The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases
Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating...
Uloženo v:
| Vydáno v: | PLoS genetics Ročník 9; číslo 3; s. e1003399 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
01.03.2013
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. |
|---|---|
| AbstractList | Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRy type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRa type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRy type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRa class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants.Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense-derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus-Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense–derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus–Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA–dependent RNA polymerase (RDR) belonging to the RDR¿ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRa type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDR¿ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRa class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating from several wild tomato species. In this study we have fine-mapped the widely used Solanum chilense–derived Ty-1 and Ty-3 genes by screening nearly 12,000 plants for recombination events and generating recombinant inbred lines. Multiple molecular markers were developed and used in combination with disease tests to fine-map the genes to a small genomic region (approximately 70 kb). Using a Tobacco Rattle Virus–Virus Induced Gene Silencing approach, the resistance gene was identified. It is shown that Ty-1 and Ty-3 are allelic and that they code for a RNA–dependent RNA polymerase (RDR) belonging to the RDRγ type, which has an atypical DFDGD motif in the catalytic domain. In contrast to the RDRα type, characterized by a catalytic DLDGD motif, no clear function has yet been described for the RDRγ type, and thus the Ty-1/Ty-3 gene unveils a completely new class of resistance gene. Although speculative, the resistance mechanism of Ty-1/Ty-3 and its specificity towards TYLCV are discussed in light of the function of the related RDRα class in the amplification of the RNAi response in plants and transcriptional silencing of geminiviruses in plants. Tomato yellow leaf curl virus and related begomoviruses cause major economic damage to tomato production in tropical and subtropical regions around the world. Because cultivated tomato is inherently susceptible to these viruses, breeders have incorporated several resistance alleles from wild tomato relatives. Among these are the commercially important alleles, Ty-1 and Ty-3, which were introgressed from the wild tomato relative Solanum chilense. These genes were originally mapped to different regions on chromosome 6, but recent findings suggest they may rather be alleles of the same gene. Here, we describe the precise mapping of Ty-1 and Ty-3 to a common chromosomal region, and we show that Ty-1 and Ty-3 are alleles that code for an RNA–dependent RNA polymerase of a class for which no function had been described before. Thus, Ty-1/Ty-3 unveils a completely new class of resistance genes. These results will be useful to breeders who utilize these genes in their breeding programs, and further studies should shed new light on the mechanism by which this gene functions. |
| Audience | Academic |
| Author | Visser, Richard G. F. Hutton, Samuel F. Edwards, Jeremy D. Scott, John W. Bai, Yuling Kormelink, Richard Verlaan, Maarten G. Ibrahem, Ragy M. |
| AuthorAffiliation | 2 Centre for BioSystems Genomics, Wageningen, The Netherlands 5 Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands 4 Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America Virginia Tech, United States of America 3 Graduate School Experimental Plant Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands |
| AuthorAffiliation_xml | – name: Virginia Tech, United States of America – name: 4 Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America – name: 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands – name: 2 Centre for BioSystems Genomics, Wageningen, The Netherlands – name: 5 Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands – name: 3 Graduate School Experimental Plant Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands |
| Author_xml | – sequence: 1 givenname: Maarten G. surname: Verlaan fullname: Verlaan, Maarten G. – sequence: 2 givenname: Samuel F. surname: Hutton fullname: Hutton, Samuel F. – sequence: 3 givenname: Ragy M. surname: Ibrahem fullname: Ibrahem, Ragy M. – sequence: 4 givenname: Richard surname: Kormelink fullname: Kormelink, Richard – sequence: 5 givenname: Richard G. F. surname: Visser fullname: Visser, Richard G. F. – sequence: 6 givenname: John W. surname: Scott fullname: Scott, John W. – sequence: 7 givenname: Jeremy D. surname: Edwards fullname: Edwards, Jeremy D. – sequence: 8 givenname: Yuling surname: Bai fullname: Bai, Yuling |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23555305$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk91u0zAUxyM0xD7gDRBYQkJw0WLHTeJwgVS1bFSaNjTKJK4sxzluPbl2sRPG7rjhCXhDngSn7UYrIQSKFH_9zv8cH59zmOxZZyFJHhPcJ7Qgr65c660w_eUMbJ9gTGlZ3ksOSJbRXjHAg72t-X5yGMJVZDJWFg-S_ZRm8QhnB8n36RzQ1C1E49AnMMZdo1MQCo1ab9Cl9m1AFxB0aISVgE7AQkDTmx5BwtbdhKKhBzQ0BoyWq82RqwEp59H4eHwy7o2MCFHjbPjz248xLMHWYJtujd47c7MALwKEh8l9JUyAR5vxKPl4_HY6etc7PT-ZjIanPclI1vTqVFYCszKtQZZUlgoKVipapYoRWYpaVACKMEFJpvI8E7VkmGFZkpIyqWpJj5Kna92lcYFvMhg4oWlR5ANS0EhM1kTtxBVfer0Q_oY7oflqw_kZF77R0gAvGKtYVWBJMzwoZF3FWESpVFpRXAmSRq3Xa61rEd9I2_jjVnipw0rQ6Mp34tet59Z0w7KtAh9QRkoWjd9sQm2rBdQyZs0LsxPR7onVcz5zXzjNCc6LMgq82Ah497mF0PCFDjI-sbDg2tWlo6uCpJ2vZ2t0JuK9tFUuKsoO50Oa5hnOCppHqv8HKn41LLSMxal03N8xeLljEJkGvjYz0YbAJx8u_oM9-3f2_HKXfb7FzkGYZh6caRvtbNgFn2zn-y7Rt60SgcEakN6F4EHdIQTzriNv64l3Hck3Hfm7CO7MpG5E5z5mT5u_G_8CmBY9Gw |
| CitedBy_id | crossref_primary_10_3389_fgene_2023_1197206 crossref_primary_10_1111_ppa_13260 crossref_primary_10_1186_s13059_015_0799_6 crossref_primary_10_1111_pbr_12957 crossref_primary_10_1128_JVI_01506_18 crossref_primary_10_3389_fpls_2020_01131 crossref_primary_10_1371_journal_pone_0172466 crossref_primary_10_3389_fmicb_2019_01460 crossref_primary_10_1371_journal_pone_0275112 crossref_primary_10_1007_s40502_017_0339_3 crossref_primary_10_1093_plphys_kiae248 crossref_primary_10_1111_nph_16017 crossref_primary_10_1007_s10681_015_1442_z crossref_primary_10_1371_journal_pgen_1005538 crossref_primary_10_1007_s11306_014_0670_x crossref_primary_10_1016_j_scienta_2018_07_005 crossref_primary_10_3390_agronomy10091255 crossref_primary_10_1371_journal_pbio_1002438 crossref_primary_10_7717_peerj_12996 crossref_primary_10_1016_j_scienta_2023_112393 crossref_primary_10_1080_07352689_2021_1941605 crossref_primary_10_3390_agronomy11061256 crossref_primary_10_1016_j_tplants_2020_03_015 crossref_primary_10_1007_s12298_019_00660_w crossref_primary_10_1371_journal_ppat_1003921 crossref_primary_10_3390_agronomy10060860 crossref_primary_10_1186_s12870_018_1332_3 crossref_primary_10_3390_cells8010038 crossref_primary_10_1371_journal_pone_0080816 crossref_primary_10_1186_s12915_019_0697_6 crossref_primary_10_1094_PHYTO_10_22_0358_IA crossref_primary_10_3389_fpls_2020_545306 crossref_primary_10_3390_v9090256 crossref_primary_10_1186_s12870_023_04534_y crossref_primary_10_3390_ijms19020515 crossref_primary_10_1007_s10722_023_01586_9 crossref_primary_10_1094_PDIS_03_20_0613_RE crossref_primary_10_1007_s00122_015_2561_6 crossref_primary_10_1111_tpj_13919 crossref_primary_10_1007_s10681_023_03273_3 crossref_primary_10_3835_plantgenome2015_11_0118 crossref_primary_10_3389_fmicb_2016_02068 crossref_primary_10_1186_s12870_014_0287_2 crossref_primary_10_1007_s13205_023_03629_5 crossref_primary_10_1111_aab_70039 crossref_primary_10_1186_s12870_016_0819_z crossref_primary_10_1094_PHYTO_07_22_0240_FI crossref_primary_10_3390_plants10010009 crossref_primary_10_1186_s12870_024_05591_7 crossref_primary_10_1016_j_cropro_2019_104995 crossref_primary_10_3389_fpls_2020_00918 crossref_primary_10_1111_mpp_12481 crossref_primary_10_3390_ijms25168880 crossref_primary_10_3390_pathogens12040619 crossref_primary_10_1007_s10658_023_02784_y crossref_primary_10_1016_j_cropro_2018_10_007 crossref_primary_10_1016_j_pbi_2017_04_008 crossref_primary_10_1007_s42535_021_00285_z crossref_primary_10_1186_s12870_025_07344_6 crossref_primary_10_1111_nph_17700 crossref_primary_10_1094_PHYTO_04_23_0119_R crossref_primary_10_1016_j_scienta_2022_111563 crossref_primary_10_1016_j_molp_2017_02_002 crossref_primary_10_1016_j_pbi_2013_06_004 crossref_primary_10_1016_j_cropro_2018_04_001 crossref_primary_10_1016_j_plantsci_2020_110439 crossref_primary_10_1016_j_scienta_2025_114012 crossref_primary_10_1007_s13562_020_00633_1 crossref_primary_10_1094_PHYTO_09_22_0334_R crossref_primary_10_1080_19315260_2023_2266418 crossref_primary_10_1111_tpj_14317 crossref_primary_10_3389_fpls_2023_1326689 crossref_primary_10_1186_s12870_023_04181_3 crossref_primary_10_1111_tpj_14678 crossref_primary_10_3389_fpls_2020_01201 crossref_primary_10_1007_s00122_018_3242_z crossref_primary_10_3389_fpls_2023_1231013 crossref_primary_10_1007_s00726_015_2040_z crossref_primary_10_3390_plants14091353 crossref_primary_10_1016_j_virusres_2018_06_003 crossref_primary_10_1111_ppa_12273 crossref_primary_10_1111_jipb_13879 crossref_primary_10_1534_g3_119_400529 crossref_primary_10_3389_fmicb_2016_02139 crossref_primary_10_3390_v14081804 crossref_primary_10_1007_s00122_019_03298_0 crossref_primary_10_1155_2018_8120281 crossref_primary_10_1111_pbr_12375 crossref_primary_10_1016_S2095_3119_15_61315_6 crossref_primary_10_1094_PHYTO_05_19_0163_IA crossref_primary_10_1007_s13237_017_0224_5 crossref_primary_10_3390_v16060899 crossref_primary_10_3390_horticulturae8020143 crossref_primary_10_1186_1471_2164_15_1152 crossref_primary_10_3390_horticulturae11070838 crossref_primary_10_1111_ppa_12267 crossref_primary_10_1002_ece3_7610 crossref_primary_10_1016_j_mib_2014_05_003 crossref_primary_10_3389_fpls_2018_01198 crossref_primary_10_1016_j_scienta_2020_109428 crossref_primary_10_1371_journal_pone_0086387 crossref_primary_10_3390_ncrna7020028 crossref_primary_10_1007_s00122_021_03870_7 crossref_primary_10_3390_ijms242015448 crossref_primary_10_3390_ijms26178651 crossref_primary_10_1038_ng_3117 crossref_primary_10_1128_mmbr_00035_22 crossref_primary_10_1038_nrmicro3117 crossref_primary_10_1080_03235408_2017_1287234 crossref_primary_10_1186_s12985_021_01612_1 crossref_primary_10_1007_s11427_022_2248_6 crossref_primary_10_56093_ijas_v89i10_94636 crossref_primary_10_1371_journal_pone_0284456 crossref_primary_10_1007_s00122_018_3082_x crossref_primary_10_1007_s10327_024_01202_3 crossref_primary_10_3390_ijms19041038 crossref_primary_10_1016_j_scienta_2016_02_020 crossref_primary_10_1371_journal_ppat_1011941 crossref_primary_10_1186_s12864_015_1249_2 crossref_primary_10_1007_s13562_015_0299_5 crossref_primary_10_3390_microorganisms9040740 crossref_primary_10_3390_ijms19092614 crossref_primary_10_1007_s00122_019_03521_y crossref_primary_10_1111_ppa_13537 crossref_primary_10_1007_s12298_022_01277_2 crossref_primary_10_1007_s11033_024_10204_5 crossref_primary_10_3389_fpls_2014_00660 crossref_primary_10_3389_fpls_2024_1342739 crossref_primary_10_1111_ppa_13201 crossref_primary_10_1007_s10681_022_02970_9 crossref_primary_10_1007_s11032_014_0072_9 crossref_primary_10_1038_srep16946 crossref_primary_10_7717_peerj_2910 crossref_primary_10_1016_j_scienta_2014_03_039 crossref_primary_10_1038_s41467_019_12052_5 crossref_primary_10_3389_fpls_2021_798858 crossref_primary_10_3389_fpls_2021_721674 crossref_primary_10_1007_s00122_022_04125_9 crossref_primary_10_56093_ijas_v94i9_150837 crossref_primary_10_3390_v15020510 crossref_primary_10_1007_s12298_020_00835_w crossref_primary_10_1186_s12985_024_02508_6 crossref_primary_10_3390_horticulturae9080948 crossref_primary_10_1016_j_cj_2020_04_005 crossref_primary_10_3389_fpls_2020_01069 crossref_primary_10_3390_v13050840 crossref_primary_10_3389_fpls_2014_00307 crossref_primary_10_1080_15592324_2018_1525996 crossref_primary_10_3390_plants13192768 crossref_primary_10_1094_MPMI_08_15_0181_R crossref_primary_10_3390_horticulturae8020112 crossref_primary_10_1016_j_scienta_2020_109230 crossref_primary_10_1093_plphys_kiac022 crossref_primary_10_1016_j_cell_2017_12_019 crossref_primary_10_1038_s41598_018_27925_w crossref_primary_10_1080_19315260_2018_1520379 crossref_primary_10_1007_s10681_023_03242_w crossref_primary_10_1007_s12298_025_01548_8 crossref_primary_10_1038_s41577_018_0071_x crossref_primary_10_1080_14620316_2019_1691060 crossref_primary_10_1007_s12600_022_00988_2 crossref_primary_10_1016_j_scienta_2023_112088 crossref_primary_10_1093_pcp_pcac083 crossref_primary_10_1111_mpp_12885 crossref_primary_10_1111_mpp_12518 crossref_primary_10_3389_fpls_2021_757165 crossref_primary_10_1073_pnas_1400894111 crossref_primary_10_1016_j_scienta_2015_11_025 crossref_primary_10_1007_s10681_015_1357_8 crossref_primary_10_1016_j_pmpp_2025_102745 crossref_primary_10_1007_s00299_017_2175_3 crossref_primary_10_3389_fmicb_2016_01552 crossref_primary_10_3389_fpls_2020_599697 crossref_primary_10_3389_fpls_2022_1081549 crossref_primary_10_1007_s11032_015_0329_y crossref_primary_10_3389_fpls_2019_00906 crossref_primary_10_1007_s11033_020_05409_3 crossref_primary_10_3389_fpls_2023_1135442 crossref_primary_10_1134_S0003683820060101 crossref_primary_10_1007_s13353_020_00574_4 crossref_primary_10_1111_tpj_14152 crossref_primary_10_56093_ijas_v89i6_90770 crossref_primary_10_1016_j_nbt_2016_01_001 crossref_primary_10_1007_s00122_024_04803_w crossref_primary_10_1007_s00122_019_03478_y crossref_primary_10_1093_jxb_erad002 crossref_primary_10_1007_s10327_022_01101_5 crossref_primary_10_1007_s11295_016_1056_1 crossref_primary_10_3389_fpls_2017_01477 crossref_primary_10_1080_15592324_2022_2149942 crossref_primary_10_3390_v11010045 crossref_primary_10_3390_agriculture14071192 crossref_primary_10_1007_s10681_023_03180_7 crossref_primary_10_3389_fpls_2019_01583 crossref_primary_10_3389_fpls_2024_1404160 crossref_primary_10_1007_s00122_017_2857_9 crossref_primary_10_1111_tpj_13716 crossref_primary_10_3390_v11030203 crossref_primary_10_3389_fpls_2018_00932 crossref_primary_10_1007_s00705_015_2399_x crossref_primary_10_3390_v9100264 crossref_primary_10_1007_s11427_024_2680_3 |
| Cites_doi | 10.1016/j.cell.2007.07.039 10.1016/S0092-8674(01)00576-1 10.1007/s11032-007-9089-7 10.21273/JASHS.134.2.281 10.1080/07060660509507224 10.1007/s00425-009-1072-6 10.1111/j.1365-313X.2011.04762.x 10.1111/j.1365-313X.2007.03030.x 10.1016/j.tplants.2008.05.004 10.1007/978-1-4020-4769-5_5 10.1094/MPMI-04-12-0094-R 10.1093/molbev/msr121 10.1105/tpc.109.073056 10.1016/j.tplants.2005.11.004 10.1105/tpc.110.081695 10.1094/MPMI-05-11-0128 10.1007/s11103-009-9515-9 10.1199/tab.0146 10.1094/MPMI.2002.15.3.203 10.1016/j.chom.2010.06.009 10.1111/j.1744-7348.1996.tb07326.x 10.1105/tpc.015180 10.1101/gad.1231804 10.1111/j.1365-313X.2004.02103.x 10.1128/JVI.01238-06 10.1104/pp.105.063537 10.1007/s11103-012-9946-6 10.1007/s11103-004-0147-9 10.1104/pp.108.121319 10.1007/BF00225889 10.1111/j.1364-3703.2011.00752.x 10.1038/nature05286 10.1128/JVI.00719-08 10.1016/S0065-3527(09)07504-6 10.1046/j.1365-313x.2000.00654.x 10.1016/j.ab.2009.01.024 10.1046/j.1439-0523.1999.00427.x 10.1007/s00705-008-0037-6 10.1007/s11738-000-0051-0 10.1371/journal.pone.0022383 10.1094/PDIS.1997.81.12.1425 10.1007/BF00020012 10.1099/0022-1317-71-5-1153 10.1016/j.gene.2009.07.004 10.1128/JVI.01771-08 10.1094/MPMI.2000.13.10.1130 10.1007/s00122-009-1060-z 10.1038/35053110 10.1016/j.tplants.2005.01.005 10.1007/BF02670897 10.1016/j.tplants.2006.01.003 10.21273/HORTSCI.47.3.324 10.1128/JVI.79.12.7410-7418.2005 10.1094/MPMI-03-11-0075 10.1006/meth.2001.1262 10.1046/j.1365-313X.2002.01394.x 10.1534/genetics.105.050815 10.1146/annurev.phyto.43.011205.141140 10.1073/pnas.0904086107 10.1371/journal.ppat.1002329 10.1105/tpc.106.047449 10.1111/j.1364-3703.2004.00214.x 10.21273/JASHS.126.4.462 10.1073/pnas.96.24.14147 10.1128/JVI.78.17.9487-9498.2004 10.1093/nar/gkq866 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2013 Public Library of Science 2013 Verlaan et al 2013 Verlaan et al Wageningen University & Research 2013 Verlaan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, et al. (2013) The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA-Dependent RNA Polymerases. PLoS Genet 9(3): e1003399. doi:10.1371/journal.pgen.1003399 |
| Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Verlaan et al 2013 Verlaan et al – notice: Wageningen University & Research – notice: 2013 Verlaan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, et al. (2013) The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA-Dependent RNA Polymerases. PLoS Genet 9(3): e1003399. doi:10.1371/journal.pgen.1003399 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM QVL DOA |
| DOI | 10.1371/journal.pgen.1003399 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Canada in Context Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Agriculture |
| DocumentTitleAlternate | Ty-1 and Ty-3 Are DFDGD-Class RDRs |
| EISSN | 1553-7404 |
| ExternalDocumentID | 1327764173 oai_doaj_org_article_788b8b70c35047cdb89fa9ff2b30ba12 oai_library_wur_nl_wurpubs_438198 PMC3610679 A326505736 23555305 10_1371_journal_pgen_1003399 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States Netherlands |
| GeographicLocations_xml | – name: Netherlands – name: United States |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM PV9 RIG RZL WOQ 7X8 5PM - AAPBV ABPTK ADACO AGCAB BBAFP LI0 O0- PQEST PQUKI PRINS QVL |
| ID | FETCH-LOGICAL-c815t-d2cba0892dec93c9fe789f3b2f81c9adabeef18a315f665adc8080c91938cfdc3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 247 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316866700070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Sun Oct 01 00:20:35 EDT 2023 Fri Oct 03 12:51:22 EDT 2025 Tue Jan 05 18:09:29 EST 2021 Tue Nov 04 01:46:09 EST 2025 Sun Nov 09 10:07:51 EST 2025 Tue Nov 11 10:03:28 EST 2025 Tue Nov 04 18:09:40 EST 2025 Thu Nov 13 14:49:58 EST 2025 Thu Nov 13 14:55:30 EST 2025 Thu Nov 13 15:04:14 EST 2025 Thu May 22 21:22:07 EDT 2025 Wed Feb 19 02:05:08 EST 2025 Tue Nov 18 21:32:35 EST 2025 Sat Nov 29 02:59:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c815t-d2cba0892dec93c9fe789f3b2f81c9adabeef18a315f665adc8080c91938cfdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: MGV SFH RK JWS JDE YB. Performed the experiments: MGV SFH RMI. Analyzed the data: MGV SFH RK JWS YB. Contributed reagents/materials/analysis tools: MGV SFH RK JWS RGFV YB. Wrote the paper: MGV SFH RK RGFV JWS YB. The authors have declared that no competing interests exist. |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pgen.1003399 |
| PMID | 23555305 |
| PQID | 1324387128 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1327764173 doaj_primary_oai_doaj_org_article_788b8b70c35047cdb89fa9ff2b30ba12 wageningen_narcis_oai_library_wur_nl_wurpubs_438198 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3610679 proquest_miscellaneous_1324387128 gale_infotracmisc_A326505736 gale_infotracacademiconefile_A326505736 gale_incontextgauss_ISR_A326505736 gale_incontextgauss_ISN_A326505736 gale_incontextgauss_IOV_A326505736 gale_healthsolutions_A326505736 pubmed_primary_23555305 crossref_primary_10_1371_journal_pgen_1003399 crossref_citationtrail_10_1371_journal_pgen_1003399 |
| ProviderPackageCode | QVL |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2013 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | CE Vallejos (ref4) 2006; 172 D Zamir (ref19) 1994; 88 A Peragine (ref61) 2004; 18 P Chellappan (ref42) 2004; 56 AP Luna (ref56) 2012; 25 P Griffiths (ref65) 2001; 126 O Voinnet (ref58) 2008; 13 JDG Jones (ref1) 2006; 444 M Narasegowda Maruthi (ref25) 2003; 109 D Fargette (ref31) 1996; 128 Y Ji (ref21) 2007; 20 ref17 S-W Ding (ref41) 2007; 130 T Sijen (ref9) 2001; 107 A Bombarely (ref36) 2011; 39 R Lozano-Durán (ref37) 2011; 6 R Vanitharani (ref49) 2004; 78 H Garcia-Ruiz (ref11) 2010; 22 M Wassenegger (ref40) 2006; 11 B Pico (ref27) 1999; 118 O Poch (ref38) 1990; 71 Y Liu (ref70) 2002; 31 H Wang (ref52) 2005; 79 JJ Doyle (ref66) 1987; 19 KBG Scholthof (ref16) 2011; 12 K Tamura (ref71) 2011; 28 MR Willmann (ref64) 2011 A Bendahmane (ref3) 2000; 21 L Hanley-Bowdoin (ref18) 2004; 5 R Vanitharani (ref46) 2005; 10 T Løvdal (ref73) 2009; 387 CL Brough (ref48) 1992; 18 SF Hutton (ref69) 2011; 61 Y Ji (ref22) 2009; 134 Z Zhang (ref55) 2011; 23 ref6 SG Ribeiro (ref43) 2007; 81 RC Buchmann (ref50) 2009; 83 A Eybishtz (ref34) 2009; 71 A Perez de Castro (ref26) 2005; 27 KJ Livak (ref74) 2001; 25 P Hanson (ref20) 2006; 56 P Raja (ref47) 2008; 82 P Lamesch (ref72) 2011 S Rozen (ref68) 2000; 132 C Fauquet (ref15) 2008; 153 SH Brommonschenkel (ref2) 2000; 13 RK Yadav (ref44) 2011; 24 X-B Wang (ref10) 2010; 107 JA Diaz-Pendon (ref12) 2007; 19 J Zong (ref39) 2009; 447 SP Pandey (ref13) 2008; 147 MG Verlaan (ref35) 2011; 68 Q Wu (ref63) 2010; 8 O Voinnet (ref51) 1999; 96 N Muangsan (ref57) 2004; 38 SF Hutton (ref24) 2012; 47 E Bernstein (ref8) 2001; 409 A Eybishtz (ref33) 2009; 231 SP Pandey (ref59) 2007; 50 D Leibman (ref62) 2011; 24 D Sade (ref32) 2012; 80 V Olmedo-Monfil (ref60) 2010; 464 I Anbinder (ref23) 2009; 119 ref29 B Pico (ref28) 2000; 22 WR van Wezel (ref54) 2002; 15 TM Fulton (ref67) 1995; 13 C Robaglia (ref7) 2006; 11 F Schwach (ref14) 2005; 138 X Yang (ref45) 2011; 7 BC Kang (ref5) 2005; 43 H Wang (ref53) 2003; 15 M Lapidot (ref30) 1997; 81 |
| References_xml | – volume: 130 start-page: 413 year: 2007 ident: ref41 article-title: Antiviral Immunity Directed by Small RNAs publication-title: Cell doi: 10.1016/j.cell.2007.07.039 – volume: 107 start-page: 465 year: 2001 ident: ref9 article-title: On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing publication-title: Cell doi: 10.1016/S0092-8674(01)00576-1 – volume: 20 start-page: 271 year: 2007 ident: ref21 article-title: Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato publication-title: Molecular Breeding doi: 10.1007/s11032-007-9089-7 – volume: 134 start-page: 281 year: 2009 ident: ref22 article-title: Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of Tomato publication-title: Journal of the American Society for Horticultural Science doi: 10.21273/JASHS.134.2.281 – volume: 27 start-page: 268 year: 2005 ident: ref26 article-title: Evaluation of breeding tomato lines partially resistant to Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus derived from Lycopersicon chilense publication-title: Canadian Journal of Plant Pathology doi: 10.1080/07060660509507224 – volume: 231 start-page: 537 year: 2009 ident: ref33 article-title: Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis publication-title: Planta doi: 10.1007/s00425-009-1072-6 – volume: 68 start-page: 1093 year: 2011 ident: ref35 article-title: Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1 publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2011.04762.x – volume: 56 start-page: 17 year: 2006 ident: ref20 article-title: Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato publication-title: Report of the Tomato Genetics Cooperative – volume: 109 start-page: 1 year: 2003 ident: ref25 article-title: Comparison of Resistance to Tomato Leaf Curl Virus (India) and Tomato Yellow Leaf Curl Virus (Israel) among Lycopersicon Wild Species, Breeding Lines and Hybrids – volume: 50 start-page: 40 year: 2007 ident: ref59 article-title: RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2007.03030.x – volume: 13 start-page: 317 year: 2008 ident: ref58 article-title: Use, tolerance and avoidance of amplified RNA silencing by plants publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2008.05.004 – ident: ref17 doi: 10.1007/978-1-4020-4769-5_5 – volume: 25 start-page: 1294 year: 2012 ident: ref56 article-title: Functional analysis of gene silencing suppressors from Tomato yellow leaf curl disease viruses publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-04-12-0094-R – volume: 28 start-page: 2731 year: 2011 ident: ref71 article-title: MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msr121 – volume: 464 start-page: 628 year: 2010 ident: ref60 article-title: Control of female gamete formation by a small RNA pathway in Arabidopsis – volume: 22 start-page: 481 year: 2010 ident: ref11 article-title: Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection publication-title: The Plant Cell Online doi: 10.1105/tpc.109.073056 – volume: 11 start-page: 40 year: 2006 ident: ref7 article-title: Translation initiation factors: a weak link in plant RNA virus infection publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2005.11.004 – volume: 23 start-page: 273 year: 2011 ident: ref55 article-title: BSCTV C2 Attenuates the Degradation of SAMDC1 to Suppress DNA Methylation-Mediated Gene Silencing in Arabidopsis publication-title: The Plant Cell Online doi: 10.1105/tpc.110.081695 – volume: 24 start-page: 1220 year: 2011 ident: ref62 article-title: A High Level of Transgenic Viral Small RNA Is Associated with Broad Potyvirus Resistance in Cucurbits publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-05-11-0128 – volume: 71 start-page: 157 year: 2009 ident: ref34 article-title: Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus publication-title: Plant Molecular Biology doi: 10.1007/s11103-009-9515-9 – start-page: e0146 year: 2011 ident: ref64 article-title: The Functions of RNA-Dependent RNA Polymerases in Arabidopsis publication-title: The Arabidopsis Book doi: 10.1199/tab.0146 – volume: 15 start-page: 203 year: 2002 ident: ref54 article-title: Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI.2002.15.3.203 – volume: 8 start-page: 12 year: 2010 ident: ref63 article-title: Viral Suppressors of RNA-Based Viral Immunity: Host Targets publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2010.06.009 – volume: 128 start-page: 317 year: 1996 ident: ref31 article-title: Serological studies on the accumulation and localisation of three tomato leaf curl geminiviruses in resistant and susceptible Lycopersicon species and tomato cultivars publication-title: Annals of Applied Biology doi: 10.1111/j.1744-7348.1996.tb07326.x – volume: 15 start-page: 3020 year: 2003 ident: ref53 article-title: Adenosine Kinase Is Inactivated by Geminivirus AL2 and L2 Proteins publication-title: The Plant Cell Online doi: 10.1105/tpc.015180 – volume: 18 start-page: 2368 year: 2004 ident: ref61 article-title: SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis publication-title: Genes & Development doi: 10.1101/gad.1231804 – volume: 38 start-page: 1004 year: 2004 ident: ref57 article-title: Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2004.02103.x – volume: 81 start-page: 1563 year: 2007 ident: ref43 article-title: Tomato Chlorotic Mottle Virus Is a Target of RNA Silencing but the Presence of Specific Short Interfering RNAs Does Not Guarantee Resistance in Transgenic Plants publication-title: Journal of Virology doi: 10.1128/JVI.01238-06 – volume: 138 start-page: 1842 year: 2005 ident: ref14 article-title: An RNA-Dependent RNA Polymerase Prevents Meristem Invasion by Potato Virus X and Is Required for the Activity But Not the Production of a Systemic Silencing Signal publication-title: Plant Physiology doi: 10.1104/pp.105.063537 – volume: 132 start-page: 365 year: 2000 ident: ref68 article-title: Primer3 on the WWW for general users and for biologist programmers publication-title: Methods Mol Biol – volume: 80 start-page: 273 year: 2012 ident: ref32 article-title: A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance publication-title: Plant Molecular Biology doi: 10.1007/s11103-012-9946-6 – volume: 56 start-page: 601 year: 2004 ident: ref42 article-title: Broad Spectrum Resistance to ssDNA Viruses Associated with Transgene-Induced Gene Silencing in Cassava publication-title: Plant Molecular Biology doi: 10.1007/s11103-004-0147-9 – volume: 19 start-page: 11 year: 1987 ident: ref66 article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissue publication-title: Phytochemical bulletin – volume: 147 start-page: 1212 year: 2008 ident: ref13 article-title: RNA-Directed RNA Polymerase3 from Nicotiana attenuata Is Required for Competitive Growth in Natural Environments publication-title: Plant Physiology doi: 10.1104/pp.108.121319 – volume: 88 start-page: 141 year: 1994 ident: ref19 article-title: Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1 publication-title: Theoretical and Applied Genetics doi: 10.1007/BF00225889 – volume: 12 start-page: 938 year: 2011 ident: ref16 article-title: Top 10 plant viruses in molecular plant pathology publication-title: Molecular Plant Pathology doi: 10.1111/j.1364-3703.2011.00752.x – volume: 444 start-page: 323 year: 2006 ident: ref1 article-title: The plant immune system publication-title: Nature doi: 10.1038/nature05286 – volume: 82 start-page: 8997 year: 2008 ident: ref47 article-title: Viral Genome Methylation as an Epigenetic Defense against Geminiviruses publication-title: Journal of Virology doi: 10.1128/JVI.00719-08 – ident: ref6 doi: 10.1016/S0065-3527(09)07504-6 – volume: 61 start-page: 12 year: 2011 ident: ref69 article-title: A collection of polymorphic markers useful for fine-mapping the Ty-3 locus from Solanum chilense accession LA2779 publication-title: Report of the Tomato Genetics Cooperative – volume: 21 start-page: 73 year: 2000 ident: ref3 article-title: Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato publication-title: The Plant Journal doi: 10.1046/j.1365-313x.2000.00654.x – volume: 387 start-page: 238 year: 2009 ident: ref73 article-title: Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2009.01.024 – volume: 118 start-page: 537 year: 1999 ident: ref27 article-title: Developing tomato breeding lines resistant to Tomato yellow leaf curl virus publication-title: Plant Breeding doi: 10.1046/j.1439-0523.1999.00427.x – volume: 153 start-page: 783 year: 2008 ident: ref15 article-title: Geminivirus strain demarcation and nomenclature publication-title: Archives of Virology doi: 10.1007/s00705-008-0037-6 – volume: 22 start-page: 344 year: 2000 ident: ref28 article-title: Searching for new resistance sources to Tomato yellow leaf curl virus within a highly variable wild Lycopersicon genetic pool publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-000-0051-0 – volume: 6 start-page: e22383 year: 2011 ident: ref37 article-title: Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0022383 – volume: 81 start-page: 1425 year: 1997 ident: ref30 article-title: Comparison of resistance level to Tomato yellow leaf curl virus among commercial cultivars and breeding lines publication-title: Plant Disease doi: 10.1094/PDIS.1997.81.12.1425 – ident: ref29 – volume: 18 start-page: 703 year: 1992 ident: ref48 article-title: DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts publication-title: Plant Molecular Biology doi: 10.1007/BF00020012 – volume: 71 start-page: 1153 year: 1990 ident: ref38 article-title: Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains publication-title: Journal of General Virology doi: 10.1099/0022-1317-71-5-1153 – volume: 447 start-page: 29 year: 2009 ident: ref39 article-title: Evolution of the RNA-dependent RNA polymerase (RdRP) genes: Duplications and possible losses before and after the divergence of major eukaryotic groups publication-title: Gene doi: 10.1016/j.gene.2009.07.004 – volume: 83 start-page: 5005 year: 2009 ident: ref50 article-title: Geminivirus AL2 and L2 Proteins Suppress Transcriptional Gene Silencing and Cause Genome-Wide Reductions in Cytosine Methylation publication-title: Journal of Virology doi: 10.1128/JVI.01771-08 – volume: 13 start-page: 1130 year: 2000 ident: ref2 article-title: The Broad-Spectrum Tospovirus Resistance Gene Sw-5 of Tomato Is a Homolog of the Root-Knot Nematode Resistance Gene Mi publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI.2000.13.10.1130 – volume: 119 start-page: 519 year: 2009 ident: ref23 article-title: Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-009-1060-z – volume: 409 start-page: 363 year: 2001 ident: ref8 article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference publication-title: Nature doi: 10.1038/35053110 – volume: 10 start-page: 144 year: 2005 ident: ref46 article-title: Geminiviruses and RNA silencing publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2005.01.005 – volume: 13 start-page: 207 year: 1995 ident: ref67 article-title: Microprep protocol for extraction of DNA from tomato and other herbaceous plants publication-title: Plant Molecular Biology Reporter doi: 10.1007/BF02670897 – volume: 11 start-page: 142 year: 2006 ident: ref40 article-title: Nomenclature and functions of RNA-directed RNA polymerases publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2006.01.003 – volume: 47 start-page: 324 year: 2012 ident: ref24 article-title: Recessive Resistance to Tomato yellow leaf curl virus from the Tomato Cultivar Tyking Is Located in the Same Region as Ty-5 on Chromosome 4 publication-title: HortScience doi: 10.21273/HORTSCI.47.3.324 – volume: 79 start-page: 7410 year: 2005 ident: ref52 article-title: Adenosine Kinase Inhibition and Suppression of RNA Silencing by Geminivirus AL2 and L2 Proteins publication-title: Journal of Virology doi: 10.1128/JVI.79.12.7410-7418.2005 – volume: 24 start-page: 1189 year: 2011 ident: ref44 article-title: Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-03-11-0075 – volume: 25 start-page: 402 year: 2001 ident: ref74 article-title: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 31 start-page: 777 year: 2002 ident: ref70 article-title: Virus-induced gene silencing in tomato publication-title: The Plant Journal doi: 10.1046/j.1365-313X.2002.01394.x – volume: 172 start-page: 1229 year: 2006 ident: ref4 article-title: Genetic and Molecular Characterization of the I Locus of Phaseolus vulgaris publication-title: Genetics doi: 10.1534/genetics.105.050815 – volume: 43 start-page: 581 year: 2005 ident: ref5 article-title: Genetics of plant virus resistance publication-title: Annual Review of Phytopathology doi: 10.1146/annurev.phyto.43.011205.141140 – volume: 107 start-page: 484 year: 2010 ident: ref10 article-title: RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0904086107 – volume: 7 start-page: e1002329 year: 2011 ident: ref45 article-title: Suppression of Methylation-Mediated Transcriptional Gene Silencing by βC1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection publication-title: PLoS Path doi: 10.1371/journal.ppat.1002329 – year: 2011 ident: ref72 article-title: The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools publication-title: Nucleic Acids Research – volume: 19 start-page: 2053 year: 2007 ident: ref12 article-title: Suppression of Antiviral Silencing by Cucumber Mosaic Virus 2b Protein in Arabidopsis Is Associated with Drastically Reduced Accumulation of Three Classes of Viral Small Interfering RNAs publication-title: The Plant Cell Online doi: 10.1105/tpc.106.047449 – volume: 5 start-page: 149 year: 2004 ident: ref18 article-title: Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication publication-title: Molecular Plant Pathology doi: 10.1111/j.1364-3703.2004.00214.x – volume: 126 start-page: 462 year: 2001 ident: ref65 article-title: Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932 publication-title: Journal of the American Society for Horticultural Science doi: 10.21273/JASHS.126.4.462 – volume: 96 start-page: 14147 year: 1999 ident: ref51 article-title: Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.96.24.14147 – volume: 78 start-page: 9487 year: 2004 ident: ref49 article-title: Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing publication-title: Journal of Virology doi: 10.1128/JVI.78.17.9487-9498.2004 – volume: 39 start-page: D1149 year: 2011 ident: ref36 article-title: The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq866 |
| SSID | ssj0035897 |
| Score | 2.5466344 |
| Snippet | Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by... Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by... |
| SourceID | plos doaj wageningen pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1003399 |
| SubjectTerms | adenosine kinase Agriculture Alleles Begomovirus - genetics Begomovirus - pathogenicity Biology breeding lines Chromosomes Disease Resistance - genetics Diseases and pests geminivirus al2 Genes Genetic aspects Genetics Genomes Genomics Health aspects Host-parasite relationships interfering rnas l2 proteins lycopersicon-chilense mottle virus nicotiana-attenuata Physiological aspects Plant Diseases - genetics Plant Diseases - virology Plant immunology Plant Leaves - genetics Plant Leaves - virology Plant viruses recessive resistance RNA - genetics RNA Interference RNA polymerase RNA polymerases RNA-Dependent RNA Polymerase - genetics RNA-Dependent RNA Polymerase - metabolism Solanum lycopersicum - genetics Solanum lycopersicum - virology Tomatoes Viral genetics Virus diseases of plants Viruses |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQNaS9IMbXAgMMQuLJLInz4TyWlQISKmiUaTxZjuNslaKkShqqPvOPc-ek3SKQtgee0iTnSL07n3-XnH9HyJvACBUZ5TFY-gwLYIFgIhMe84WrVM4zZMSzzSbi2UycnyffrrX6wpqwjh64U9wxpGipSGNX89ANYp2lIslVkud-yt1U2f7CPqCebTLVxWAeiq6tShhyFkNa32-a47F33Nvo3RIMhDUCnFve16tFyXL37yL0aFlUzb_g599VlPtrCAGl3RN1bY2a3if3enBJx92fOiB3TPmA3O3aTW4ekt_gE3ReAUat6E_86LKmX4zK6UlbF_RsUbcNheQbASV4Ar3AKEjnG-ZRVWb4g1NVG4rNV4qFthdxQzwF2Esn08nHCdMIxenpbMy2vXVXeEaXVbHBl1-NaR6RH9MP85NPrG_CwLTwwhXLfJ0qVyR-ZnTCdZKbGCzAUz8Xnk5UplJjck8o7oV5FIUq08hUqRMAhkLnmeaPyaisSnNIqIo8hYAkUi4PXANIKNXIV5hBVmSCNHUI31pB6p6hHBtlFNJ-doshU-n0KNF2sredQ9hu1LJj6LhB_j0aeCeL_Nr2Anid7L1O3uR1DnmJ7iG7zaq7KCHHgIYx5eORQ15bCeTYKLGI50K1TSM_fz27hdD32W2ETgdCb3uhvAKdadXvrgDNI8HXQPJoIAnhRA9uH6LHb1XXgCL9OI4CL-YOebWdBRJHYXleaarWygQcUm9fOORJNyt2-vUB0YawqjgkHsyXgQGGd8rFpSU65xESHILF-NXMkiX22GrsqP5Fp1y3tSwLPMBzGomsdYl4-j_s_Izs-7b_CRYdHpHRqm7Nc7Knf60WTf3Cxpw_GVmGmQ priority: 102 providerName: Directory of Open Access Journals |
| Title | The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23555305 https://www.proquest.com/docview/1324387128 https://pubmed.ncbi.nlm.nih.gov/PMC3610679 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F438198 https://doaj.org/article/788b8b70c35047cdb89fa9ff2b30ba12 http://dx.doi.org/10.1371/journal.pgen.1003399 |
| Volume | 9 |
| WOSCitedRecordID | wos000316866700070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYB9Je-IYFRjEIiaeMJE5j57FrV5g0SlTKtD1ZjuNApSiZmpZpz_zj3LlpR4CJ8dKP-BzJ5zvfnX3-HSFvQiNUZJTvgukzbggGwhWZ8N1AeErlLENEPFtsgo_H4vQ0Tq4Cxd9O8Bn33zU83T8HhuKZPgOTukW2AxZFmMI1So7XKy_riZg31-Ou69kyPxalf7MWd86Lqv6bo_lnvuTOBSh7aW8__WKNRvf-dxz3yd3G76T9laA8ILdM-ZDcWVWivHxEfoC40GkF7mtFz_A85oIeG5XTwXJe0JPZfFnTianR1wQhoYhVXdPppetTVWb4g8GbDe0XhSlm2j4cVJmh4BHT4Wj4fuja4pt0Mu67w6bs7gL_0aQqLnFfrDb1Y_JldDgdfHCb-gyuFn5v4WaBTpUn4iAzOmY6zg0Xcc7SIBe-jlWmUmNyXyjm9_Io6qlMI4iljsFnFDrPNHtCOmVVml1CVeQr9FUi5bHQM-AkpRqhDDMImEyYpg5h62mTugEvxxoahbQnchyCmBUfJbJXNux1iLvpdb4C7_gH_QFKxIYWobftA5hH2Wiy5EKkIuWeZj0v5DpLYcwqzvMgZV6q_MAhL1Ge5Ooe62YBkX1wlDEaZJFDXlsKhN8oMb_nq1rWtTz6dHIDos_jmxBNWkRvG6K8Ap5p1Vy8AM4j9leLcq9FCSuNbjXvooqsWVcDIwPOo9DnzCGv1mojsRdm7pWmWlqakEFUHgiHPF2p0Ya_ATi7PTA4DuEtBWtNQLulnH2zGOgsQuxDmDF2pYqyxPJbte3V7IHKi-VclgV-wXtqiYB2sXh2_UCek53AFjzBLMM90lnMl-YFua2_L2b1vEu2-Cm3n6JLtg8Ox8mka3dxunYh6mLmcAItydHH5OwnicKGoQ |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZggNiF37DAYAYhccpI4jR2jqWlbKKUaZRpnCzHcaBSlExNy9Qz_zjvOW4hgokdODVNPkfJZ_u959j-HiEvYyNUYlTog-szfgwOwhe5CP1IBEoVLEdFPJtsgk8m4vQ0PXKSQrgXxjEIY8SybuxMPh7UlXntmGwnTvdDxsM1eP8MuMbpfgbe9iq5xtNQ4Oqu0dF4bZRZT6Tc7Zy7qGTHM1kB_42Z3sKH-FsM-udSyu1zsAOV3Rj1m6Ma3f6Pr3iH3HLRKu23Je6SK6a6R260-StX98kPaGR0WkPQW9MvOItzTsdGFXSwnJf0ZDZfNvTYNBihQtOiqHDd0OnKD6mqcjxgcGdD-2Vpypm2Jwd1bijE0XQ4Gr4b-jZlJz2e9P2hS9a7wH_0qC5X-DWtMc0D8nn0djo48F1WB1-LsLfw80hnKhBplBudMp0Whou0YFlUiFCnKleZMUUoFAt7RZL0VK5R-lKnEGkKXeSaPSRbFbC1Q6hKQoURTqICFgcGQqtMowBiDsMsE2eZR9i6RqV2kueYeaOUdh6Pw9Cn5VEivdLR6xF_U-qslfz4B_4NNpYNFgW77QmoWumqVHIhMpHxQLNeEHOdZ_DOKi2KKGNBpsLII3vY1GS7-3VjdmQfwmscQ7LEIy8sAkU7KlwV9FUtm0Yefjy5BOjT5DKg4w7olQMVNXCmlduuAcyjYlgHudtBgn3Sncs72L7X1DVAZMR5EoeceeT5ukdJLIXr_SpTLy0mZjCWj4RHHrU9bMNvBCFyD9yUR3in73UqoHulmn2zyuksQcVEqDH2q5fKCpN2NbaU-3Iqz5dzWZX4A_dpJMrgpeLxxS-yR24eTD-M5fhw8v4J2Y5syhRcp7hLthbzpXlKruvvi1kzf2at0k_XUZiK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG-NBe-IYFBjMIwVO2OE5j57G0FCamUo0xjQdkOY4DlaJkalqmPvOPc-ekhQgm9sJT0-RsJefzfdi-3xHyIrJSx1YzH0yf9SMwEL7MJPNDGWid8wwR8VyxCTEey9PTZLJBvqxyYVoOQoxYVLXbyceLqrT7LSf3Ea-o2T3dY1ywVYu9M2A47vlzMLkvHeIQrozNMQHpCrkqEiYxNhtNDleKmvdkItpsuos66lgrB-q_Vt2b-GJ_80v_PF65dQ66oXTJUr8Zr9Gt__zZt8nN1qul_aaXO2TDlnfJ9abO5fIe-QHCSI8rcI4r-hl3e87podU5HSxmBT2ZzhY1PbI1erIgghSRsGt6vPQZ1WWGFxx6trRfFLaYGndzUGWWgr9Nh6Ph26HvSnvSo3HfH7ZFfef4j06qYomrbrWt75NPozfHg3d-W_3BN5L15n4WmlQHMgkzaxJuktwKmeQ8DXPJTKIznVqbM6k56-Vx3NOZQYhMk4BHKk2eGf6AbJbAwW1Cdcw0ekKxDngUWHDBUoNAiRmEYzZKU4_w1Sgr00KjY4WOQrn9PgEhUsNHhdxWLbc94q9bnTXQIP-gf40CtKZFYG93A4ZbtcOshJSpTEVgeC-IhMlS-Gad5HmY8iDVLPTILoqfarJk1-pJ9cENx1iTxx557igQ3KPE00Nf9aKu1cGHk0sQfRxfhuioQ_SqJcor4JnRbVoHcB5FtkO506EEPWY6j7dR5lesq4GRoRBxxAT3yLPVLFPYCs8FlrZaOJqIQ8wfSo88bGbdmr8huNI9MGceEZ352BmA7pNy-s0hrPMYkRVhxPivmatKLO5Vu1btCqs6X8xUWeAP9FMrhMtL5KOLP2SX3JgMR-rwYPz-MdkKXWUVPM64Qzbns4V9Qq6Z7_NpPXvqFNVPuTunvw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Tomato+Yellow+Leaf+Curl+Virus+resistance+genes+Ty-1+and+Ty-3+are+allelic+and+code+for+DFDGD-class+RNA-dependent+RNA+polymerases&rft.jtitle=PLoS+genetics&rft.au=Verlaan%2C+Maarten+G&rft.au=Hutton%2C+Samuel+F&rft.au=Ibrahem%2C+Ragy+M&rft.au=Kormelink%2C+Richard&rft.date=2013-03-01&rft.eissn=1553-7404&rft.volume=9&rft.issue=3&rft.spage=e1003399&rft_id=info:doi/10.1371%2Fjournal.pgen.1003399&rft_id=info%3Apmid%2F23555305&rft.externalDocID=23555305 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |