Responsive biomimetic networks from polyisocyanopeptide hydrogels
Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels. Biomimetic polym...
Uloženo v:
| Vydáno v: | Nature (London) Ročník 493; číslo 7434; s. 651 - 655 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
31.01.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels.
Biomimetic polymer networks
This paper describes a new class of water-soluble, relatively stiff polymers that bundle in a controlled manner on heating to produce very stiff fibres. These fibres, in turn, form hydrogels that very closely mimic components of the cell cytoskeleton, intermediate filaments. Synthesis involves the thermal transition of polyisocyanide polymers from single molecules to bundles of polymer chains. Networks made with this material demonstrate a stress-stiffening behaviour that is usually absent in synthetic polymer gels, and their mechanical properties can be modified by altering the chemical structure of the polymer, offering greater versatility than biopolymer networks.
Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells
1
,
2
. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen
3
,
4
. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum
1
. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides
5
,
6
,
7
grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model
8
,
9
,
10
, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications
11
,
12
,
13
,
14
, in particular in the biomedical field. |
|---|---|
| AbstractList | Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels. Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications, in particular in the biomedical field. Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications, in particular in the biomedical field.Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications, in particular in the biomedical field. Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels. Biomimetic polymer networks This paper describes a new class of water-soluble, relatively stiff polymers that bundle in a controlled manner on heating to produce very stiff fibres. These fibres, in turn, form hydrogels that very closely mimic components of the cell cytoskeleton, intermediate filaments. Synthesis involves the thermal transition of polyisocyanide polymers from single molecules to bundles of polymer chains. Networks made with this material demonstrate a stress-stiffening behaviour that is usually absent in synthetic polymer gels, and their mechanical properties can be modified by altering the chemical structure of the polymer, offering greater versatility than biopolymer networks. Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells 1 , 2 . The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen 3 , 4 . As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum 1 . Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides 5 , 6 , 7 grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model 8 , 9 , 10 , we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications 11 , 12 , 13 , 14 , in particular in the biomedical field. Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells1,2. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen3,4. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum1. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides5-7 grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiffand helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model8-10, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications11-14, in particular in the biomedical field. [PUBLICATION ABSTRACT] |
| Audience | Academic |
| Author | Mendes, Eduardo Rowan, Alan E. Nolte, Roeland J. M. Hoogenboom, Richard Schwartz, Erik Picken, Stephen J. Kouwer, Paul H. J. Koepf, Matthieu van Buul, Arend M. Le Sage, Vincent A. A. Eksteen-Akeroyd, Zaskia H. Jaspers, Maarten Woltinge, Tim Kitto, Heather J. |
| Author_xml | – sequence: 1 givenname: Paul H. J. surname: Kouwer fullname: Kouwer, Paul H. J. email: p.kouwer@science.ru.nl organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 2 givenname: Matthieu surname: Koepf fullname: Koepf, Matthieu organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 3 givenname: Vincent A. A. surname: Le Sage fullname: Le Sage, Vincent A. A. organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 4 givenname: Maarten surname: Jaspers fullname: Jaspers, Maarten organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 5 givenname: Arend M. surname: van Buul fullname: van Buul, Arend M. organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 6 givenname: Zaskia H. surname: Eksteen-Akeroyd fullname: Eksteen-Akeroyd, Zaskia H. organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 7 givenname: Tim surname: Woltinge fullname: Woltinge, Tim organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 8 givenname: Erik surname: Schwartz fullname: Schwartz, Erik organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 9 givenname: Heather J. surname: Kitto fullname: Kitto, Heather J. organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 10 givenname: Richard surname: Hoogenboom fullname: Hoogenboom, Richard organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands, Present address: Supramolecular Chemistry Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium – sequence: 11 givenname: Stephen J. surname: Picken fullname: Picken, Stephen J. organization: Department of NanoStructured Materials, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands – sequence: 12 givenname: Roeland J. M. surname: Nolte fullname: Nolte, Roeland J. M. organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands – sequence: 13 givenname: Eduardo surname: Mendes fullname: Mendes, Eduardo organization: Department of NanoStructured Materials, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands – sequence: 14 givenname: Alan E. surname: Rowan fullname: Rowan, Alan E. email: a.rowan@science.ru.nl organization: Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26901941$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23354048$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF09trFDEUB-BBKnZbffJdFoug6NRc5pJ5XBYvhaJQKz6GTOZkTZ1JpknGdv97s3R1Z8uuJQ-B8J3fSUhylBwYayBJnmN0ihFl740IgwOMGa0eJROclUWaFaw8SCYIEZYiRovD5Mj7K4RQjsvsSXJIKM0zlLFJMrsA31vj9W-Y1tp2uoOg5dRAuLHul58qZ7tpb9ul9lYuhbE99EE3MP25bJxdQOufJo-VaD08W8_HyfePHy7nn9Pzr5_O5rPzVDKchVQoIhqVNYWiDVEFZRRoSaQSpGR1zooqFyKuV1RIoWpZVwo1GWpwTYDkFCp6nLy-y-2dvR7AB95pL6FthQE7eI4Ji4FFQUmkJ_folR2cibvjmOKcVWWG8UYtRAtcG2WDE3IVymcFwRhVLKv-qyhmGOWIrTqmO9QCDDjRxutSOi5v-Zc7vOz1NR-33ovGSac7UBwNdFrubP1mqyCaALdhIQbv-dm3i-3DP2THuW_329nlj_mX7eSH9Tj7xfpCh7qDhvdOd8It-d93HMGrNRBeilY5YaT2G1dUCFcZ3rSVznrvQP0jGPHVb-Kj3xQ1vqelDiLouFcndLun5t1djY_JZgFu9PZ28D_sLSla |
| CODEN | NATUAS |
| CitedBy_id | crossref_primary_10_1016_j_dental_2024_10_017 crossref_primary_10_1002_adfm_202105713 crossref_primary_10_1002_anie_202014813 crossref_primary_10_1002_masy_201450314 crossref_primary_10_1021_jacs_8b10659 crossref_primary_10_3390_polym9020052 crossref_primary_10_1002_adma_201700339 crossref_primary_10_1016_j_biomaterials_2018_07_038 crossref_primary_10_1002_adma_201705911 crossref_primary_10_1002_adfm_201303699 crossref_primary_10_1016_j_jcis_2019_06_078 crossref_primary_10_1038_s41570_022_00420_7 crossref_primary_10_1002_wsbm_1514 crossref_primary_10_1088_2516_1091_ac23a4 crossref_primary_10_1016_j_bioadv_2022_213104 crossref_primary_10_1016_j_bios_2018_04_027 crossref_primary_10_1016_j_semcancer_2015_09_001 crossref_primary_10_1002_adfm_202000893 crossref_primary_10_1002_jbm_a_37268 crossref_primary_10_1002_j_2040_4603_2022_tb00222_x crossref_primary_10_1002_chem_201402547 crossref_primary_10_1002_adma_201702090 crossref_primary_10_1038_srep19270 crossref_primary_10_1002_wnan_1553 crossref_primary_10_1007_s44340_024_00003_w crossref_primary_10_1002_smll_202203033 crossref_primary_10_1080_15583724_2021_2014519 crossref_primary_10_1007_s40544_023_0815_x crossref_primary_10_1039_C9PY01571J crossref_primary_10_3390_ijms15011096 crossref_primary_10_1016_j_actbio_2022_12_009 crossref_primary_10_1002_mrc_4379 crossref_primary_10_1371_journal_pone_0118021 crossref_primary_10_1002_adma_202507397 crossref_primary_10_1002_ange_202308509 crossref_primary_10_1002_cplu_201600464 crossref_primary_10_1002_advs_202003380 crossref_primary_10_1021_acsbiomaterials_9b00967 crossref_primary_10_1002_chem_201700539 crossref_primary_10_1039_D2PY00769J crossref_primary_10_1039_D2PY00648K crossref_primary_10_1016_j_jbiomech_2015_12_023 crossref_primary_10_3109_07388551_2015_1035693 crossref_primary_10_1038_s41467_021_24382_4 crossref_primary_10_1093_rb_rbaf038 crossref_primary_10_3390_nano10112236 crossref_primary_10_34133_bmr_0182 crossref_primary_10_1002_adfm_201502241 crossref_primary_10_1038_s41598_022_26426_1 crossref_primary_10_1038_s41467_020_19905_4 crossref_primary_10_1038_s41570_020_0180_5 crossref_primary_10_1002_cbic_202300149 crossref_primary_10_1021_ja408547g crossref_primary_10_3390_ijms24065127 crossref_primary_10_1080_00914037_2016_1180622 crossref_primary_10_1016_j_actbio_2015_01_014 crossref_primary_10_1002_adfm_202210224 crossref_primary_10_3389_fbioe_2025_1637456 crossref_primary_10_1002_adma_202403198 crossref_primary_10_1016_j_ijbiomac_2024_135848 crossref_primary_10_1021_jacs_4c02980 crossref_primary_10_1016_j_carbpol_2017_06_013 crossref_primary_10_1007_s12274_023_5446_z crossref_primary_10_1038_s41467_018_04508_x crossref_primary_10_1039_D5BM00210A crossref_primary_10_1002_masy_201600063 crossref_primary_10_1109_TNB_2019_2911044 crossref_primary_10_3389_fbioe_2021_715408 crossref_primary_10_3390_ma15249080 crossref_primary_10_1038_ncomms10514 crossref_primary_10_1007_s10118_023_2991_6 crossref_primary_10_1371_journal_pone_0226277 crossref_primary_10_1002_adfm_202416599 crossref_primary_10_1002_ange_201910979 crossref_primary_10_1002_adem_202100105 crossref_primary_10_1038_s43016_019_0009_x crossref_primary_10_1016_j_mtcomm_2025_112513 crossref_primary_10_1002_mame_202100173 crossref_primary_10_1039_D5MH01020A crossref_primary_10_1002_marc_202100898 crossref_primary_10_1002_adhm_202203031 crossref_primary_10_1038_s41578_019_0129_9 crossref_primary_10_3390_molecules28186580 crossref_primary_10_1016_j_actbio_2020_09_018 crossref_primary_10_1016_j_cis_2019_102044 crossref_primary_10_1038_srep01399 crossref_primary_10_1002_adma_201906012 crossref_primary_10_1039_C8CC06266H crossref_primary_10_3390_ma12233944 crossref_primary_10_1002_jssc_202300363 crossref_primary_10_3390_lubricants12060186 crossref_primary_10_1177_0022034518810213 crossref_primary_10_1038_s41557_025_01764_5 crossref_primary_10_1002_ange_201704046 crossref_primary_10_1021_ja502843f crossref_primary_10_1002_cyto_a_22739 crossref_primary_10_1021_acs_chemmater_5c01064 crossref_primary_10_1002_anie_201911364 crossref_primary_10_1016_j_bioadv_2023_213705 crossref_primary_10_1103_RevModPhys_87_401 crossref_primary_10_1002_ange_202204960 crossref_primary_10_1002_advs_202001797 crossref_primary_10_1080_10601325_2025_2510267 crossref_primary_10_1038_s41467_019_12786_2 crossref_primary_10_1002_ange_202204966 crossref_primary_10_1016_j_foodhyd_2025_111762 crossref_primary_10_1002_adfm_201602461 crossref_primary_10_1016_j_apsb_2022_10_026 crossref_primary_10_1021_acspolymersau_4c00099 crossref_primary_10_1016_j_matt_2023_10_012 crossref_primary_10_1002_adma_201905719 crossref_primary_10_1021_jacs_9b07417 crossref_primary_10_1088_1758_5090_8_1_014103 crossref_primary_10_1089_ten_tec_2019_0305 crossref_primary_10_1016_j_jconrel_2014_05_014 crossref_primary_10_1039_C9PY01021A crossref_primary_10_1002_ange_201911364 crossref_primary_10_1039_C7FD00100B crossref_primary_10_3390_polym7101494 crossref_primary_10_1016_j_cej_2021_130384 crossref_primary_10_1088_2053_1591_abfb28 crossref_primary_10_1021_jacs_8b09289 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_3390_polym10050555 crossref_primary_10_1039_D3NR03729K crossref_primary_10_1002_adhm_201901798 crossref_primary_10_1002_adhm_202002221 crossref_primary_10_1002_adhm_202202514 crossref_primary_10_1016_j_ijbiomac_2025_141537 crossref_primary_10_1039_C5CS00586H crossref_primary_10_3390_bioengineering9090453 crossref_primary_10_1002_marc_202000304 crossref_primary_10_1246_cl_150311 crossref_primary_10_1002_adma_202309952 crossref_primary_10_1002_macp_202100103 crossref_primary_10_1016_j_jconrel_2020_05_004 crossref_primary_10_1038_s41596_025_01159_3 crossref_primary_10_1016_j_cej_2025_164085 crossref_primary_10_1016_j_mtbio_2025_102188 crossref_primary_10_1002_cjoc_202400879 crossref_primary_10_1021_acs_macromol_5c01326 crossref_primary_10_1038_s43586_022_00179_7 crossref_primary_10_1002_adfm_201602913 crossref_primary_10_1007_s10853_020_05308_9 crossref_primary_10_3390_gels4020054 crossref_primary_10_1039_C4CC03167A crossref_primary_10_1002_adtp_201800021 crossref_primary_10_1002_smtd_202300687 crossref_primary_10_1038_s41578_018_0077_9 crossref_primary_10_1002_adfm_202010527 crossref_primary_10_1038_ncomms3029 crossref_primary_10_1038_nmat4483 crossref_primary_10_1016_j_carbpol_2015_10_090 crossref_primary_10_1016_j_molliq_2021_116723 crossref_primary_10_1016_j_jmps_2023_105360 crossref_primary_10_1002_macp_202000362 crossref_primary_10_1002_cbin_11091 crossref_primary_10_1002_adma_202409819 crossref_primary_10_1016_j_jmst_2020_03_074 crossref_primary_10_1002_macp_202300227 crossref_primary_10_1021_jacs_3c10762 crossref_primary_10_1038_s41578_019_0169_1 crossref_primary_10_1002_marc_201600045 crossref_primary_10_1039_D5BM00433K crossref_primary_10_1016_j_polymer_2017_12_057 crossref_primary_10_3389_fimmu_2018_02798 crossref_primary_10_1002_chem_201602954 crossref_primary_10_1039_D4NH00317A crossref_primary_10_1016_j_actbio_2017_07_023 crossref_primary_10_1016_j_cis_2024_103232 crossref_primary_10_1016_j_triboint_2023_108746 crossref_primary_10_1021_acs_macromol_5c00139 crossref_primary_10_1016_j_cclet_2017_11_002 crossref_primary_10_1002_anie_201910979 crossref_primary_10_1021_jacs_2c03230 crossref_primary_10_1002_cplu_202100507 crossref_primary_10_1177_08853282221132987 crossref_primary_10_3390_polym8090333 crossref_primary_10_1002_adhm_202401511 crossref_primary_10_3390_pharmaceutics17091192 crossref_primary_10_1002_ange_202407552 crossref_primary_10_1002_adfm_202302285 crossref_primary_10_1002_anie_202503030 crossref_primary_10_1038_s41598_019_57342_6 crossref_primary_10_1039_C6CC01744D crossref_primary_10_1002_anie_201704046 crossref_primary_10_1039_C4NP00109E crossref_primary_10_1002_adhm_202301109 crossref_primary_10_1016_j_actbio_2024_11_012 crossref_primary_10_1016_j_progpolymsci_2016_12_006 crossref_primary_10_1002_anie_202204966 crossref_primary_10_1016_j_actbio_2022_06_022 crossref_primary_10_1016_j_eurpolymj_2013_01_009 crossref_primary_10_1021_ja501756h crossref_primary_10_1016_j_foodhyd_2018_01_023 crossref_primary_10_1002_anie_202204960 crossref_primary_10_1016_j_foodchem_2018_02_143 crossref_primary_10_1002_ange_201708857 crossref_primary_10_1039_D4BM00304G crossref_primary_10_1088_1742_6596_955_1_012003 crossref_primary_10_1073_pnas_2220755120 crossref_primary_10_1016_j_mser_2024_100771 crossref_primary_10_1039_D2BM00775D crossref_primary_10_1016_j_mattod_2025_08_020 crossref_primary_10_1002_cjoc_202100692 crossref_primary_10_1039_D4NR02088J crossref_primary_10_1038_ncomms15478 crossref_primary_10_1038_ncomms6060 crossref_primary_10_1038_s41467_021_24663_y crossref_primary_10_1088_1367_2630_18_5_055001 crossref_primary_10_1002_adma_202109178 crossref_primary_10_1016_j_compositesb_2022_109688 crossref_primary_10_1002_anbr_202100059 crossref_primary_10_1002_anie_202308509 crossref_primary_10_1126_sciadv_adt3352 crossref_primary_10_1016_j_mtcomm_2021_103019 crossref_primary_10_1007_s00339_020_03633_z crossref_primary_10_1002_nadc_201490090 crossref_primary_10_1002_adfm_202104139 crossref_primary_10_1002_adfm_202211035 crossref_primary_10_1002_adfm_202004166 crossref_primary_10_1002_adfm_202301062 crossref_primary_10_1016_j_stem_2015_12_012 crossref_primary_10_1039_D0PY01662D crossref_primary_10_1016_j_chroma_2021_462612 crossref_primary_10_1016_j_bioactmat_2021_08_002 crossref_primary_10_1039_C8IB00138C crossref_primary_10_1039_C9BM00661C crossref_primary_10_1039_D3RA06290B crossref_primary_10_1002_adhm_202000517 crossref_primary_10_1016_j_carbpol_2019_115737 crossref_primary_10_1002_adbi_202300118 crossref_primary_10_1002_app_56824 crossref_primary_10_1016_j_colsurfb_2016_09_032 crossref_primary_10_3390_gels11090679 crossref_primary_10_1038_nature_2013_12275 crossref_primary_10_1002_mabi_202100191 crossref_primary_10_1039_C4CS00161C crossref_primary_10_1039_D3QI00384A crossref_primary_10_3390_bioengineering6030059 crossref_primary_10_1002_anie_202407552 crossref_primary_10_1002_adtp_202200180 crossref_primary_10_1002_adtp_202300199 crossref_primary_10_1016_j_eml_2019_100557 crossref_primary_10_1002_adma_202202057 crossref_primary_10_1007_s12274_022_4730_7 crossref_primary_10_1016_j_mtchem_2016_11_001 crossref_primary_10_1039_C4CC07941H crossref_primary_10_1007_s00604_021_05000_y crossref_primary_10_1039_C7CS00564D crossref_primary_10_1039_D0BM01943G crossref_primary_10_1002_adhm_202301137 crossref_primary_10_1021_jacs_7b09892 crossref_primary_10_1002_ange_202503030 crossref_primary_10_1002_marc_202200135 crossref_primary_10_1038_srep09842 crossref_primary_10_1089_ten_tea_2022_0010 crossref_primary_10_1038_nature11855 crossref_primary_10_1002_adfm_201603947 crossref_primary_10_3389_fchem_2020_00536 crossref_primary_10_1002_ange_202014813 crossref_primary_10_1007_s12274_023_6034_y crossref_primary_10_1002_anie_202207028 crossref_primary_10_1002_adhm_202301030 crossref_primary_10_1038_ncomms7933 crossref_primary_10_1016_j_nanoen_2025_110682 crossref_primary_10_1007_s00018_018_2830_z crossref_primary_10_1089_ten_teb_2019_0281 crossref_primary_10_1109_MNANO_2017_2779718 crossref_primary_10_1073_pnas_2216934120 crossref_primary_10_3390_gels8050285 crossref_primary_10_1073_pnas_1903019116 crossref_primary_10_3390_gels9120945 crossref_primary_10_1038_s41378_021_00323_5 crossref_primary_10_1103_PhysRevE_108_054403 crossref_primary_10_1002_admi_202001147 crossref_primary_10_1002_mame_202000285 crossref_primary_10_1038_s41578_025_00782_6 crossref_primary_10_1039_D2NR05429A crossref_primary_10_1002_ange_202207028 crossref_primary_10_1007_s12206_022_0446_6 crossref_primary_10_1007_s12274_023_6141_9 crossref_primary_10_1038_s41467_019_08569_4 crossref_primary_10_1002_marc_201800900 crossref_primary_10_1002_adma_201302958 crossref_primary_10_1038_ncomms6808 crossref_primary_10_1002_marc_201900324 crossref_primary_10_1002_adhm_201701067 crossref_primary_10_1002_anie_201603607 crossref_primary_10_1007_s12257_020_0134_2 crossref_primary_10_1016_j_jcis_2025_137455 crossref_primary_10_1002_nadc_201390080 crossref_primary_10_1016_j_progpolymsci_2014_02_005 crossref_primary_10_1016_j_actbio_2021_01_034 crossref_primary_10_1016_j_progpolymsci_2019_101147 crossref_primary_10_1002_adhm_202102389 crossref_primary_10_1016_j_ijbiomac_2020_12_002 crossref_primary_10_1039_D4PY00800F crossref_primary_10_1002_ange_201603607 crossref_primary_10_1002_smll_201402085 crossref_primary_10_1002_macp_201600418 crossref_primary_10_1016_j_actbio_2018_01_042 crossref_primary_10_1021_acsmaterialslett_5c00599 |
| Cites_doi | 10.1002/adma.200501612 10.1529/biophysj.107.119743 10.1146/annurev.bi.55.070186.005011 10.1103/PhysRevLett.75.4425 10.1039/b922160c 10.1021/ma0347971 10.1039/c0sm01405b 10.1126/science.1095087 10.1103/PhysRevLett.99.208103 10.1103/PhysRevLett.104.058101 10.1038/nmat2441 10.1016/j.cell.2012.05.006 10.1126/science.8079175 10.1017/CBO9780511607318.002 10.1021/ma970564w 10.1529/biophysj.105.072215 10.1126/science.1062224 10.1103/PhysRevLett.99.098101 10.1039/c0sm01004a 10.1103/PhysRevLett.95.178102 10.1038/nature03521 10.1021/ma0517042 10.1002/anie.200301647 10.1002/anie.200800022 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2013 2014 INIST-CNRS COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group Jan 31, 2013 |
| Copyright_xml | – notice: Springer Nature Limited 2013 – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 31, 2013 |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/nature11839 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Middle School (Gale in Context) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Applied Sciences |
| EISSN | 1476-4687 |
| EndPage | 655 |
| ExternalDocumentID | 2913729381 A621109849 A318105082 23354048 26901941 10_1038_nature11839 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Netherlands |
| GeographicLocations_xml | – name: Netherlands |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMFV ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADXHL ADYSU ADZCM AENEX AETEA AEUYN AFANA AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PM3 PMFND PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UKHRP UKR UMD UQL VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YFH YNT YOC YQT YR2 YR5 YXB YZZ ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ABUFD ACSTC AEZWR AFFHD AIXLP CITATION PJZUB PPXIY PQGLB .-4 .GJ .HR 08P 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ADGHP ADNMO ADRHT AFBBN AFFDN AFHIU AFHKK AGCDD AGGDT AGQPQ AHWEU AIYXT AJUXI BCR BES BKOMP DB5 FA8 FAC HG6 IQODW J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON OHT PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 ~G0 CGR CUY CVF ECM EIF NPM AEIIB 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 ESTFP |
| ID | FETCH-LOGICAL-c814t-af2adf4d6f3d2f6383e372cfa278b58695aa2f693acafbcb9f0d40d1b2e253e93 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 470 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314219600052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Sun Nov 09 14:05:01 EST 2025 Sat Nov 29 14:54:08 EST 2025 Sat Nov 29 13:05:41 EST 2025 Sat Nov 29 13:04:26 EST 2025 Sat Nov 29 11:43:04 EST 2025 Tue Jun 10 15:32:06 EDT 2025 Tue Jun 10 15:33:28 EDT 2025 Sun Nov 23 09:01:04 EST 2025 Wed Nov 26 10:12:52 EST 2025 Wed Nov 26 10:03:53 EST 2025 Wed Nov 26 09:48:27 EST 2025 Mon Nov 24 14:49:07 EST 2025 Mon Jul 21 06:03:25 EDT 2025 Mon Jul 21 09:13:55 EDT 2025 Tue Nov 18 19:54:20 EST 2025 Sat Nov 29 07:48:57 EST 2025 Sat May 31 01:16:52 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7434 |
| Keywords | Viscoelasticity Optically active polymer Gelation Physical gel Chiral compound Nanostructure Experimental study Functional polymer Solution polymerization Biomimetics Preparation Persistence length Carboxamide Property structure relationship Hydrogel Aqueous solution Isocyanides |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c814t-af2adf4d6f3d2f6383e372cfa278b58695aa2f693acafbcb9f0d40d1b2e253e93 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.nature.com/articles/nature11839.pdf |
| PMID | 23354048 |
| PQID | 1315897411 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1283726632 proquest_journals_1315897411 gale_infotracmisc_A621109849 gale_infotracmisc_A318105082 gale_infotracgeneralonefile_A318105082 gale_infotraccpiq_621109849 gale_infotraccpiq_318105082 gale_infotracacademiconefile_A318105082 gale_incontextgauss_ISR_A621109849 gale_incontextgauss_ISR_A318105082 gale_incontextgauss_ATWCN_A621109849 gale_incontextgauss_ATWCN_A318105082 pubmed_primary_23354048 pascalfrancis_primary_26901941 crossref_primary_10_1038_nature11839 crossref_citationtrail_10_1038_nature11839 springer_journals_10_1038_nature11839 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-31 |
| PublicationDateYYYYMMDD | 2013-01-31 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | CP Broedersz (BFnature11839_CR25) 2011; 7 NA Peppas (BFnature11839_CR13) 2006; 18 C Bustamante (BFnature11839_CR26) 1994; 265 R Fernandez-Gonzalez (BFnature11839_CR3) 2012; 149 JF Leterrier (BFnature11839_CR18) 1996; 271 RD Kamm (BFnature11839_CR1) 2006 FC MacKintosh (BFnature11839_CR9) 1995; 75 E Schwartz (BFnature11839_CR5) 2010; 39 C Storm (BFnature11839_CR4) 2005; 435 JF Lutz (BFnature11839_CR20) 2006; 39 JC Tiller (BFnature11839_CR11) 2003; 42 TG Mason (BFnature11839_CR22) 1998; 31 JJLM Cornelissen (BFnature11839_CR6) 2001; 293 S Han (BFnature11839_CR19) 2003; 36 BFnature11839_CR7 AR Hirst (BFnature11839_CR14) 2008; 47 GM Grason (BFnature11839_CR16) 2007; 99 H Wang (BFnature11839_CR21) 2011; 7 TD Pollard (BFnature11839_CR17) 1986; 55 BFnature11839_CR15 Y-C Lin (BFnature11839_CR8) 2010; 104 P Fernández (BFnature11839_CR2) 2006; 90 EM Huisman (BFnature11839_CR24) 2007; 99 ES Place (BFnature11839_CR12) 2009; 8 PR Onck (BFnature11839_CR23) 2005; 95 ML Gardel (BFnature11839_CR10) 2004; 304 M Bathe (BFnature11839_CR28) 2008; 94 BFnature11839_CR27 20419211 - Chem Soc Rev. 2010 May;39(5):1576-99 3527055 - Annu Rev Biochem. 1986;55:987-1035 18825737 - Angew Chem Int Ed Engl. 2008;47(42):8002-18 10059905 - Phys Rev Lett. 1995 Dec 11;75(24):4425-4428 8079175 - Science. 1994 Sep 9;265(5178):1599-600 18055529 - Biophys J. 2008 Apr 15;94(8):2955-64 11474106 - Science. 2001 Jul 27;293(5530):676-80 20366795 - Phys Rev Lett. 2010 Feb 5;104(5):058101 17931038 - Phys Rev Lett. 2007 Aug 31;99(9):098101 12866093 - Angew Chem Int Ed Engl. 2003 Jul 14;42(27):3072-5 16383874 - Phys Rev Lett. 2005 Oct 21;95(17):178102 15889088 - Nature. 2005 May 12;435(7039):191-4 16461394 - Biophys J. 2006 May 15;90(10):3796-805 19458646 - Nat Mater. 2009 Jun;8(6):457-70 23354043 - Nature. 2013 Jan 31;493(7434):618-9 8663092 - J Biol Chem. 1996 Jun 28;271(26):15687-94 22632965 - Cell. 2012 May 25;149(5):965-7 15166374 - Science. 2004 May 28;304(5675):1301-5 18233190 - Phys Rev Lett. 2007 Nov 16;99(20):208103 |
| References_xml | – volume: 18 start-page: 1345 year: 2006 ident: BFnature11839_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.200501612 – volume: 94 start-page: 2955 year: 2008 ident: BFnature11839_CR28 publication-title: Biophys. J. doi: 10.1529/biophysj.107.119743 – volume: 271 start-page: 15687 year: 1996 ident: BFnature11839_CR18 publication-title: J. Biochem. – volume: 55 start-page: 987 year: 1986 ident: BFnature11839_CR17 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.55.070186.005011 – volume: 75 start-page: 4425 year: 1995 ident: BFnature11839_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4425 – volume: 39 start-page: 1576 year: 2010 ident: BFnature11839_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/b922160c – volume: 36 start-page: 8312 year: 2003 ident: BFnature11839_CR19 publication-title: Macromolecules doi: 10.1021/ma0347971 – volume: 7 start-page: 3897 year: 2011 ident: BFnature11839_CR21 publication-title: Soft Matter doi: 10.1039/c0sm01405b – volume: 304 start-page: 1301 year: 2004 ident: BFnature11839_CR10 publication-title: Science doi: 10.1126/science.1095087 – volume: 99 start-page: 208103 year: 2007 ident: BFnature11839_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.208103 – volume: 104 start-page: 058101 year: 2010 ident: BFnature11839_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.058101 – volume: 8 start-page: 457 year: 2009 ident: BFnature11839_CR12 publication-title: Nature Mater. doi: 10.1038/nmat2441 – volume: 149 start-page: 965 year: 2012 ident: BFnature11839_CR3 publication-title: Cell doi: 10.1016/j.cell.2012.05.006 – volume: 265 start-page: 1599 year: 1994 ident: BFnature11839_CR26 publication-title: Science doi: 10.1126/science.8079175 – start-page: 1 volume-title: Cytoskeletal Mechanics: Models and Measurements year: 2006 ident: BFnature11839_CR1 doi: 10.1017/CBO9780511607318.002 – volume: 31 start-page: 3600 year: 1998 ident: BFnature11839_CR22 publication-title: Macromolecules doi: 10.1021/ma970564w – volume: 90 start-page: 3796 year: 2006 ident: BFnature11839_CR2 publication-title: Biophys. J. doi: 10.1529/biophysj.105.072215 – volume: 293 start-page: 676 year: 2001 ident: BFnature11839_CR6 publication-title: Science doi: 10.1126/science.1062224 – ident: BFnature11839_CR7 – ident: BFnature11839_CR15 – volume: 99 start-page: 098101 year: 2007 ident: BFnature11839_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.098101 – volume: 7 start-page: 3186 year: 2011 ident: BFnature11839_CR25 publication-title: Soft Matter doi: 10.1039/c0sm01004a – volume: 95 start-page: 178102 year: 2005 ident: BFnature11839_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.178102 – volume: 435 start-page: 191 year: 2005 ident: BFnature11839_CR4 publication-title: Nature doi: 10.1038/nature03521 – volume: 39 start-page: 893 year: 2006 ident: BFnature11839_CR20 publication-title: Macromolecules doi: 10.1021/ma0517042 – ident: BFnature11839_CR27 – volume: 42 start-page: 3072 year: 2003 ident: BFnature11839_CR11 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.200301647 – volume: 47 start-page: 8002 year: 2008 ident: BFnature11839_CR14 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.200800022 – reference: 18055529 - Biophys J. 2008 Apr 15;94(8):2955-64 – reference: 20366795 - Phys Rev Lett. 2010 Feb 5;104(5):058101 – reference: 15166374 - Science. 2004 May 28;304(5675):1301-5 – reference: 10059905 - Phys Rev Lett. 1995 Dec 11;75(24):4425-4428 – reference: 16383874 - Phys Rev Lett. 2005 Oct 21;95(17):178102 – reference: 18233190 - Phys Rev Lett. 2007 Nov 16;99(20):208103 – reference: 23354043 - Nature. 2013 Jan 31;493(7434):618-9 – reference: 8079175 - Science. 1994 Sep 9;265(5178):1599-600 – reference: 12866093 - Angew Chem Int Ed Engl. 2003 Jul 14;42(27):3072-5 – reference: 19458646 - Nat Mater. 2009 Jun;8(6):457-70 – reference: 22632965 - Cell. 2012 May 25;149(5):965-7 – reference: 15889088 - Nature. 2005 May 12;435(7039):191-4 – reference: 11474106 - Science. 2001 Jul 27;293(5530):676-80 – reference: 20419211 - Chem Soc Rev. 2010 May;39(5):1576-99 – reference: 18825737 - Angew Chem Int Ed Engl. 2008;47(42):8002-18 – reference: 16461394 - Biophys J. 2006 May 15;90(10):3796-805 – reference: 8663092 - J Biol Chem. 1996 Jun 28;271(26):15687-94 – reference: 17931038 - Phys Rev Lett. 2007 Aug 31;99(9):098101 – reference: 3527055 - Annu Rev Biochem. 1986;55:987-1035 |
| SSID | ssj0005174 |
| Score | 2.5889435 |
| Snippet | Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer... Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells. The intra- and extracellular mechanics of such systems... Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells1,2. The intra- and extracellular mechanics of such... |
| SourceID | proquest gale pubmed pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 651 |
| SubjectTerms | 639/638/298/303 639/638/92/56 639/925/357/341 Actin Applied sciences Aqueous solutions Biomimetic Materials - analysis Biomimetic Materials - chemical synthesis Biomimetic Materials - chemistry Biomimetics Colloids Exact sciences and technology Gels Humanities and Social Sciences Hydrogels Hydrogels - analysis Hydrogels - chemical synthesis Hydrogels - chemistry Intermediate filament proteins letter Materials research Mechanical properties Microscopy Models, Theoretical multidisciplinary Muscle proteins Organic polymers Peptides Peptides - chemistry Phase transitions Physicochemistry of polymers Polymer crosslinking Polymers Polymers - analysis Polymers - chemistry Polyurethanes - chemistry Pore size Properties Properties and characterization Rheology Science Solution and gel properties Stress Temperature |
| Title | Responsive biomimetic networks from polyisocyanopeptide hydrogels |
| URI | https://link.springer.com/article/10.1038/nature11839 https://www.ncbi.nlm.nih.gov/pubmed/23354048 https://www.proquest.com/docview/1315897411 https://www.proquest.com/docview/1283726632 |
| Volume | 493 |
| WOSCitedRecordID | wos000314219600052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1rb9Mw0GIbSEgI2HiVjSqgwQApLImTxvmEumoTaLRUXRmFL5FjO6XSSLqmndR_z13iPsK68oEvJ7W-nJOc7xH7HoTsg5WJeCSUKcFWm65PHZN7IHgeg_UU20Ek8pD_8y9-q8V6vaCtN9wyHVY504m5opapwD3yQ5vaHgPn17Y_Di9N7BqFp6u6hcYG2cIqCSiYbe_nIsTjryrMOj_PouywKJtpo39QskhaL98b8gzeUVw0t1jlfV47Oc0N0smD_32Uh-S-dkWNerF2tsktleyQO3lIqMh2yLYW-8x4q2tTv3tE6h0dU3ulDMzcH_zGJEgjKYLJMwOzVYxhejEdANenPEmHGDUjlfFrKkdpHwzxY_Lt5Ljb-GTqLgymYLY7NnnscBm7shZT6cQgrlRR3xExd3wWeawWeJzD_wHlgseRiILYkq4l7chRjkdVQJ-QzSRN1DNiyJqrAtf1As8Hz4BbEZcWi2wnkp5QvudXyPsZJ0KhS5Rjp4yLMD8qpyxcYluF7M-Rh0VljhvQkKUh1rpIMJimzydZFta73xutsA4aDRxMcIPWo9XwMzlgLlB7tQrt81mnROtmpCVKBxopTuEZBdfpEPCmsCJXidxuCVMMB5fh-tGlWd6URvvFelk1yV4JEZSM-Ofw0jTVksDMGeJgv7PAteH6mSiEWklm4UIOKuTlfBhJY-BfotIJ4GB1JnAiKdzC00LyFsQpblq6rEJez0Rxifj1pfB8_U3skrtO3uvEBsdkj2yORxP1gtwWV-NBNqqSDb9zjrDn55ABZA27SraOjlvtDvw6PfoAsGmdInSaOfyawzZCv4Bn1VxHwXXterf54w_NT4vP |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAQIJARsDysYIaOMmRavtpHEeEKoG06qVCm2F9S04tlMqjSRr2qH-KX4jx4nTNqwrT3vgtT49TuJzi_P5OwjtQJYJeSiULSFX245Hic1dcDyXgT1F2A9FDvn_1vY6Hdbr-V9W0O_yLIyGVZYxMQ_UMhF6j3wPU-wyKH4x_pCe27prlP66WrbQKMziSE1-wStb9r71EdZ3l5CDT939Q9t0FbAFw87I5hHhMnJkI6KSRGB-VFGPiIgTj4Uua_gu5_C7T7ngUShCP6pLpy5xSBRxqdLkSxDyb0Ac9zSEzOt5M0jJX6zP5jxgnbK9gqYT63qkkgFNHrib8gzWJCqaaSyqdi99qc0T4MH9_-3RPUD3TKltNQvfWEMrKl5Ht3LIq8jW0ZoJa5n1xnBvv32ImscGM3yhLM1MMPipD3lacQGWzyx9GsdKk7PJAKx6wuMk1aggqawfEzlM-lBobKCv13JTj9BqnMTqCbJkw1G-47i-60Hlw-shl3UWYhJKVyjP9WroXbnygTAU7LoTyFmQQwEoC-bMpIZ2psJpwTxyhZg2oUBzecQaLNTn4ywLmt3T_U7QhIgNBTSUecvFGnobwGcOaHu5SKx1clzRdbXQnKbXRihK4B4FN8c94ElpxrGKus2KpEgH58Hy0blZXlVG-4W9LJpkqyIIQVT8c3humu2Kg04XhOh-br6D4f-l6wUmCWTBzO9q6MV0WKvWwMZYJWOQ0exTUCRTuITHhafPlFO9KeuwGtotXX9O-WVTeLr8Ip6j24fdz-2g3eocbaI7JO_rgqEI20Kro-FYPUM3xcVokA2386hmoe_XHQv-ALQT3ks |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamcRESAjZuZWMEtMFAilrbcZM8IFRtVFSbqmoMmPYSHNsplUaSNe1Q_xq_juPEaRvWlac98BqfHCfxuXx2zgWhbfAyIQ-FsiX4attxKbE5A8VjHshThP1Q5CH_Xw_dbtc7OfF7K-h3mQujwypLm5gbapkIfUZexxQzD8AvxvXIhEX09tsf0nNbd5DSf1rLdhqFiByoyS_YvmXvO_uw1juEtD8e732yTYcBW3jYGdk8IlxGjmxGVJIIRJEq6hIRceJ6IfOaPuMcrvuUCx6FIvSjhnQaEodEEUaVLsQE5v-GC3tMvfHrsdNZeMlfFaBNbmCDevWiZCfW2KTiDY1PuJvyDNYnKhprLEK-l_7a5s6wff9__owP0D0Dwa1WoTNraEXF6-hWHgorsnW0ZsxdZu2amtxvH6LWkYklvlCWrlgw-KmTP624CKLPLJ2lY6XJ2WQA0j7hcZLqaCGprB8TOUz6AEAeoS_X8lKP0WqcxOopsmTTUb7jMJ-5gIh4I-Sy4YWYhJIJ5TK3ht6VUhAIU5pddwg5C_IQAeoFcyJTQ9tT4rSoSHIFmRanQNf4iPUy9_k4y4LW8be9btACSw7AGuDfcrKmPh7wPQe4vVpE1vl8VOF1NdEcpzeGKErgHQU3aSDwpXQlsgq7jQqlSAfnwfLRuVleV0b7hbwsmmSzQgjGVfxzeG6arYqyTheE6D5vvoPh_lINA-McsmCmgzX0cjqsWeuAx1glY6DRVakAPFN4hCeF1s-YU31Y63g1tFOagTnml0Xh2fKHeIFugwkIDjvdgw10h-TtXjBgs020OhqO1XN0U1yMBtlwKzdwFvp-3abgD6Ro5z4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsive+biomimetic+networks+from+polyisocyanopeptide+hydrogels&rft.jtitle=Nature+%28London%29&rft.au=KOUWER%2C+Paul+H.+J&rft.au=KOEPF%2C+Matthieu&rft.au=PICKEN%2C+Stephen+J&rft.au=NOLTE%2C+Roeland+J.+M&rft.date=2013-01-31&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=493&rft.issue=7434&rft.spage=651&rft.epage=655&rft_id=info:doi/10.1038%2Fnature11839&rft.externalDBID=n%2Fa&rft.externalDocID=26901941 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |