Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists

Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based diagnostic err...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS medicine Jg. 15; H. 11; S. e1002686
Hauptverfasser: Rajpurkar, Pranav, Irvin, Jeremy, Ball, Robyn L., Zhu, Kaylie, Yang, Brandon, Mehta, Hershel, Duan, Tony, Ding, Daisy, Bagul, Aarti, Langlotz, Curtis P., Patel, Bhavik N., Yeom, Kristen W., Shpanskaya, Katie, Blankenberg, Francis G., Seekins, Jayne, Amrhein, Timothy J., Mong, David A., Halabi, Safwan S., Zucker, Evan J., Ng, Andrew Y., Lungren, Matthew P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 20.11.2018
Public Library of Science (PLoS)
Schlagworte:
ISSN:1549-1676, 1549-1277, 1549-1676
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!