009 ident: 1936_CR110 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn923 – volume: 9 start-page: 179 issue: 1 year: 2010 ident: 1936_CR40 publication-title: J Proteome Res doi: 10.1021/pr900392b – volume: 2 start-page: 17ra9 issue: 17 year: 2010 ident: 1936_CR16 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000349 – volume: 25 start-page: 2057 issue: 19 year: 2011 ident: 1936_CR32 publication-title: Genes Dev doi: 10.1101/gad.17355911 – volume: 8 start-page: 679 issue: 5 year: 2008 ident: 1936_CR71 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2008.01.013 – volume: 23 start-page: 877 issue: 7 year: 2009 ident: 1936_CR104 publication-title: Genes Dev doi: 10.1101/gad.1771409 – volume: 8 start-page: 937 issue: 11 year: 2011 ident: 1936_CR115 publication-title: Nat Methods doi: 10.1038/nmeth.1714 – volume: 14 start-page: 538 issue: 1 year: 2014 ident: 1936_CR129 publication-title: Cancer Cell Int doi: 10.1186/s12935-014-0142-4 – volume: 138 start-page: 645 issue: 4 year: 2009 ident: 1936_CR7 publication-title: Cell. doi: 10.1016/j.cell.2009.06.034 – volume: 22 start-page: 4459 issue: 29 year: 2003 ident: 1936_CR77 publication-title: Oncogene. doi: 10.1038/sj.onc.1206755 – volume: 26 start-page: 2399 issue: 6 year: 2006 ident: 1936_CR59 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.6.2399-2407.2006 – volume: 31 start-page: 88 issue: 2 year: 2017 ident: 1936_CR57 publication-title: Genes Dev doi: 10.1101/gad.294769.116 – volume: 54 start-page: 2745 issue: 9 year: 2006 ident: 1936_CR92 publication-title: Arthritis Rheum doi: 10.1002/art.22080 – volume: 32 start-page: 1214 issue: 9 year: 2013 ident: 1936_CR89 publication-title: EMBO J doi: 10.1038/emboj.2013.80 – volume: 13 start-page: 714 issue: 10 year: 2013 ident: 1936_CR66 publication-title: Nat Rev Cancer doi: 10.1038/nrc3599 – ident: 1936_CR120 doi: 10.1016/S0065-230X(08)60703-4 – volume: 126 start-page: 3827 issue: 10 year: 2016 ident: 1936_CR5 publication-title: J Clin Invest doi: 10.1172/JCI82908 – volume: 6 start-page: 255 issue: 3 year: 2014 ident: 1936_CR34 publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mju008 – volume: 46 start-page: D218 issue: D1 year: 2017 ident: 1936_CR54 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx975 – volume: 2 start-page: 28 issue: 28–36 year: 1994 ident: 1936_CR130 publication-title: Proc Int Conf Intell Syst Mol Biol – volume: 37 start-page: 19 issue: 1 year: 2018 ident: 1936_CR37 publication-title: EMBO J doi: 10.15252/embj.201696164 – ident: 1936_CR140 – volume: 105 start-page: 804 issue: 2 year: 2005 ident: 1936_CR74 publication-title: Blood. doi: 10.1182/blood-2004-04-1463 – volume: 15 start-page: 142 issue: 1 year: 2016 ident: 1936_CR8 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-0414 – volume: 14 start-page: 593 issue: 3 year: 2008 ident: 1936_CR22 publication-title: RNA. doi: 10.1261/rna.825008 – volume: 22 start-page: 1095 issue: 5 year: 2016 ident: 1936_CR69 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-1718 – volume: 5 start-page: 99 year: 2010 ident: 1936_CR53 publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathol-121808-102144.:99-118 – volume: 35 start-page: S1 issue: 1 Suppl 1 year: 2008 ident: 1936_CR10 publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2007.12.002 – volume: 8 issue: 3 year: 2013 ident: 1936_CR81 publication-title: PLoS One doi: 10.1371/journal.pone.0059292 – volume: 87 start-page: 10 year: 2014 ident: 1936_CR107 publication-title: J Vis Exp – volume: 34 start-page: 267 issue: 3 year: 2003 ident: 1936_CR137 publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 30 start-page: 952 issue: 6 year: 2001 ident: 1936_CR98 publication-title: Biochem Soc Trans doi: 10.1042/bst0300952 – volume: 12 start-page: 959 issue: 6 year: 2013 ident: 1936_CR128 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-0707 – volume: 6 start-page: 2554 issue: 20 year: 2007 ident: 1936_CR6 publication-title: Cell Cycle doi: 10.4161/cc.6.20.4911 – volume: 111 start-page: E4315 issue: 41 year: 2014 ident: 1936_CR13 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1320477111 – volume: 11 start-page: 86 issue: 1 year: 2014 ident: 1936_CR29 publication-title: Nat Methods doi: 10.1038/nmeth.2729 – volume: 284 start-page: 499 issue: 5413 year: 1999 ident: 1936_CR58 publication-title: Science. doi: 10.1126/science.284.5413.499 – volume: 279 start-page: 10176 issue: 11 year: 2004 ident: 1936_CR95 publication-title: J Biol Chem doi: 10.1074/jbc.M310486200 – volume: 446 start-page: 177 issue: 1–3 year: 2002 ident: 1936_CR72 publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(02)01758-2 – volume: 19 start-page: 3021 issue: 26 year: 2000 ident: 1936_CR64 publication-title: Oncogene. doi: 10.1038/sj.onc.1203622 – volume: 301 start-page: C272 issue: 2 year: 2011 ident: 1936_CR41 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00091.2011 – volume: 10 start-page: 718 issue: 6 year: 1989 ident: 1936_CR114 publication-title: Cytometry. doi: 10.1002/cyto.990100608 – volume: 1829 start-page: 666 issue: 6–7 year: 2013 ident: 1936_CR62 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2013.02.003 – volume: 18 start-page: 1926 issue: 16 year: 2004 ident: 1936_CR42 publication-title: Genes Dev doi: 10.1101/gad.1212704 – volume: 451 start-page: 427 year: 2013 ident: 1936_CR82 publication-title: Biochem J doi: 10.1042/BJ20121651 – volume: 23 start-page: 3092 issue: 15 year: 2004 ident: 1936_CR100 publication-title: EMBO J doi: 10.1038/sj.emboj.7600305 – volume: 43 start-page: 327 issue: 3 year: 2011 ident: 1936_CR99 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.06.007 – volume: 28 start-page: 357 issue: 4 year: 2014 ident: 1936_CR33 publication-title: Genes Dev doi: 10.1101/gad.231407.113 – volume: 5 start-page: 549 issue: 4 year: 2014 ident: 1936_CR55 publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1230 – volume: 47 start-page: 1083 issue: 6 year: 2017 ident: 1936_CR102 publication-title: Immunity. doi: 10.1016/j.immuni.2017.11.016 – volume: 30 start-page: 183 issue: 1 year: 2016 ident: 1936_CR86 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.008 – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 1936_CR111 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0506580102 – volume: 110 start-page: 4321 issue: 11 year: 2013 ident: 1936_CR76 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1205575110 – volume: 45 start-page: 2994 issue: 14 year: 2002 ident: 1936_CR125 publication-title: J Med Chem doi: 10.1021/jm020057r – volume: 31 start-page: 256 issue: 2 year: 2011 ident: 1936_CR60 publication-title: Mol Cell Biol doi: 10.1128/MCB.00717-10 – volume: 33 start-page: 1152 issue: 11 year: 2015 ident: 1936_CR46 publication-title: Nat Biotechnol doi: 10.1038/nbt.3344 – volume: 6 start-page: 65 issue: 1 year: 2007 ident: 1936_CR27 publication-title: Cell Cycle doi: 10.4161/cc.6.1.3688 – volume: 14 start-page: R32 issue: 4 year: 2013 ident: 1936_CR18 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r32 – volume: 15 start-page: 36 year: 2005 ident: 1936_CR93 publication-title: Cell Res doi: 10.1038/sj.cr.7290262 – volume: 17 start-page: 4936 issue: 15 year: 2011 ident: 1936_CR9 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-1499 – volume: 84 start-page: 299 issue: 2 year: 1996 ident: 1936_CR79 publication-title: Cell. doi: 10.1016/S0092-8674(00)80984-8 – volume: 23 start-page: 472 year: 2017 ident: 1936_CR101 publication-title: Nat Med doi: 10.1038/nm.4310 – volume: 276 start-page: 42580 issue: 45 year: 2001 ident: 1936_CR94 publication-title: J Biol Chem doi: 10.1074/jbc.M104953200 – volume: 338 start-page: 15 issue: 1 year: 2013 ident: 1936_CR4 publication-title: Cancer Lett doi: 10.1016/j.canlet.2012.08.006 – volume: 284 start-page: 35287 issue: 51 year: 2009 ident: 1936_CR43 publication-title: J Biol Chem doi: 10.1074/jbc.M109.050120 – volume: 282 start-page: 3766 issue: 6 year: 2007 ident: 1936_CR113 publication-title: J Biol Chem doi: 10.1074/jbc.M607347200 – volume: 541 start-page: 494 issue: 7638 year: 2017 ident: 1936_CR20 publication-title: Nature. doi: 10.1038/nature21036 – volume: 25 start-page: 1114 issue: 5 year: 2006 ident: 1936_CR36 publication-title: EMBO J doi: 10.1038/sj.emboj.7600998 – volume: 20 start-page: 333 issue: 6 year: 2006 ident: 1936_CR85 publication-title: Blood Rev doi: 10.1016/j.blre.2005.08.003 – volume: 39 start-page: D301 issue: Database issue year: 2011 ident: 1936_CR136 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1069 – volume: 485 start-page: 55 issue: 7396 year: 2012 ident: 1936_CR19 publication-title: Nature. doi: 10.1038/nature10912 – volume: 286 start-page: 38466 issue: 44 year: 2011 ident: 1936_CR96 publication-title: J Biol Chem doi: 10.1074/jbc.M111.254888 – volume: 112 start-page: E6215 issue: 45 year: 2015 ident: 1936_CR49 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1520032112 – volume: 32 start-page: D493 issue: Database issue year: 2004 ident: 1936_CR131 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh103 – volume: 290 start-page: 15996 issue: 26 year: 2015 ident: 1936_CR35 publication-title: J Biol Chem doi: 10.1074/jbc.M114.621730 – volume: 6 issue: 11 year: 2011 ident: 1936_CR44 publication-title: PLoS One doi: 10.1371/journal.pone.0027509 – volume: 14 start-page: 197 issue: 4 year: 2013 ident: 1936_CR63 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3546 – volume: 13 start-page: 2159 issue: 10 year: 2015 ident: 1936_CR103 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.10.073 – volume: 35 start-page: 107 year: 2015 ident: 1936_CR47 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2015.06.013 – volume: 123 start-page: 2395 issue: 6 year: 2013 ident: 1936_CR105 publication-title: J Clin Invest doi: 10.1172/JCI66553 – volume: 128 start-page: 1105 issue: 6 year: 2007 ident: 1936_CR106 publication-title: Cell. doi: 10.1016/j.cell.2007.01.038 – volume: 485 start-page: 109 issue: 7396 year: 2012 ident: 1936_CR28 publication-title: Nature. doi: 10.1038/nature11083 – volume: 136 start-page: 731 issue: 4 year: 2009 ident: 1936_CR26 publication-title: Cell. doi: 10.1016/j.cell.2009.01.042 – volume: 540 start-page: 433 issue: 7633 year: 2016 ident: 1936_CR2 publication-title: Nature. doi: 10.1038/nature20598 – volume: 61 start-page: 760 issue: 5 year: 2016 ident: 1936_CR14 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.02.013 – volume: 288 start-page: 6743 issue: 9 year: 2013 ident: 1936_CR121 publication-title: J Biol Chem doi: 10.1074/jbc.M112.425553 – volume: 3 issue: 6 year: 2007 ident: 1936_CR11 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030091 – volume: 320 start-page: 1643 issue: 5883 year: 2008 ident: 1936_CR12 publication-title: Science. doi: 10.1126/science.1155390 |
| SSID | ssib004297820 ssj0019426 ssj0017866 |
| Score | 2.432091 |
| Snippet | Background
Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and... Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse.... Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and... BACKGROUND: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and... Background: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and... Abstract Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer nii |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 33 |
| SubjectTerms | [SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases Animal Genetics and Genomics Animals AU Rich Elements Bioinformatics Biology (General) Biomedical and Life Sciences blood serum Cancer Cell culture Cell Cycle Cells, Cultured Chemoresistance Chemotherapy Drug Resistance, Neoplasm drug therapy Dual Specificity Phosphatase 1 Dual Specificity Phosphatase 1 - genetics Dual Specificity Phosphatase 1 - metabolism Evolutionary Biology Gene expression Gene regulation Genetics genome Hep G2 Cells Human Genetics Human health and pathology Humans Infectious diseases Inflammation Intracellular Signaling Peptides and Proteins Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism K562 Cells Kinases Leukemia Life Sciences MAP kinase MCF-7 Cells MESH: AU Rich Elements MESH: Cells, Cultured MESH: Drug Resistance, Neoplasm MESH: Dual Specificity Phosphatase 1 / metabolism MESH: Hep G2 Cells MESH: Humans MESH: Intracellular Signaling Peptides and Proteins / metabolism MESH: K562 Cells MESH: MCF-7 Cells MESH: p38 Mitogen-Activated Protein Kinases / metabolism MESH: Protein Serine-Threonine Kinases / metabolism MESH: RNA Processing, Post-Transcriptional MESH: Transcriptome MESH: Tristetraprolin / genetics MESH: Tumor Necrosis Factor-alpha / metabolism Mice Mice, Inbred C57BL Microbial Genetics and Genomics mitogen-activated protein kinase mRNA turnover Mutants p38 Mitogen-Activated Protein Kinases p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism Phosphorylation Plant Genetics and Genomics Post-transcription Post-transcriptional regulation Protein Serine-Threonine Kinases Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteome Proteome - genetics Proteome - metabolism Proteomes QH301-705.5 QH426-470 Quiescence relapse RNA Processing, Post-Transcriptional Signal transduction starvation Stem cells THP-1 Cells Transcriptome Translation initiation Tristetraprolin Tristetraprolin - genetics Tristetraprolin - metabolism TTP Tumor Necrosis Factor-alpha Tumor Necrosis Factor-alpha - metabolism Tumor necrosis factor-α |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLagAokLKu9AiwbECRQ1yUwmk-MWUfWAqh4WqbfRvKKNqLKlyVbqv8fOY9vwKBcukTbjRDO2x_6c8doAH6SnKMLQX5SDjIVPTGxzw2OOhtGJkFdZafpmE8XJiTo7K09vtfqinLChPPDAuANuyqIsOA-Vd0JVaDwlXrgxpTPeOkvWF1HPFEyN5wclOp7xDDNV8qBFS52XMYVKCFhwTjMv1BfrR9-yolTI-01d_wlt_p40-cvJae-Qjnbh8Ygk2WJYwRO4F5qn8HDoLXn9DOoFu1i3XdyRM5pMA9KPCVlsXTGUF6XZtgQhUfbMXrPFtxgN44qFIau8ZabxbLk8ZXXDfmzqofYTOw-b75RUz-izf_sclkdflp-P47GvQuwU512svEAuuiCcwS1ccce9SEJA7CdNhj-pKVVqbV4Ia3llMIhVHkWJwUdSWYRfL2CnWTfhFTAqJ2dzlVjvcoxjvBJV4iqLEkp9KWQSQTKxWbux5ji1vjjXfeyhpB4ko1EymiSjRQQft49cDAU37iI-JNltCalWdn8DNUiPGqT_pUERvEfJz95xvPiq6R66d4TPPLtKI9hHxcBF0JX6GCK0UWkhCTKqkla6N6mMHq1Aq6mUkJSZkDyCd9th3L8kHdOE9aanQRtLRZfuoBEFugE6BI3g5aCF2-nyLEFIKXCkmOnnbD3zkaZe9XXEC7TtCO8j-DRp8s3U_8ry1_-D5W_gUUabkRrrJHuw011uwj48cFdd3V6-7bfyT2axSR8 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5sVfDF-yXayio-KcGc7Gaz-3gUSx-kFD1K35a9xRMsST3JKfTfO5ObRGtBXwLJTsJe5vINM5kh5JXw6EUY_EU5iJj7xMQ2MyxmoBgdD1mRKtM1m8iPjuTJiToe_uNuxmz3MSTZaepOrKV424C2zVSM7g6ADvjuDrkO1k6iNH76_HUKHSiwOUP48tLXZgaoq9MPZmWNWZA7VVleBjT_zJf8LWja2aKDO_-1irvk9gA96bLnlXvkWqjuk5t9M8qLB6Rc0rO6aeMWrdeoS4B-yOCidUHhgDEvt0HMCcxC7QVdfolBk65p6NPQG2oqT1erY1pW9Me27ItF0dOw_Y5Z-BTjBM1Dsjr4sHp_GA-NGGInGWtj6blKhAvcGZD5gjnmeRICgEVhUrjFLlYLa7OcW8sKA16v9HD24K0khQW89ojsVnUVnhCK9edsJhPrXQaOj5e8SFxhRaEWXnGRRCQZD0e7oUg59so41Z2zIoXuN1DDBmrcQM0j8np65ayv0HEV8Ts88YkQi2t3D-rNNz3IqmZG5SpnLBTecVmAvYb5KWaMcsZbZyPyEvhl9o3D5UeNzwAPAN5m6fkiIvvATrAIvGLjQ8BCcpELxJhS4Ur3RkbTg9poNNYeEiLlgkXkxTQMAo-nY6pQbzsaUMpYpekKGp6D3cCoaUQe97w7TZelCWBQDiP5jKtn65mPVOW6KzyegzEAfyAib0be_jX1v27503-ifkZupSgc2HIn2SO77WYb9skNd96WzeZ5J-k_AemqS0s priority: 102 providerName: Springer Nature |
| Title | A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells |
| URI | https://cir.nii.ac.jp/crid/1874242817602568960 https://link.springer.com/article/10.1186/s13059-020-1936-4 https://www.ncbi.nlm.nih.gov/pubmed/32039742 https://www.proquest.com/docview/2357662463 https://www.proquest.com/docview/2353010707 https://www.proquest.com/docview/2477630122 https://ut3-toulouseinp.hal.science/hal-03691632 https://pubmed.ncbi.nlm.nih.gov/PMC7011231 https://doaj.org/article/3a979733efdc48f9906f993aa9cadbcb |
| Volume | 21 |
| WOSCitedRecordID | wos000520942200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017866 issn: 1474-760X databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: RSV dateStart: 20000201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfoBhIvfA8CW2UQT6Boaew49hNq0aYhQRWNggovkWMnNGJKuqadtP-eOyftVD76woslx25l5853v_Nd7gh5LSxaERo_Uc6Fz22g_SzSzGcgGA3PoyJU2hWbiMdjOZ2qpLtwa7qwyrVMdILa1gbvyI8xLYsQIRfs3fzSx6pR6F3tSmj0yD5mSWAudC_ZeBFiiVil6ygetp8aYQBipETn4hxIcdyAII-Uj5YU4BlY8paScrn8QfXMMFKyV5Xl38DonzGVvzlWnb46vf-_O31A7nVIlQ5b1npIbuXVI3KnrV15_ZiUQzqvm6W_RGW3Fj0wvwv4onVBgR8wjLdBiAq8RbNrOvzig-Cd0byNWm-oriydTBJaVvRyVba5pehFvvqJQfsU3QrNEzI5PZm8P_O7ug2-kYwtfWm5CoTJudEgIgpmmOVBngO2FDqELha9GmRZFPMsY4UGI1laYBUwboIiA3h3QPaqusqfEYrp6rJIBpk1EdhJVvIiMEUmCjWwiovAI8GaTqnpcppjaY2L1Nk2UqQtaVMgbYqkTblH3mx-Mm8TeuyaPELibyZiLm73oF78SLujnTKtYhUzlhfWcFmAeof1Kaa1MtpmJvPIK2Cdrf84G35M8RnAB4DnLLwaeOQIOAs2gS3WSQToJAexQEgqFe70cM0saSdlmvSGUzzycjMM8gGpo6u8Xrk5IMMxqdOOOTwGNYNOVo88bdl4s1wWBgBZOYzEWwy-tZ_tkaqcuTzlMegOMB888nZ9FG6W_s9X_nz3Rl-QuyGeUyzJExySveVilR-R2-ZqWTaLPunF09i1sk_2Ryfj5Lzvbln6TjDAs-TDp-Qb9M5H37H9_PUX7-5iwQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBQQX3o_ALhgEF1C0aew49gGh8lh1taXqoUh7sxzHoRGrpNu0i_qj-I_M5NFVefS2By6VEruVJ_k8801nPEPIK5GiF2HwiLITPk8D4yeRYT4DxWi5i7JQmbrZRDwayZMTNd4hP7uzMJhW2enEWlGnpcX_yA-wLIsQIRfs_ezMx65RGF3tWmg0sDh2qx_gslXvjj7B-30dhoefJx8HfttVwLeSsYUvU64CYR23BgCcMctSHjgHzEeYEC6xJVMvSaKYJwnLDLhwMgVBgHoHWcKxzgFo_KvAIkJZZwqO10GLWCI1ai8UD5uTTZjvGCnRRlR7UhxUYDci5aPjBvQJntCGTaxbB4Clm2Ji5pUiz__Gff9M4fwtjlubx8Pb_9mDvUNutTyc9puNc5fsuOIeud505lzdJ3mfzspq4S_QlHeKFea36Wy0zCigHZOUKyTgsHNosqL9rz6YlSl1TU5-RU2R0slkTPOCni3zpnIWPXXL73gkgWLQpHpAJpch5kOyW5SFe0woFuNLIhkkqY3AC0wlzwKbJSJTvVRxEXgk6GChbVuxHRuHnOrac5NCN0jSgCSNSNLcI2_WX5k15Uq2Tf6AWFtPxErj9Y1y_k23ikszo2IVM-ay1HKZAXmB9SlmjLImTWzikZeA1I3fGPSHGu8BOQLng4XnPY_sA5BBCPzELpBADGUvFki4pUJJ9zps6laHVvoCmB55sR4G7YdvxxSuXNZzwEJhyaotc3gMRhRDyB551Oya9XJZGAAh5zASb-ynDXk2R4p8Wldhj8EygnPkkbfdzrtY-j8f-ZPtgj4nNwaTL0M9PBodPyU3Q1QR2Hwo2CO7i_nS7ZNr9nyRV_NnteahRF_yhvwFOu21rA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF7RcogX7sPQwoJ4All1vOu19zEcVRFVFImA-rbak1hUToidSv33zPgICpRKiJdI8Y6TPcYz32jG3xDySjiMIjS-ouxFzF2iY5NpFjMwjJb7LKRSt80m8smkODmR077PaT1Uuw8pye6dBmRpqpqDpQvdI16IgxosbyZjDH0AgMB_7JCrHHsGYbj--esmjSDB__SpzAtv23JGLWc_uJg5VkTuVGV5Eej8s3bytwRq65cOb__3iu6QWz0kpeNOh-6SK766R653TSrP75NyTJeLuokb9GqDjQH5vrKLLgKFg8d63RqxKCgRNed0_CUGCzunvitPr6muHJ3NprSs6I912ZFI0VO__o7V-RTzB_UDMjv8MHt3FPcNGmJbMNbEheMyEdZzq8EWBGaZ44n3ACKFTuErdrcaGZPl3BgWNETDhQOdgCgmCQZw3EOyWy0q_5hQ5KUzWZEYZzMIiFzBQ2KDEUGOnOQiiUgyHJSyPXk59tA4VW0QUwjVbaCCDVS4gYpH5PXmlmXH3HGZ8Fs8_Y0gkm63Fxarb6p_hhXTMpc5Yz44y4sAfhzmJ5nW0mpnrInIS9Cdrd84Gh8rvAY4AXA4S89GEdkH1YJF4Cc2RASMVIxygdizkLjSvUHpVG9OaoWcREKkXLCIvNgMgyHA09GVX6xbGTDWyN50iQzPwZ9gNjUijzo93kyXpQlgUw4j-ZaGb61ne6Qq5y0heQ5OAuKEiLwZ9PzX1P-65U_-Sfo5uTF9f6iOP04-PSU3U3xOsCtPskd2m9Xa75Nr9qwp69Wz1gD8BGlZVxM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+post-transcriptional+program+of+chemoresistance+by+AU-rich+elements+and+TTP+in+quiescent+leukemic+cells&rft.jtitle=Genome+Biology&rft.au=Syed+I.+A.+Bukhari&rft.au=David+B.+Sykes&rft.au=Adam+Langenbucher&rft.au=Dongjun+Lee&rft.date=2020-02-10&rft.pub=Springer+Science+and+Business+Media+LLC&rft.eissn=1474-760X&rft.volume=21&rft_id=info:doi/10.1186%2Fs13059-020-1936-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |