ANOMALY DETECTION IN ZIGBEE-BASED IOT USING SECURE AND EFFICIENT DATA COLLECTION
This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid Intrusion Detection System (IDS), combining rule-based intrusion detection and machine learning-based anomaly detection. Rule-based attack detection...
Gespeichert in:
| Veröffentlicht in: | Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) Jg. 8; H. 1; S. 7 - 16 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
30.04.2023
|
| ISSN: | 2527-5399, 2528-2514 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid Intrusion Detection System (IDS), combining rule-based intrusion detection and machine learning-based anomaly detection. Rule-based attack detection techniques are used to provide an accurate detection method for known attacks. However, determining accurate detection rules requires significant human effort that is susceptible to error. If it is done incorrectly, it can result in false alarms. Therefore, to alleviate this potential problem, the system is being upgraded by combining it (hybrid) with machine learning-based anomaly detection. This article expounds the researchers’ IDS implementation covering a wide variety of detection techniques to detect both known attacks and potential new types of attacks in ZigBee-based IoT system. Furthermore, a safe and efficient meth-od for large-scale IDS data collection is introduced to provide a trusted reporting mechanism that can operate on the stringent IoT resource requirements appropriate to today's IoT systems. |
|---|---|
| AbstractList | This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid Intrusion Detection System (IDS), combining rule-based intrusion detection and machine learning-based anomaly detection. Rule-based attack detection techniques are used to provide an accurate detection method for known attacks. However, determining accurate detection rules requires significant human effort that is susceptible to error. If it is done incorrectly, it can result in false alarms. Therefore, to alleviate this potential problem, the system is being upgraded by combining it (hybrid) with machine learning-based anomaly detection. This article expounds the researchers’ IDS implementation covering a wide variety of detection techniques to detect both known attacks and potential new types of attacks in ZigBee-based IoT system. Furthermore, a safe and efficient meth-od for large-scale IDS data collection is introduced to provide a trusted reporting mechanism that can operate on the stringent IoT resource requirements appropriate to today's IoT systems. |
| Author | Wiranda, Nuruddin Sadikin, Fal |
| Author_xml | – sequence: 1 givenname: Fal surname: Sadikin fullname: Sadikin, Fal – sequence: 2 givenname: Nuruddin orcidid: 0000-0001-7830-0431 surname: Wiranda fullname: Wiranda, Nuruddin |
| BookMark | eNot0DtPwzAUBWALFYlSujP6DyTY14_Eo5u4wVJIEHEHWKI8paA-UAJI_HtKw3TPco-Ovlu0OJ6OHUL3lPhABAQP75_D1_7gf4cD9amAK7QEAaEHgvLFJQeeYErdoPU0DTXhPOCSEbZEzzrLn3T6imPjTORsnmGb4TebbIzxNrowMba5w7vCZgkuTLR7MVhnMTbbrY2syRyOtdM4ytN0fr9D1321n7r1_10htzUuevTSPLGRTr0mZOD1kp039UrytiUNkBoA2q6pOyWJAtYpqjirIGBSggylakGwXhHghIkQaMhWiMy1zXiaprHry49xOFTjT0lJeTEpZ5Pyz6Q8m7BfiUNPjA |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.20527/jtiulm.v8i1.152 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2528-2514 |
| EndPage | 16 |
| ExternalDocumentID | 10_20527_jtiulm_v8i1_152 |
| GroupedDBID | AAYXX CITATION M~E |
| ID | FETCH-LOGICAL-c832-f63527f964dd0c20b222decbe960923e91943a2736626869d253f902403582183 |
| ISSN | 2527-5399 |
| IngestDate | Sat Nov 29 05:54:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c832-f63527f964dd0c20b222decbe960923e91943a2736626869d253f902403582183 |
| ORCID | 0000-0001-7830-0431 |
| OpenAccessLink | http://jtiulm.ti.ft.ulm.ac.id/index.php/jtiulm/article/download/152/88 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_20527_jtiulm_v8i1_152 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-30 |
| PublicationDateYYYYMMDD | 2023-04-30 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) |
| PublicationYear | 2023 |
| SSID | ssib044746303 |
| Score | 1.8300848 |
| Snippet | This article outlines various techniques for detecting types of attacks that may arise in ZigBee-based IoT system. The researchers introduced a hybrid... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 7 |
| Title | ANOMALY DETECTION IN ZIGBEE-BASED IOT USING SECURE AND EFFICIENT DATA COLLECTION |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2528-2514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044746303 issn: 2527-5399 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELAgHiUdAeuKCVIX7vHt3ELUaOUykGCpfI9q6R1datkjjqid_AT2Z213ZMEBI9cLGsVTJOPJ9mv5mdB0JvmFPYeWlSg3qCGo5Z-gYrXGHwzCyA_3Nuqyzfz7GfJPTsjJ2ORj-7WpjthV_X9OaGXf9XVcMaKFuWzt5C3b1QWIB7UDpcQe1w_SfFB8l8FsRfyTRMQ5UhQqKEfItOjsLQOAoW4ZRE85TIcRsnZBFOZNaDbDEFhDWSAaeUTIM0IJN5HOuv_0ZfNXtNxbkKx1ekrWZaV7sMj2xN4uwyByMic2u-nzeAMcljP6bRp3g2iDwsMl61w8COsz7R40u1ksENhdJm1XDetgZvIxOWPThkUQbMci3fkJ1v9V7TrYG6XF042llg-gfQtDX1B9uyrsjcN_jWGJ4hLf6mai4u321pZcqJTrvNrTvQ39vz-kxE8IGUjKWWsJQSliDhDrpr-S6TdnL2I-wslOP4jmercdv9n9Nn30rI-72fMeA6A9KSPkQPWm8DBxolj9BI1I_RaYsQ3CMERwkeIgQDQrBCCNYIwYAQ3CMES4TgHUKeoPQ4TCcfjHawhlGAATdKIJmWXzLP4XxcWOMcOCIXRS5k90HLFsxkjp0Br_XA26Ue45Zrl0w2w1Nl1dR-ig7qq1o8QxgIn5ub49KRYQLwjsE7zU3bEyUtS8_x-XP0tnsDy2vdPmX5t1f-4haffYnu7xB3iA42q0a8QveK7aZar14rnf0CAw9bQQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANOMALY+DETECTION+IN+ZIGBEE-BASED+IOT+USING+SECURE+AND+EFFICIENT+DATA+COLLECTION&rft.jtitle=Jurnal+Teknologi+Informasi+Universitas+Lambung+Mangkurat+%28JTIULM%29&rft.au=Sadikin%2C+Fal&rft.au=Wiranda%2C+Nuruddin&rft.date=2023-04-30&rft.issn=2527-5399&rft.eissn=2528-2514&rft.volume=8&rft.issue=1&rft.spage=7&rft.epage=16&rft_id=info:doi/10.20527%2Fjtiulm.v8i1.152&rft.externalDBID=n%2Fa&rft.externalDocID=10_20527_jtiulm_v8i1_152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2527-5399&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2527-5399&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2527-5399&client=summon |