ANOMALY DETECTION IN ZIGBEE-BASED IOT USING SECURE AND EFFICIENT DATA COLLECTION

This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid Intrusion Detection System (IDS), combining rule-based intrusion detection and machine learning-based anomaly detection. Rule-based attack detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) Jg. 8; H. 1; S. 7 - 16
Hauptverfasser: Sadikin, Fal, Wiranda, Nuruddin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 30.04.2023
ISSN:2527-5399, 2528-2514
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid Intrusion Detection System (IDS), combining rule-based intrusion detection and machine learning-based anomaly detection. Rule-based attack detection techniques are used to provide an accurate detection method for known attacks. However, determining accurate detection rules requires significant human effort that is susceptible to error. If it is done incorrectly, it can result in false alarms. Therefore, to alleviate this potential problem, the system is being upgraded by combining it (hybrid) with machine learning-based anomaly detection. This article expounds the researchers’ IDS implementation covering a wide variety of detection techniques to detect both known attacks and potential new types of attacks in ZigBee-based IoT system. Furthermore, a safe and efficient meth-od for large-scale IDS data collection is introduced to provide a trusted reporting mechanism that can operate on the stringent IoT resource requirements appropriate to today's IoT systems.
AbstractList This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid Intrusion Detection System (IDS), combining rule-based intrusion detection and machine learning-based anomaly detection. Rule-based attack detection techniques are used to provide an accurate detection method for known attacks. However, determining accurate detection rules requires significant human effort that is susceptible to error. If it is done incorrectly, it can result in false alarms. Therefore, to alleviate this potential problem, the system is being upgraded by combining it (hybrid) with machine learning-based anomaly detection. This article expounds the researchers’ IDS implementation covering a wide variety of detection techniques to detect both known attacks and potential new types of attacks in ZigBee-based IoT system. Furthermore, a safe and efficient meth-od for large-scale IDS data collection is introduced to provide a trusted reporting mechanism that can operate on the stringent IoT resource requirements appropriate to today's IoT systems.
Author Wiranda, Nuruddin
Sadikin, Fal
Author_xml – sequence: 1
  givenname: Fal
  surname: Sadikin
  fullname: Sadikin, Fal
– sequence: 2
  givenname: Nuruddin
  orcidid: 0000-0001-7830-0431
  surname: Wiranda
  fullname: Wiranda, Nuruddin
BookMark eNot0DtPwzAUBWALFYlSujP6DyTY14_Eo5u4wVJIEHEHWKI8paA-UAJI_HtKw3TPco-Ovlu0OJ6OHUL3lPhABAQP75_D1_7gf4cD9amAK7QEAaEHgvLFJQeeYErdoPU0DTXhPOCSEbZEzzrLn3T6imPjTORsnmGb4TebbIzxNrowMba5w7vCZgkuTLR7MVhnMTbbrY2syRyOtdM4ytN0fr9D1321n7r1_10htzUuevTSPLGRTr0mZOD1kp039UrytiUNkBoA2q6pOyWJAtYpqjirIGBSggylakGwXhHghIkQaMhWiMy1zXiaprHry49xOFTjT0lJeTEpZ5Pyz6Q8m7BfiUNPjA
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.20527/jtiulm.v8i1.152
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2528-2514
EndPage 16
ExternalDocumentID 10_20527_jtiulm_v8i1_152
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c832-f63527f964dd0c20b222decbe960923e91943a2736626869d253f902403582183
ISSN 2527-5399
IngestDate Sat Nov 29 05:54:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c832-f63527f964dd0c20b222decbe960923e91943a2736626869d253f902403582183
ORCID 0000-0001-7830-0431
OpenAccessLink http://jtiulm.ti.ft.ulm.ac.id/index.php/jtiulm/article/download/152/88
PageCount 10
ParticipantIDs crossref_primary_10_20527_jtiulm_v8i1_152
PublicationCentury 2000
PublicationDate 2023-04-30
PublicationDateYYYYMMDD 2023-04-30
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)
PublicationYear 2023
SSID ssib044746303
Score 1.8300848
Snippet This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid...
SourceID crossref
SourceType Index Database
StartPage 7
Title ANOMALY DETECTION IN ZIGBEE-BASED IOT USING SECURE AND EFFICIENT DATA COLLECTION
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2528-2514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044746303
  issn: 2527-5399
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELAgHiUdAeuKCVIX7vHt3ELUaOUykGCpfI9q6R1datkjjqid_AT2Z213ZMEBI9cLGsVTJOPJ9mv5mdB0JvmFPYeWlSg3qCGo5Z-gYrXGHwzCyA_3Nuqyzfz7GfJPTsjJ2ORj-7WpjthV_X9OaGXf9XVcMaKFuWzt5C3b1QWIB7UDpcQe1w_SfFB8l8FsRfyTRMQ5UhQqKEfItOjsLQOAoW4ZRE85TIcRsnZBFOZNaDbDEFhDWSAaeUTIM0IJN5HOuv_0ZfNXtNxbkKx1ekrWZaV7sMj2xN4uwyByMic2u-nzeAMcljP6bRp3g2iDwsMl61w8COsz7R40u1ksENhdJm1XDetgZvIxOWPThkUQbMci3fkJ1v9V7TrYG6XF042llg-gfQtDX1B9uyrsjcN_jWGJ4hLf6mai4u321pZcqJTrvNrTvQ39vz-kxE8IGUjKWWsJQSliDhDrpr-S6TdnL2I-wslOP4jmercdv9n9Nn30rI-72fMeA6A9KSPkQPWm8DBxolj9BI1I_RaYsQ3CMERwkeIgQDQrBCCNYIwYAQ3CMES4TgHUKeoPQ4TCcfjHawhlGAATdKIJmWXzLP4XxcWOMcOCIXRS5k90HLFsxkjp0Br_XA26Ue45Zrl0w2w1Nl1dR-ig7qq1o8QxgIn5ub49KRYQLwjsE7zU3bEyUtS8_x-XP0tnsDy2vdPmX5t1f-4haffYnu7xB3iA42q0a8QveK7aZar14rnf0CAw9bQQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANOMALY+DETECTION+IN+ZIGBEE-BASED+IOT+USING+SECURE+AND+EFFICIENT+DATA+COLLECTION&rft.jtitle=Jurnal+Teknologi+Informasi+Universitas+Lambung+Mangkurat+%28JTIULM%29&rft.au=Sadikin%2C+Fal&rft.au=Wiranda%2C+Nuruddin&rft.date=2023-04-30&rft.issn=2527-5399&rft.eissn=2528-2514&rft.volume=8&rft.issue=1&rft.spage=7&rft.epage=16&rft_id=info:doi/10.20527%2Fjtiulm.v8i1.152&rft.externalDBID=n%2Fa&rft.externalDocID=10_20527_jtiulm_v8i1_152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2527-5399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2527-5399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2527-5399&client=summon