Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability
Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21 WAF1/Cip1 , showing that its chronic expression...
Saved in:
| Published in: | Genome Biology Vol. 19; no. 1; p. 37 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
16.03.2018
Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1474-760X, 1474-7596, 1474-760X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21
WAF1/Cip1
, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery.
Results
We now demonstrate that p21
WAF1/Cip1
can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation.
Conclusions
Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21
WAF1/Cip1
expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. |
|---|---|
| AbstractList | Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21WAF1/Cip1, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. Results We now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Conclusions Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21WAF1/Cip1, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery.BACKGROUNDGenomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21WAF1/Cip1, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery.We now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation.RESULTSWe now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation.Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target.CONCLUSIONSOur results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21 WAF1/Cip1 , showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. Results We now demonstrate that p21 WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Conclusions Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21 WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. BACKGROUND: Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21ᵂᴬF¹/Cⁱᵖ¹, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. RESULTS: We now demonstrate that p21ᵂᴬF¹/Cⁱᵖ¹ can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. CONCLUSIONS: Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21ᵂᴬF¹/Cⁱᵖ¹ expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21 , showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. We now demonstrate that p21 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. Abstract Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21WAF1/Cip1, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. Results We now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Conclusions Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. |
| ArticleNumber | 37 |
| Author | Swain, Umakanta Sørensen, Claus Storgaard Georgakilas, Alexandros G. Pappas, George Kotsinas, Athanassios Bartek, Jiri Souliotis, Vassilis L. Galanos, Panagiotis Polyzos, Alexander Lygerou, Zoi Glytsou, Christina Lukas, Jiri Lukas, Claudia Chowdhury, Dipanjan Scorrano, Luca Gorgoulis, Vassilis G. Svolaki, Ioanna Livneh, Zvi Giakoumakis, Nickolaos N. Geacintov, Nicholas Pateras, Ioannis S. |
| Author_xml | – sequence: 1 givenname: Panagiotis surname: Galanos fullname: Galanos, Panagiotis organization: Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Danish Cancer Society Research Centre – sequence: 2 givenname: George surname: Pappas fullname: Pappas, George organization: Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Danish Cancer Society Research Centre – sequence: 3 givenname: Alexander surname: Polyzos fullname: Polyzos, Alexander organization: Biomedical Research Foundation of the Academy of Athens – sequence: 4 givenname: Athanassios surname: Kotsinas fullname: Kotsinas, Athanassios organization: Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens – sequence: 5 givenname: Ioanna surname: Svolaki fullname: Svolaki, Ioanna organization: Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens – sequence: 6 givenname: Nickolaos N. surname: Giakoumakis fullname: Giakoumakis, Nickolaos N. organization: Laboratory of Biology, School of Medicine, University of Patras – sequence: 7 givenname: Christina surname: Glytsou fullname: Glytsou, Christina organization: Department of Biology, University of Padova – sequence: 8 givenname: Ioannis S. surname: Pateras fullname: Pateras, Ioannis S. organization: Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens – sequence: 9 givenname: Umakanta surname: Swain fullname: Swain, Umakanta organization: Department of Biomolecular Sciences, Weizmann Institute of Science – sequence: 10 givenname: Vassilis L. surname: Souliotis fullname: Souliotis, Vassilis L. organization: Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation – sequence: 11 givenname: Alexandros G. surname: Georgakilas fullname: Georgakilas, Alexandros G. organization: Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA) – sequence: 12 givenname: Nicholas surname: Geacintov fullname: Geacintov, Nicholas organization: Department of Chemistry, New York University – sequence: 13 givenname: Luca surname: Scorrano fullname: Scorrano, Luca organization: Department of Biology, University of Padova – sequence: 14 givenname: Claudia surname: Lukas fullname: Lukas, Claudia organization: Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 15 givenname: Jiri surname: Lukas fullname: Lukas, Jiri organization: Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 16 givenname: Zvi surname: Livneh fullname: Livneh, Zvi organization: Department of Biomolecular Sciences, Weizmann Institute of Science – sequence: 17 givenname: Zoi surname: Lygerou fullname: Lygerou, Zoi organization: Laboratory of Biology, School of Medicine, University of Patras – sequence: 18 givenname: Dipanjan surname: Chowdhury fullname: Chowdhury, Dipanjan organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 19 givenname: Claus Storgaard surname: Sørensen fullname: Sørensen, Claus Storgaard organization: Biotech Research and Innovation Centre (BRIC), University of Copenhagen – sequence: 20 givenname: Jiri surname: Bartek fullname: Bartek, Jiri email: jb@cancer.dk organization: Danish Cancer Society Research Centre, Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute – sequence: 21 givenname: Vassilis G. surname: Gorgoulis fullname: Gorgoulis, Vassilis G. email: vgorg@med.uoa.gr, vgorgoulis@gmail.com organization: Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Biomedical Research Foundation of the Academy of Athens, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29548335$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:137872724$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqNkk1v1DAQhiNURD_gB3BBkbhwCXgcO7YvSFX5qlSEhEDiZmaTydZL1l7spKj_Hi_ZQrcSiIs9Gj_zejx-j4sDHzwVxWNgzwF08yJBzaSpGOgKBIPK3CuOQChRqYZ9ObgVHxbHKa0YAyN486A45EYKXdfyqPj6fhpxdMHjUCa39DhOkVIZ6YpyZrykMoaBytCXH09fSV46X25kXTnf0Yby4sdyw6HqorsiXy7Jh7VrM5VGXLjBjdcPi_s9Doke7faT4vOb15_O3lUXH96en51eVK1meqzqTrfMAJCpWc2xk6LjBmuGPUeOyIxsFePULxpoCHSnJPJWmYY6DY3WTX1SnM-6XcCV3US3xnhtAzr7KxHi0mIcXTuQNQuWhbpeaGRiIaQRLQLroTekkXrMWtWslX7QZlrsqe1S33JEVmijBM_8y5nPJ2vq2jyViMNe2f6Jd5d2Ga6s1FIBM1ng2U4ghu8TpdGuXWppGNBTmJLlTNZaNfm2_0BBGGEY26JP76CrMMX805niTIFWWspMPbnd_O-ubzySATUDbQwpRept62bP5Le4wQKzWzfa2Y02u9Fu3Wi3z4I7lTfi_6rhu9ln1i8p_mn670U_AQX58VE |
| CitedBy_id | crossref_primary_10_1177_1535370219826031 crossref_primary_10_1186_s40170_019_0201_3 crossref_primary_10_3390_cancers12020402 crossref_primary_10_1038_s41418_019_0397_3 crossref_primary_10_1038_s41389_021_00365_4 crossref_primary_10_1038_s41467_024_52551_8 crossref_primary_10_3390_ijms222111774 crossref_primary_10_1080_15384101_2020_1728025 crossref_primary_10_1002_path_6219 crossref_primary_10_1002_advs_202407575 crossref_primary_10_1002_path_5128 crossref_primary_10_1016_j_molmed_2019_04_004 crossref_primary_10_3390_cancers11111622 crossref_primary_10_3892_mmr_2018_9153 crossref_primary_10_1016_j_dnarep_2019_04_001 crossref_primary_10_1093_nar_gkz912 crossref_primary_10_3390_cells10030659 crossref_primary_10_3390_ijms23137058 crossref_primary_10_1016_j_molcel_2021_10_017 crossref_primary_10_1038_s43587_023_00420_2 crossref_primary_10_1016_j_pharmthera_2018_08_006 crossref_primary_10_3389_fgene_2021_780293 crossref_primary_10_3390_genes11060593 crossref_primary_10_1016_j_molcel_2023_09_006 crossref_primary_10_1016_j_tcb_2020_01_005 crossref_primary_10_1159_000518830 crossref_primary_10_1016_j_mrfmmm_2021_111773 crossref_primary_10_3390_ijms22105377 crossref_primary_10_3390_cancers11091220 crossref_primary_10_3390_cells10061506 crossref_primary_10_3390_molecules28114326 crossref_primary_10_1016_j_pharmthera_2019_107395 crossref_primary_10_1016_j_mad_2021_111618 crossref_primary_10_3390_cancers12020271 crossref_primary_10_3390_ijms23169180 crossref_primary_10_3390_md19060285 crossref_primary_10_1093_nar_gkz1052 crossref_primary_10_1155_2022_5969536 crossref_primary_10_1007_s11684_020_0779_4 crossref_primary_10_1016_j_jare_2025_06_009 crossref_primary_10_3390_cancers10070212 crossref_primary_10_1089_ars_2019_7987 crossref_primary_10_1093_toxres_tfac013 crossref_primary_10_1016_j_jormas_2025_102423 crossref_primary_10_3390_ijms22042167 crossref_primary_10_3390_cells8070686 crossref_primary_10_3390_cells10040866 crossref_primary_10_1186_s13059_022_02678_y |
| Cites_doi | 10.1080/15384101.2016.1216930 10.1182/blood-2016-01-691618 10.1186/s13059-016-1042-9 10.1101/cshperspect.a016428 10.1016/j.molcel.2016.10.038 10.1016/j.trecan.2015.10.007 10.1182/blood-2013-05-501072 10.1038/21447 10.1038/nature12584 10.1038/nrm3822 10.1038/nature12477 10.1038/nrc3537 10.1038/onc.2013.378 10.1016/j.tcb.2015.07.009 10.4161/cc.9.4.10727 10.1038/nature12625 10.1101/gad.2021311 10.1093/bioinformatics/btu638 10.1126/science.1120615 10.1128/MCB.24.21.9305-9316.2004 10.1016/j.molcel.2012.07.029 10.1038/nrm2858 10.1093/nar/28.23.4717 10.1186/1752-0509-8-S4-S1 10.1038/nature13181 10.1002/jor.22725 10.1101/cshperspect.a016600 10.1093/bioinformatics/btr330 10.1016/S1097-2765(02)00587-7 10.1016/j.cell.2009.02.024 10.1016/S1097-2765(01)00175-7 10.1038/nature03485 10.1038/ncb2897 10.1002/mc.22334 10.1073/pnas.0812548106 10.1101/cshperspect.a012583 10.1038/sj.leu.2405055 10.1038/nrc.2015.21 10.1126/science.283.5404.1001 10.1093/emboj/21.9.2180 10.1038/nrg3729 10.1038/msb.2010.5 10.1073/pnas.212449899 10.1016/j.molcel.2016.10.037 10.1126/science.1140735 10.1093/bioinformatics/btq033 10.1038/nrc2657 10.1016/j.celrep.2014.04.053 10.1073/pnas.1010959107 10.1073/pnas.252524999 10.1128/MCB.24.6.2344-2351.2004 10.1111/j.1365-2125.2012.04274.x 10.1038/sj.emboj.7600383 10.1158/1078-0432.CCR-11-3150 10.1038/nature05268 10.1101/195263 10.1242/jcs.074229 10.1038/ncb3378 10.1016/j.molcel.2006.03.022 10.1038/nsmb.3251 10.1021/tx980129a 10.1038/34950 10.1186/gb-2010-11-10-r106 10.1038/nature01230 10.1038/onc.2009.170 10.1128/MCB.20.14.5300-5309.2000 10.1038/nature03482 10.1016/j.ejca.2005.08.005 10.1128/MCB.18.11.6430 10.1038/nature12585 10.1038/sj.onc.1207604 10.1073/pnas.1309800110 10.1128/MCB.18.11.6423 10.1128/MMBR.66.4.630-670.2002 10.1016/j.cell.2011.02.013 10.1083/jcb.201108121 10.1126/science.1243211 10.1101/cshperspect.a016436 10.1186/gb-2013-14-4-r36 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2018 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2018 – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM ADTPV AOWAS D8T ZZAVC DOA |
| DOI | 10.1186/s13059-018-1401-9 |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1474-760X |
| EndPage | 37 |
| ExternalDocumentID | oai_doaj_org_article_9b0efbdf48a04b4594ca10f1f9e8aefa oai_swepub_ki_se_489742 PMC5857109 29548335 10_1186_s13059_018_1401_9 |
| Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: The Scientific Committee (KBVU) of Danish Cancer Society – fundername: Danish National Research Foundation grantid: CARD – fundername: Danish Cancer Society – fundername: Horizon 2020 grantid: 722729 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: Greek State Scholarships Foundation – fundername: The Danish Council for Independent Research – fundername: Novo Nordisk Foundation – fundername: Horizon 2020 grantid: 722729 – fundername: ; grantid: 722729 – fundername: ; – fundername: ; grantid: CARD |
| GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM 123 8R4 8R5 ADTPV AHSBF AOWAS D8T ZZAVC |
| ID | FETCH-LOGICAL-c808t-3d8c0911e93032ad54d29a30af2a2aa095c702efb616e18d75a2c796ed8168863 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427907000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-760X 1474-7596 |
| IngestDate | Tue Oct 14 18:06:08 EDT 2025 Tue Nov 25 03:33:53 EST 2025 Tue Nov 04 01:58:47 EST 2025 Thu Oct 02 05:38:24 EDT 2025 Sun Aug 24 04:12:38 EDT 2025 Tue Oct 14 14:21:24 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Tue Nov 18 21:32:22 EST 2025 Sat Nov 29 04:55:50 EST 2025 Sat Sep 06 07:24:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Single nucleotide substitution (SNS) Rad52 Single strand annealing (SSA) Translesion DNA synthesis (TLS) Break-induced replication (BIR) p21 Genomic instability p21WAF1/Cip1 |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c808t-3d8c0911e93032ad54d29a30af2a2aa095c702efb616e18d75a2c796ed8168863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://doaj.org/article/9b0efbdf48a04b4594ca10f1f9e8aefa |
| PMID | 29548335 |
| PQID | 2207187855 |
| PQPubID | 2040232 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9b0efbdf48a04b4594ca10f1f9e8aefa swepub_primary_oai_swepub_ki_se_489742 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5857109 proquest_miscellaneous_2053876897 proquest_miscellaneous_2014949007 proquest_journals_2207187855 pubmed_primary_29548335 crossref_citationtrail_10_1186_s13059_018_1401_9 crossref_primary_10_1186_s13059_018_1401_9 springer_journals_10_1186_s13059_018_1401_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-16 |
| PublicationDateYYYYMMDD | 2018-03-16 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Genome Biology |
| PublicationTitleAbbrev | Genome Biol |
| PublicationTitleAlternate | Genome Biol |
| PublicationYear | 2018 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | VL Souliotis (1401_CR26) 2003; 9 J Bartkova (1401_CR2) 2005; 434 LB Alexandrov (1401_CR8) 2013; 500 R Ceccaldi (1401_CR58) 2016; 26 DT Stefanou (1401_CR70) 2012; 74 Y Yamaguchi-Iwai (1401_CR41) 1998; 18 Z Livneh (1401_CR11) 2010; 9 G Ghosal (1401_CR10) 2013; 2 SF Bunting (1401_CR80) 2013; 13 S Macip (1401_CR23) 2002; 21 K Watanabe (1401_CR12) 2004; 23 A Satyanarayana (1401_CR28) 2009; 28 R Bhowmick (1401_CR50) 2016; 64 SE Polo (1401_CR31) 2011; 25 N Kanu (1401_CR42) 2016; 17 E Mavrogonatou (1401_CR72) 2014; 32 BH Lok (1401_CR66) 2012; 18 CJ Lord (1401_CR30) 2016; 16 N Saini (1401_CR45) 2013; 502 J Luo (1401_CR6) 2009; 136 L Costantino (1401_CR43) 2014; 343 H Gad (1401_CR24) 2014; 508 W Kagawa (1401_CR35) 2002; 10 RA Burrell (1401_CR55) 2013; 19 R Lieberman (1401_CR64) 2016; 55 V Roukos (1401_CR68) 2011; 124 Z Feng (1401_CR65) 2011; 108 TD Halazonetis (1401_CR4) 2008; 319 PK Tsantoulis (1401_CR59) 2005; 41 L Haracska (1401_CR17) 2002; 99 T Abbas (1401_CR20) 2009; 9 JR Chapman (1401_CR79) 2012; 47 C Masutani (1401_CR15) 1999; 399 S Srihari (1401_CR29) 2014; 8 O Ziv (1401_CR19) 2009; 106 NA Willis (1401_CR57) 2015; 1 AR Quinlar (1401_CR74) 2010; 26 S Avkin (1401_CR18) 2006; 22 EK Benson (1401_CR60) 2014; 33 Y Zhang (1401_CR16) 2000; 28 K Cramer-Morales (1401_CR63) 2013; 122 F Ochs (1401_CR52) 2016; 23 RE Johnson (1401_CR14) 1999; 283 T Helleday (1401_CR7) 2014; 15 RA Donnianni (1401_CR47) 2013; 110 JM Stark (1401_CR53) 2004; 24 AA Davies (1401_CR37) 2001; 7 P Galanos (1401_CR61) 2016; 15 MJ Tilby (1401_CR69) 1998; 11 P Danecek (1401_CR73) 2011; 27 MR Singleton (1401_CR36) 2002; 99 LS Symington (1401_CR81) 2014; 6 R Prakash (1401_CR39) 2015; 7 N Sugawara (1401_CR34) 2000; 20 M Bienko (1401_CR13) 2005; 310 AM Jankowska (1401_CR27) 2008; 22 AP Davis (1401_CR48) 2004; 24 S Anders (1401_CR76) 2015; 31 T Rijkers (1401_CR40) 1998; 18 M Sideridou (1401_CR67) 2011; 195 JA Marteijn (1401_CR25) 2014; 15 P Galanos (1401_CR9) 2016; 18 CJ Sakofsky (1401_CR44) 2014; 7 JH New (1401_CR32) 1998; 391 SK Sotiriou (1401_CR49) 2016; 64 LS Symington (1401_CR33) 2002; 66 S Negrini (1401_CR5) 2010; 11 K Treuner (1401_CR62) 2004; 23 JF Passos (1401_CR21) 2010; 6 D Hanahan (1401_CR56) 2011; 144 L Pellegrini (1401_CR38) 2002; 420 D Kim (1401_CR75) 2013; 14 1401_CR78 J Bartkova (1401_CR3) 2006; 444 MA Wilson (1401_CR46) 2013; 502 M Gkotzamanidou (1401_CR71) 2016; 128 MK Zeman (1401_CR54) 2014; 16 VG Gorgoulis (1401_CR1) 2005; 434 HE Krokan (1401_CR22) 2013; 5 A Mehta (1401_CR51) 2014; 6 S Anders (1401_CR77) 2010; 11 35484586 - Genome Biol. 2022 Apr 28;23(1):107 |
| References_xml | – volume: 15 start-page: 3153 year: 2016 ident: 1401_CR61 publication-title: Cell Cycle doi: 10.1080/15384101.2016.1216930 – volume: 128 start-page: 1214 year: 2016 ident: 1401_CR71 publication-title: Blood doi: 10.1182/blood-2016-01-691618 – volume: 17 start-page: 185 year: 2016 ident: 1401_CR42 publication-title: Genome Biol doi: 10.1186/s13059-016-1042-9 – volume: 6 start-page: a016428 year: 2014 ident: 1401_CR51 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016428 – volume: 64 start-page: 1127 year: 2016 ident: 1401_CR49 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.10.038 – volume: 1 start-page: 217 year: 2015 ident: 1401_CR57 publication-title: Trends Cancer doi: 10.1016/j.trecan.2015.10.007 – volume: 122 start-page: 1293 year: 2013 ident: 1401_CR63 publication-title: Blood doi: 10.1182/blood-2013-05-501072 – volume: 399 start-page: 700 year: 1999 ident: 1401_CR15 publication-title: Nature doi: 10.1038/21447 – volume: 502 start-page: 389 year: 2013 ident: 1401_CR45 publication-title: Nature doi: 10.1038/nature12584 – volume: 15 start-page: 465 year: 2014 ident: 1401_CR25 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3822 – volume: 2 start-page: 107 year: 2013 ident: 1401_CR10 publication-title: Transl Cancer Res doi: 10.1038/nature12477 – volume: 13 start-page: 443 year: 2013 ident: 1401_CR80 publication-title: Nat Rev Cancer doi: 10.1038/nrc3537 – volume: 33 start-page: 3959 year: 2014 ident: 1401_CR60 publication-title: Oncogene doi: 10.1038/onc.2013.378 – volume: 26 start-page: 52 year: 2016 ident: 1401_CR58 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2015.07.009 – volume: 9 start-page: 729 year: 2010 ident: 1401_CR11 publication-title: Cell Cycle doi: 10.4161/cc.9.4.10727 – volume: 19 start-page: 338 year: 2013 ident: 1401_CR55 publication-title: Nature doi: 10.1038/nature12625 – volume: 500 start-page: 415 year: 2013 ident: 1401_CR8 publication-title: Nature doi: 10.1038/nature12477 – volume: 25 start-page: 409 year: 2011 ident: 1401_CR31 publication-title: Genes Dev doi: 10.1101/gad.2021311 – volume: 31 start-page: 166 year: 2015 ident: 1401_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 310 start-page: 1821 year: 2005 ident: 1401_CR13 publication-title: Science doi: 10.1126/science.1120615 – volume: 24 start-page: 9305 year: 2004 ident: 1401_CR53 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.21.9305-9316.2004 – volume: 47 start-page: 497 year: 2012 ident: 1401_CR79 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.07.029 – volume: 11 start-page: 220 year: 2010 ident: 1401_CR5 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2858 – volume: 28 start-page: 4717 year: 2000 ident: 1401_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.23.4717 – volume: 8 start-page: S1 issue: Suppl 4 year: 2014 ident: 1401_CR29 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-8-S4-S1 – volume: 508 start-page: 215 year: 2014 ident: 1401_CR24 publication-title: Nature doi: 10.1038/nature13181 – volume: 32 start-page: 1701 year: 2014 ident: 1401_CR72 publication-title: J Orthop Res doi: 10.1002/jor.22725 – volume: 7 start-page: a016600 year: 2015 ident: 1401_CR39 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016600 – volume: 27 start-page: 2156 year: 2011 ident: 1401_CR73 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr330 – volume: 10 start-page: 359 year: 2002 ident: 1401_CR35 publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00587-7 – volume: 136 start-page: 823 year: 2009 ident: 1401_CR6 publication-title: Cell doi: 10.1016/j.cell.2009.02.024 – volume: 7 start-page: 273 year: 2001 ident: 1401_CR37 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00175-7 – volume: 434 start-page: 907 year: 2005 ident: 1401_CR1 publication-title: Nature doi: 10.1038/nature03485 – volume: 16 start-page: 2 year: 2014 ident: 1401_CR54 publication-title: Nat Cell Biol doi: 10.1038/ncb2897 – volume: 55 start-page: 953 year: 2016 ident: 1401_CR64 publication-title: Mol Carcinog doi: 10.1002/mc.22334 – volume: 106 start-page: 11552 year: 2009 ident: 1401_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0812548106 – volume: 5 start-page: a012583 year: 2013 ident: 1401_CR22 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a012583 – volume: 22 start-page: 551 year: 2008 ident: 1401_CR27 publication-title: Leukemia doi: 10.1038/sj.leu.2405055 – volume: 16 start-page: 110 year: 2016 ident: 1401_CR30 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2015.21 – volume: 283 start-page: 1001 year: 1999 ident: 1401_CR14 publication-title: Science doi: 10.1126/science.283.5404.1001 – volume: 21 start-page: 2180 year: 2002 ident: 1401_CR23 publication-title: EMBO J doi: 10.1093/emboj/21.9.2180 – volume: 15 start-page: 585 year: 2014 ident: 1401_CR7 publication-title: Nat Rev Genet doi: 10.1038/nrg3729 – volume: 6 start-page: 347 year: 2010 ident: 1401_CR21 publication-title: Mol Syst Biol doi: 10.1038/msb.2010.5 – volume: 99 start-page: 13492 year: 2002 ident: 1401_CR36 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.212449899 – volume: 64 start-page: 1117 year: 2016 ident: 1401_CR50 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.10.037 – volume: 319 start-page: 1352 year: 2008 ident: 1401_CR4 publication-title: Science doi: 10.1126/science.1140735 – volume: 26 start-page: 841 year: 2010 ident: 1401_CR74 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 9 start-page: 400 year: 2009 ident: 1401_CR20 publication-title: Nat Rev Cancer doi: 10.1038/nrc2657 – volume: 7 start-page: 1640 year: 2014 ident: 1401_CR44 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.04.053 – volume: 108 start-page: 686 year: 2011 ident: 1401_CR65 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1010959107 – volume: 99 start-page: 16000 year: 2002 ident: 1401_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.252524999 – volume: 9 start-page: 4465 year: 2003 ident: 1401_CR26 publication-title: Clin Cancer Res – volume: 24 start-page: 2344 year: 2004 ident: 1401_CR48 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.6.2344-2351.2004 – volume: 74 start-page: 842 year: 2012 ident: 1401_CR70 publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2012.04274.x – volume: 23 start-page: 3886 year: 2004 ident: 1401_CR12 publication-title: EMBO doi: 10.1038/sj.emboj.7600383 – volume: 18 start-page: 6400 year: 2012 ident: 1401_CR66 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-3150 – volume: 444 start-page: 633 year: 2006 ident: 1401_CR3 publication-title: Nature doi: 10.1038/nature05268 – ident: 1401_CR78 doi: 10.1101/195263 – volume: 124 start-page: 422 year: 2011 ident: 1401_CR68 publication-title: J Cell Sci doi: 10.1242/jcs.074229 – volume: 18 start-page: 777 year: 2016 ident: 1401_CR9 publication-title: Nat Cell Biol doi: 10.1038/ncb3378 – volume: 22 start-page: 407 year: 2006 ident: 1401_CR18 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.03.022 – volume: 23 start-page: 714 year: 2016 ident: 1401_CR52 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.3251 – volume: 11 start-page: 1162 year: 1998 ident: 1401_CR69 publication-title: Chem Res Toxicol doi: 10.1021/tx980129a – volume: 391 start-page: 407 year: 1998 ident: 1401_CR32 publication-title: Nature doi: 10.1038/34950 – volume: 11 start-page: R106 year: 2010 ident: 1401_CR77 publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 420 start-page: 287 year: 2002 ident: 1401_CR38 publication-title: Nature doi: 10.1038/nature01230 – volume: 28 start-page: 2925 year: 2009 ident: 1401_CR28 publication-title: Oncogene doi: 10.1038/onc.2009.170 – volume: 20 start-page: 5300 year: 2000 ident: 1401_CR34 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.14.5300-5309.2000 – volume: 434 start-page: 864 year: 2005 ident: 1401_CR2 publication-title: Nature doi: 10.1038/nature03482 – volume: 41 start-page: 2403 year: 2005 ident: 1401_CR59 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2005.08.005 – volume: 18 start-page: 6430 year: 1998 ident: 1401_CR41 publication-title: Mol Cell Biol doi: 10.1128/MCB.18.11.6430 – volume: 502 start-page: 393 year: 2013 ident: 1401_CR46 publication-title: Nature doi: 10.1038/nature12585 – volume: 23 start-page: 4655 year: 2004 ident: 1401_CR62 publication-title: Oncogene doi: 10.1038/sj.onc.1207604 – volume: 110 start-page: 13475 year: 2013 ident: 1401_CR47 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1309800110 – volume: 18 start-page: 6423 year: 1998 ident: 1401_CR40 publication-title: Mol Cell Biol doi: 10.1128/MCB.18.11.6423 – volume: 66 start-page: 630 year: 2002 ident: 1401_CR33 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.66.4.630-670.2002 – volume: 144 start-page: 646 year: 2011 ident: 1401_CR56 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 195 start-page: 1123 year: 2011 ident: 1401_CR67 publication-title: J Cell Biol doi: 10.1083/jcb.201108121 – volume: 343 start-page: 88 year: 2014 ident: 1401_CR43 publication-title: Science doi: 10.1126/science.1243211 – volume: 6 start-page: a016436 year: 2014 ident: 1401_CR81 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016436 – volume: 14 start-page: R36 year: 2013 ident: 1401_CR75 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – reference: 35484586 - Genome Biol. 2022 Apr 28;23(1):107 |
| SSID | ssj0019426 ssj0017866 |
| Score | 2.489396 |
| Snippet | Background
Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate... Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic... Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate... BACKGROUND: Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate... Abstract Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of... |
| SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 37 |
| SubjectTerms | Animal Genetics and Genomics Bioinformatics Biomedical and Life Sciences Break-induced replication (BIR) Cancer Cell Line Cyclin-dependent kinase inhibitor p21 Cyclin-Dependent Kinase Inhibitor p21 - metabolism Deoxyribonucleic acid DNA DNA - biosynthesis DNA damage DNA Repair evolution Evolutionary Biology Experiments fuels genetic instability genome Genomes Genomic Instability Human Genetics Humans Irritable bowel syndrome landscapes Life Sciences Microbial Genetics and Genomics Mutation p21WAF1/Cip1 p53 Protein Plant Genetics and Genomics Post-translation Rad52 Rad52 DNA Repair and Recombination Protein - physiology Rad52 protein Recruitment Replication Senescence Signatures Single nucleotide substitution (SNS) Therapeutic applications therapeutics Transcription transcription (genetics) Translesion DNA synthesis (TLS) Tumor Suppressor Protein p53 - physiology Tumors |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJEQB1DUxI_EPqHyqLhQVQik3oxjOxAB2WU3i9R_z4zjTRVAe-G2cSZaOzOeh2fyDSFPC84RYgTCEh0QVLut86YRPvde2ablSkrZxGYT9fGxOj3VJ-nAbZ3KKrc6MSpqv3B4Rn7AGBhDVcPDL5c_c-wahdnV1ELjIrmEKAk8lu6dTFmEWqGvki60YOOnRliAKHWVUpylqg7WoMgllg1BQAXxRq5nRipi-f_LAf27jnJKpv4BPBqN1dH1_13mDXItuan0cJSrm-RC6G-RK2PjyrPb5PP7zZBOESlWgER00DVFOCgYAZ-SYtUiXbT0w-EbyWjX06XkeTf13B3okpW5X6GupYgT-6NzQAWuaizWPbtDPh29_fj6XZ56NeROFWrIuVcOXI8yaLCJzHopPNOWF7ZlllkLjpyrCxbapiqrUCpfS8tcravgsfGHqvhdstcv-nCf0MJ5Dn5YzSvthG25DY0uuPcI3eeskBkptswxLgGZYz-N7yYGNKoyIz8N8NMgP43OyPPpkeWI4rGL-BVyfCJEAO44sFh9MWk_G90UsBjfCmUL0QiphbNl0ZatDsqG1mZkf8tfk7TC2pwzNyNPptuwnzFJY_uw2AANxqxCg-u2iwbMFMSJGmjujSI4zRbztvghXUbqmXDOljO_03dfI644RI5YmZuRF1sxPp_6jrf1bJT02R-koW_wKxgBExXswe438pBcZbgBsVSy2id7w2oTHpHL7tfQrVeP477-DXA5UfY priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9QwDI5gAYkX7qOwoCAhHkAVbY42eVyOFS-s0HJo30KapFABndG0g7T_Hjs9UGE1EryNUncmSe3489j9TMjjjHOkGIGwRAck1a7LtKqET71Xtqq5klJWsdlEeXSkTk70u_E97m6qdp9SkvGkjmatiucdnLYSa3sg6oGgINXnyQXwdgqt8fj9pzl1oMHnjOnLM29bOKDI038WuPy7RnJOlP5BKhod0eHV_1rCNXJlxJ30YFCU6-RcaG-QS0MnytOb5PPbbT_-LUixpCPSfXYU-Z1gBEAixTJEuqrp8cEryWjT0rXkaTM30e3pmuWp3-DhSZH49UfjQAqwZ6y-Pb1FPh6-_vDyTTo2X0idylSfcq8cYIk8aHByzHopPNOWZ7ZmllkLyMyVGQt1VeRFyJUvpWWu1EXw2MlDFfw22WtXbbhLaOY8B2BV8kI7YWtuQ6Uz7j1y8TkrZEKy6YkYNzKTY4OM7yZGKKoww8YZ2DiDG2d0Qp7Ot6wHWo5dwi_wMc-CyKgdB1abL2Y0UKOrDBbja6FsJiohtXA2z-q81kHZUNuE7E9KYkYz7wxjgNBUCRqdkEfzZTBQzLrYNqy2IINBqNCAxXbJgN-BwE-DzJ1B7-bZYiIW34xLSLnQyMVyllfa5mskCodQEEttE_JsUsffU9-xW08G9V78wDj0DT4FI2Cigt37p6-9Ty4zVHwshSz2yV6_2YYH5KL72Tfd5mE04V-sNkK1 priority: 102 providerName: Springer Nature |
| Title | Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability |
| URI | https://link.springer.com/article/10.1186/s13059-018-1401-9 https://www.ncbi.nlm.nih.gov/pubmed/29548335 https://www.proquest.com/docview/2207187855 https://www.proquest.com/docview/2014949007 https://www.proquest.com/docview/2053876897 https://pubmed.ncbi.nlm.nih.gov/PMC5857109 http://kipublications.ki.se/Default.aspx?queryparsed=id:137872724 https://doaj.org/article/9b0efbdf48a04b4594ca10f1f9e8aefa |
| Volume | 19 |
| WOSCitedRecordID | wos000427907000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017866 issn: 1474-760X databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: RSV dateStart: 20000201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4rkElspIiAMo2sR2Evu4hV3BYauoPFS4GMd2RAWkVR9I---ZcdJAAJULlyh1poo7Hme-6Uy-IeRJwjlSjEBYojySatdFXFXCxc5JU9VcZllWhWYTxWQiZzNV_tLqC2vCWnrgVnHHqkp8XblaSJOISmRKWJMmdVorL42vAzQC1LMLprr8gQLH0-UwU5kfr-FJnWFdEERMEFDEauCFAln_3xDmn4WSfbb0N2bR4I3ObpIbHYykJ-30b5FLvrlNrrWNJS_ukE_n2033Lx_FCo3A3rmmSNcEI4D5KFYV0kVNpycvM0bnDV1mPJ73PXE3dMnS2K3wWUiRx_Xb3IIUQMlQTHtxl7w7O3374lXc9VKIrUzkJuZOWoAGqVfgs5hxmXBMGZ6YmhlmDAAtWyQMNJ2nuU-lKzLDbKFy77Axh8z5PXLQLBp_n9DEOg44qeC5ssLU3PhKJdw5pNazRmQRSXa61bYjGsd-F191CDhkrtvl0LAcGpdDq4g867-ybFk29gmPccF6QSTIDgNgNrozG_0vs4nI0W65dbdr15oxAFyyAAONyOP-Muw3TKKYxi-2IIMxpVAArfbJgBuBOE6BzGFrQf1sMa-KL7pFpBjY1uDnDK8088-B9xsiO6ycjcjznRX-nPoebT1tDXVwg27oC5x5LWCigj34H2p9SK4z3GVY8JgfkYPNausfkav2-2a-Xo3I5WJWhKMckSvj00k5HYV9O8KS2xLGytfn5Qf4NB1_xOOb9z8AgltJUQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwEjAARQ18SOxDwgVStWq7apCRerNdWwHVkB22Qdo_xS_kZm8qgW0tx647TqTje2dZ2b8DSHPEs4RYgTCEh0QVLvM46IQPvZe2aLkSkpZ1M0m8sFAnZzoozXyqzsLg2WVnU6sFbUfOXxHvskYGEOVw81vxt9j7BqF2dWuhUbDFvth8RNCtunrvW34f58ztvP--N1u3HYViJ1K1CzmXjkwkmnQoL2Z9VJ4pi1PbMkssxZcDpcnLJRFlmYhVT6XlrlcZ8FjiwqVcfjdC-QiuBFM1aWCR33WIlfoG7VftGDN0SYseJQ6a1Oqqco2p2A4JJYpQQAH8U2sl4xi3TvgXw7v33WbffL2D6DT2jjuXP_ftvUGuda64XSrkZubZC1Ut8jlpjHn4jY5PZzP2rekFCtcavTTKUW4KxgBn5liVSYdlfTD1rZkdFjRseTxsO8pPKNjlsZ-graEIg7ut6EDKnDF62LkxR3y8VyWd5esV6Mq3Cc0cZ6Dn5nzTDthS25DoRPuPUITOitkRJKOGYxrgdqxX8hXUwdsKjMN_xjgH4P8Y3REXva3jBuUklXEb5HDekIEGK8HRpNPptVXRhcJLMaXQtlEFEJq4WyalGmpg7KhtBHZ6PjJtFpvas6YKSJP-8ugrzAJZaswmgMNxuRCg2u6igbMMMTBGmjuNSzfzxbz0nhQMCL5kjAsLWf5SjX8XOOmQ2SMlccRedWJzdnUV-zWi0aylh7QDn2BT8EImKhgD1bvyBNyZff48MAc7A32H5KrDIUfy0KzDbI-m8zDI3LJ_ZgNp5PHtU6h5PS8pe03OpytbQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELZgOcQL9xFYwEiIB1C0ie0k9uPCUoGAasWlffM6PiAC0qpJkfbfM5MLFVaVEG-RM2lsZybzTWfyDSGPE86RYgTCEuWRVDsUcVkKFzsnTRm4zLKs7JpNFPO5PDpSh0Of02asdh9Tkv03DcjSVLd7Sxd6E5f5XgNv3gzrfCACggAhVmfJOYE9gzBc__B5SiMo8D9DKvPUyzacUcfZfxrQ_Lteckqa_kEw2jml2ZX_Xs5VcnnAo3S_V6Br5Iyvr5MLfYfKkxvk-N26Hf4upFjq0dGANhR5n2AEwCPF8kS6CPT9_kHGaFXTZcbjamqu29IlS2O3wpcqRULYH5UFKcCkXVXuyU3yafby44tX8dCUIbYykW3MnbSAMVKvwPkx4zLhmDI8MYEZZgwgNlskzIcyT3OfSldkhtlC5d5hhw-Z81tkp17U_g6hiXUcAFfBc2WFCdz4UiXcOeTos0ZkEUnGp6PtwFiOjTO-6y5ykbnuN07DxmncOK0i8nS6ZNnTdWwTfo6PfBJEpu1uYLH6ogfD1apMYDEuCGkSUYpMCWvSJKRBeWl8MBHZHRVGD-bfaMYAuckCND0ij6bTYLiYjTG1X6xBBoNToQCjbZMBfwQBoQKZ270OTrPFBC1-MReRYkM7N5azeaauvnYE4hAiYgluRJ6Nqvl76lt260mv6hs3GIa-wZHXAiYq2N1_-tmH5OLhwUy_fT1_c49cYmgDWC2Z75KddrX298l5-7OtmtWDzrJ_AXXCTn0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutational+signatures+reveal+the+role+of+RAD52+in+p53-independent+p21-driven+genomic+instability&rft.jtitle=Genome+biology&rft.au=Galanos%2C+Panagiotis&rft.au=Pappas%2C+George&rft.au=Polyzos%2C+Alexander&rft.au=Kotsinas%2C+Athanassios&rft.date=2018-03-16&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=19&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1186%2Fs13059-018-1401-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |