Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based diagnostic err...
Gespeichert in:
| Veröffentlicht in: | PLoS medicine Jg. 15; H. 11; S. e1002686 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
20.11.2018
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1549-1676, 1549-1277, 1549-1676 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!