Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos

Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology Jg. 7; H. 1; S. e1000013
Hauptverfasser: Schuettengruber, Bernd, Ganapathi, Mythily, Leblanc, Benjamin, Portoso, Manuela, Jaschek, Rami, Tolhuis, Bas, van Lohuizen, Maarten, Tanay, Amos, Cavalli, Giacomo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.01.2009
Public Library of Science (PLoS)
Schlagworte:
ISSN:1545-7885, 1544-9173, 1545-7885
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.
AbstractList Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.
  Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N–bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Comparison of the genome-wide distribution of PcG, trxG, and sequence-specific DNA binding proteins allowed the identification of key signals leading to Polycomb or Trithorax recruitment.
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-Nabound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Author Summary Although all cells of a developing organism have the same DNA, they express different genes and transmit these gene expression patterns to daughter cells through multiple rounds of cell division. This cellular memory for gene expression states is maintained by two groups of proteins: Polycomb-group proteins (PcG), which establish and maintain stable gene silencing, and trithorax group proteins (trxG), which counteract silencing and enable gene activation. It is unknown how this balance works and how exactly these proteins are recruited to their target sequences. By mapping the genome-wide distribution of PcG and trxG factors and proteins known to recruit them to chromatin, we found that putative PcG recruiters are not only colocalized at PcG binding sites, but also bind to many other genomic regions that are actually the binding sites of the Trithorax complex. We identified new DNA sequences important for the recruitment of both PcG and trxG proteins and showed that the differential binding of the recruiters PHO and PHOL may discriminate between active and inactive regions. Finally, we found that the two fragments of the Trithorax protein have different chromosomal distributions, suggesting that they may have distinct nuclear functions. Comparison of the genome-wide distribution of PcG, trxG, and sequence-specific DNA binding proteins allowed the identification of key signals leading to Polycomb or Trithorax recruitment.
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.
Audience Academic
Author van Lohuizen, Maarten
Schuettengruber, Bernd
Ganapathi, Mythily
Tolhuis, Bas
Jaschek, Rami
Portoso, Manuela
Leblanc, Benjamin
Cavalli, Giacomo
Tanay, Amos
AuthorAffiliation 2 Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
Harvard University, United States of America
3 Division of Molecular Genetics, and the Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
1 Institut de Génétique Humaine, CNRS, Montpellier, France
AuthorAffiliation_xml – name: 2 Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
– name: Harvard University, United States of America
– name: 1 Institut de Génétique Humaine, CNRS, Montpellier, France
– name: 3 Division of Molecular Genetics, and the Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Bernd
  surname: Schuettengruber
  fullname: Schuettengruber, Bernd
– sequence: 2
  givenname: Mythily
  surname: Ganapathi
  fullname: Ganapathi, Mythily
– sequence: 3
  givenname: Benjamin
  surname: Leblanc
  fullname: Leblanc, Benjamin
– sequence: 4
  givenname: Manuela
  surname: Portoso
  fullname: Portoso, Manuela
– sequence: 5
  givenname: Rami
  surname: Jaschek
  fullname: Jaschek, Rami
– sequence: 6
  givenname: Bas
  surname: Tolhuis
  fullname: Tolhuis, Bas
– sequence: 7
  givenname: Maarten
  surname: van Lohuizen
  fullname: van Lohuizen, Maarten
– sequence: 8
  givenname: Amos
  surname: Tanay
  fullname: Tanay, Amos
– sequence: 9
  givenname: Giacomo
  surname: Cavalli
  fullname: Cavalli, Giacomo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19143474$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00357174$$DView record in HAL
BookMark eNqVk11v0zAUhiM0xD7gHyCIhIS0ixbbSWxnF0hV2ViliiEYcGmdOE7rKbGL7Uzrv8dZO1gnxEdyEef4eV_nnJxzmOwZa1SSPMdojDOG31zZ3hlox6tK2zFG8cLZo-QAF3kxYpwXe_fW-8mh91cIEVIS_iTZxyXOs5zlB8m3s97IoG10SicGgu3WqW3Sj7ZdS9tVKZg6vXQ6LK2Dm3S6dLaDoE06jxtewkr5NL69c9bb1VK3kJ52lVtb_zR53EDr1bPt8yj5cnZ6OT0fzS_ez6aT-UiykoYRlQ3wiuZFrlShIJMAUpKyKjmUmCBUYNpUMmtqWVFJas5jkOWMAme1lCXOjpKXG99Va73Y1sQLHBPNEOO4iMRsQ9QWrsTK6Q7cWljQ4jZg3UKAC1q2SvCCVgwRBkRBThkGDBwrXmPKWFnXWfR6uz2trzpVS2WCg3bHdHfH6KVY2GtBKMGE0mhwvDFYPpCdT-ZiiCGUFQyz_HpI7fX2MGe_98oH0WkvVduCUbb3glJOCaHoryDBiLFoHMFXG3ABMVttGhs_Ug6wmOCyiA2Ebws2_g0V71p1WsYmbHSM7wiOdwSRCeomLKD3Xsw-f_oP9sO_sxdfd9kX9__Mz9redXoE8g0gY696p5pfCBLDQN01jxgGSmwHKspOHsikDjAMTCyKbv8s_gFBjSVm
CitedBy_id crossref_primary_10_1134_S1022795417020028
crossref_primary_10_1007_s00412_015_0539_4
crossref_primary_10_1371_journal_pbio_3002629
crossref_primary_10_1371_journal_pgen_1002266
crossref_primary_10_1093_nar_gkt598
crossref_primary_10_1093_nar_gkq1322
crossref_primary_10_1534_genetics_115_177030
crossref_primary_10_1242_dev_065599
crossref_primary_10_1186_1471_2105_11_557
crossref_primary_10_1007_s00018_022_04383_2
crossref_primary_10_1016_j_ygeno_2010_03_012
crossref_primary_10_3389_fgene_2014_00277
crossref_primary_10_1016_j_bbagrm_2022_194786
crossref_primary_10_1016_j_ygeno_2017_05_010
crossref_primary_10_1007_s00412_011_0312_2
crossref_primary_10_1093_nar_gkr869
crossref_primary_10_1128_MCB_01451_09
crossref_primary_10_1002_dvg_20609
crossref_primary_10_1016_j_bbagrm_2018_03_006
crossref_primary_10_1016_j_febslet_2011_05_010
crossref_primary_10_1016_j_molcel_2013_01_016
crossref_primary_10_1242_jcs_210179
crossref_primary_10_1371_journal_pcbi_1009423
crossref_primary_10_1073_pnas_1002059108
crossref_primary_10_1016_j_tcb_2016_04_009
crossref_primary_10_1038_cdd_2016_135
crossref_primary_10_1016_j_gene_2020_144368
crossref_primary_10_1038_nrg3607
crossref_primary_10_1534_genetics_115_185116
crossref_primary_10_1038_hdy_2015_91
crossref_primary_10_1093_jxb_err155
crossref_primary_10_1146_annurev_cellbio_100913_013027
crossref_primary_10_1093_nar_gkt217
crossref_primary_10_1371_journal_pgen_1003571
crossref_primary_10_1101_gr_239848_118
crossref_primary_10_1016_j_gde_2013_11_016
crossref_primary_10_1038_ng_3848
crossref_primary_10_1007_s00441_014_1824_x
crossref_primary_10_1038_s41598_017_07282_w
crossref_primary_10_1093_nar_gkv195
crossref_primary_10_1016_j_cell_2012_03_035
crossref_primary_10_1016_j_cell_2010_12_026
crossref_primary_10_1080_15384101_2018_1553338
crossref_primary_10_3390_ijms241411394
crossref_primary_10_1016_j_bbagrm_2016_12_003
crossref_primary_10_1534_genetics_115_185132
crossref_primary_10_1016_j_molcel_2014_03_004
crossref_primary_10_1186_s13059_017_1333_9
crossref_primary_10_1016_j_cell_2017_08_002
crossref_primary_10_1016_j_ydbio_2013_03_011
crossref_primary_10_7554_eLife_02833
crossref_primary_10_1158_1541_7786_MCR_10_0398
crossref_primary_10_1534_g3_119_400579
crossref_primary_10_1016_j_ydbio_2011_12_001
crossref_primary_10_1242_dev_076687
crossref_primary_10_1073_pnas_1515276112
crossref_primary_10_1016_j_ydbio_2011_12_007
crossref_primary_10_1371_journal_pgen_1003159
crossref_primary_10_1371_journal_pgen_1003951
crossref_primary_10_1038_s41586_024_07328_w
crossref_primary_10_1101_gr_159608_113
crossref_primary_10_1016_j_gpb_2018_12_009
crossref_primary_10_1016_j_ygcen_2016_03_028
crossref_primary_10_14348_molcells_2014_0249
crossref_primary_10_3390_epigenomes6030025
crossref_primary_10_1101_gad_223834_113
crossref_primary_10_15252_embr_201846762
crossref_primary_10_1371_journal_pone_0073983
crossref_primary_10_3389_fgene_2023_1108104
crossref_primary_10_1042_BST20160173
crossref_primary_10_1146_annurev_cellbio_101011_155824
crossref_primary_10_1088_1478_3975_10_2_026006
crossref_primary_10_1182_blood_2010_04_280149
crossref_primary_10_1101_gr_209486_116
crossref_primary_10_1038_nrm2763
crossref_primary_10_1245_s10434_013_3135_y
crossref_primary_10_1098_rsos_150011
crossref_primary_10_1038_nchembio_2247
crossref_primary_10_1016_j_ydbio_2022_12_008
crossref_primary_10_1073_pnas_0904638106
crossref_primary_10_1371_journal_pone_0161997
crossref_primary_10_26508_lsa_202302369
crossref_primary_10_1093_g3journal_jkab237
crossref_primary_10_1242_dev_183400
crossref_primary_10_1134_S1607672919010095
crossref_primary_10_1101_gr_114348_110
crossref_primary_10_1371_journal_pgen_1008152
crossref_primary_10_1371_journal_pgen_1002040
crossref_primary_10_1371_journal_pgen_1007187
crossref_primary_10_7554_eLife_00861
crossref_primary_10_1101_gad_1886410
crossref_primary_10_1007_s12032_014_0271_6
crossref_primary_10_1371_journal_pone_0073649
crossref_primary_10_1016_j_molcel_2012_01_002
crossref_primary_10_1002_dvdy_24228
crossref_primary_10_1073_pnas_1520926113
crossref_primary_10_1371_journal_pone_0163128
crossref_primary_10_1101_gad_325050_119
crossref_primary_10_1534_genetics_112_146340
crossref_primary_10_3390_epigenomes2010001
crossref_primary_10_1016_j_jmb_2014_09_013
crossref_primary_10_1101_gad_260562_115
crossref_primary_10_3390_epigenomes2010004
crossref_primary_10_1186_s13072_019_0301_x
crossref_primary_10_1111_exd_14415
crossref_primary_10_1371_journal_pone_0173602
crossref_primary_10_1038_nbt_1662
crossref_primary_10_1016_j_cell_2009_08_020
crossref_primary_10_3389_fcell_2021_727972
crossref_primary_10_1007_s00412_012_0361_1
crossref_primary_10_1242_dev_047761
crossref_primary_10_1098_rsob_140006
crossref_primary_10_1016_j_devcel_2019_09_011
crossref_primary_10_1038_ng_3671
crossref_primary_10_1371_journal_pgen_1003512
crossref_primary_10_1093_nar_gkz617
crossref_primary_10_1016_j_bbagrm_2013_07_002
crossref_primary_10_1097_MOH_0b013e328338c439
crossref_primary_10_1074_jbc_RA118_005010
crossref_primary_10_7554_eLife_13550
crossref_primary_10_1371_journal_pgen_1005376
crossref_primary_10_3390_ijms26167954
crossref_primary_10_1016_j_sbi_2010_09_012
crossref_primary_10_1186_s13064_015_0029_7
crossref_primary_10_1371_journal_pgen_1000805
crossref_primary_10_1038_nature09725
crossref_primary_10_1586_epr_12_30
crossref_primary_10_1016_j_bbagrm_2011_07_014
crossref_primary_10_1139_gen_2014_0127
crossref_primary_10_1146_annurev_genet_110711_155603
crossref_primary_10_1091_mbc_e12_04_0267
crossref_primary_10_1101_gad_2015411
crossref_primary_10_1007_s00412_021_00762_z
crossref_primary_10_1371_journal_pgen_1003069
crossref_primary_10_1016_j_cell_2013_04_045
crossref_primary_10_1186_gb_2013_14_2_r18
crossref_primary_10_1007_s00438_017_1309_1
crossref_primary_10_1038_ng_414
crossref_primary_10_1111_jipb_12157
crossref_primary_10_1016_j_ygeno_2015_11_002
crossref_primary_10_1038_s41467_020_18507_4
crossref_primary_10_1371_journal_pone_0056531
crossref_primary_10_1016_j_ceb_2012_03_009
crossref_primary_10_1242_dev_097204
crossref_primary_10_1371_journal_pone_0070184
crossref_primary_10_2217_epi_11_15
crossref_primary_10_1016_j_ceb_2012_03_007
crossref_primary_10_3389_fpls_2017_00459
crossref_primary_10_1101_gad_305987_117
crossref_primary_10_1016_j_devcel_2009_08_005
crossref_primary_10_1007_s00018_012_1143_x
crossref_primary_10_1242_jcs_080523
crossref_primary_10_1371_journal_pone_0015651
crossref_primary_10_1038_emboj_2011_194
crossref_primary_10_1128_MCB_00231_10
crossref_primary_10_1016_j_devcel_2011_10_008
crossref_primary_10_1186_1756_8935_4_4
crossref_primary_10_1038_s41594_024_01375_7
crossref_primary_10_1016_j_ygeno_2013_03_009
crossref_primary_10_1016_j_devcel_2009_08_014
crossref_primary_10_1371_journal_pgen_1004495
crossref_primary_10_1101_gad_219626_113
crossref_primary_10_1016_j_scienta_2025_114392
crossref_primary_10_1093_genetics_iyad075
crossref_primary_10_3390_molecules29020323
crossref_primary_10_1186_gb_2010_11_4_r42
crossref_primary_10_1002_bdra_20774
crossref_primary_10_1371_journal_pgen_1002465
crossref_primary_10_1038_s41467_023_38849_z
crossref_primary_10_1038_srep33422
crossref_primary_10_1042_BST20180605
crossref_primary_10_1007_s12038_019_9975_2
crossref_primary_10_1007_s00412_016_0582_9
crossref_primary_10_1186_1471_2105_11_359
crossref_primary_10_1038_nature09784
crossref_primary_10_1038_nsmb_2848
crossref_primary_10_3892_ol_2018_9240
crossref_primary_10_1101_gr_151472_112
crossref_primary_10_1371_journal_pgen_1001244
crossref_primary_10_1016_j_ceb_2012_01_008
crossref_primary_10_1038_s41467_019_09624_w
crossref_primary_10_1101_gad_279141_116
crossref_primary_10_1134_S1607672910030026
crossref_primary_10_1101_gad_226621_113
crossref_primary_10_1093_pcp_pcx092
crossref_primary_10_3390_biomedicines13071552
crossref_primary_10_3390_insects12100884
crossref_primary_10_1038_s41467_019_10130_2
crossref_primary_10_1016_j_molcel_2024_11_021
crossref_primary_10_1186_s12864_016_2457_0
crossref_primary_10_1038_s41467_018_05945_4
crossref_primary_10_1146_annurev_immunol_020711_075003
crossref_primary_10_1093_nar_gks209
crossref_primary_10_1101_gr_163642_113
crossref_primary_10_1186_1471_2164_14_593
crossref_primary_10_3389_fmala_2024_1347790
crossref_primary_10_1038_srep40536
crossref_primary_10_1242_dev_033902
crossref_primary_10_1111_febs_13165
crossref_primary_10_1186_s13072_015_0010_z
crossref_primary_10_1016_j_biocel_2015_05_006
crossref_primary_10_1016_j_tig_2011_06_008
crossref_primary_10_1101_gad_16651211
crossref_primary_10_2217_epi_09_28
crossref_primary_10_1101_gad_292870_116
crossref_primary_10_1101_gad_1812609
crossref_primary_10_1093_genetics_iyab096
crossref_primary_10_1371_journal_pgen_1001343
crossref_primary_10_1371_journal_pgen_1003883
crossref_primary_10_1186_s13148_018_0441_z
crossref_primary_10_1242_dev_201297
crossref_primary_10_1016_j_molcel_2018_05_032
crossref_primary_10_1016_j_semcdb_2009_06_004
crossref_primary_10_1080_19336934_2019_1619438
crossref_primary_10_1002_wsbm_1165
crossref_primary_10_1371_journal_pgen_1000814
crossref_primary_10_1016_j_cell_2012_01_010
crossref_primary_10_1093_bib_bbw041
Cites_doi 0955-0674(2008)020[0266:PCAES]2.0.CO;2
1553-0833(1994)002[0028:FAMMBE]2.0.CO;2
1097-2765(2004)014[0637:HROPGS]2.0.CO;2
0890-9369(2003)017[1101:GBBTDM]2.0.CO;2
1934-5909(2007)001[0299:WAOHHL]2.0.CO;2
1098-5549(2001)021[1311:TIPREM]2.0.CO;2
0959-437X(2006)016[0476:PREATO]2.0.CO;2
1534-5807(2003)005[0759:GPOTRE]2.0.CO;2
1474-175X(2006)006[0846:PSCCFD]2.0.CO;2
1934-5909(2007)001[0286:WMOHHL]2.0.CO;2
1061-4036(2006)038[0694:GPOPAP]2.0.CO;2
0890-9369(2006)020[1110:APGPCW]2.0.CO;2
0092-8674(2006)125[0301:CODRBP]2.0.CO;2
1476-4687(2007)448[0553:GMOCSI]2.0.CO;2
0092-8674(1998)092[0105:FAFTFT]2.0.CO;2
0021-9258(2006)281[29064:PCATPO]2.0.CO;2
0959-437X(2003)013[0448:GRBPGP]2.0.CO;2
1465-6914(2004)005[R101:GFAOGD]2.0.CO;2
1088-9051(2006)016[0890:SBTSRO]2.0.CO;2
1091-6490(2007)104[16615:CAARES]2.0.CO;2
1476-4687(2005)434[0533:RODPGP]2.0.CO;2
0959-437X(2004)014[0155:TFOEMO]2.0.CO;2
1011-6370(2003)130[0285:TDPGEA]2.0.CO;2
0092-8674(2003)115[0293:TATARF]2.0.CO;2
1097-2765(2006)024[0091:AOAPNC]2.0.CO;2
0890-9369(2006)020[2041:HTATMO]2.0.CO;2
1011-6370(2008)135[2383:AOTAPP]2.0.CO;2
1534-5807(2006)011[0117:PBOTSI]2.0.CO;2
0092-8674(2006)125[0315:ABCSMK]2.0.CO;2
0305-1048(2006)034[W546:JAVTFT]2.0.CO;2
1098-5549(2002)022[7473:PCLPTD]2.0.CO;2
0092-8674(2007)128[0735:GRBPAT]2.0.CO;2
0305-1048(2005)033[5181:AKBSII]2.0.CO;2
0092-8674(2006)127[1209:TOBNRP]2.0.CO;2
1098-5549(2003)023[0186:PCOMGA]2.0.CO;2
0092-8674(1988)053[0699:TFTATU]2.0.CO;2
1476-4687(2006)441[0349:PCRDRI]2.0.CO;2
1061-4036(2006)038[1151:BFOUTD]2.0.CO;2
0967-3849(2006)014[0363:FGTETT]2.0.CO;2
1011-6370(1999)126[3905:TDPGPP]2.0.CO;2
1011-6370(2001)128[2163:TMSOTD]2.0.CO;2
0890-9369(2006)020[1123:GMOPTG]2.0.CO;2
10.1371/journal.pbio.0040170
10.1371/journal.pgen.1000178
10.1371/journal.pbio.0050238
1088-9051(2006)016[0962:ELTIIT]2.0.CO;2
1091-6490(2004)101[8378:PIATGO]2.0.CO;2
1066-5277(1998)005[0211:MASFCM]2.0.CO;2
1476-4687(1983)306[0591:DEOBCG]2.0.CO;2
1476-4687(1999)400[0284:TCTEFF]2.0.CO;2
1476-4687(2001)412[0655:ADPGCI]2.0.CO;2
10.1371/journal.pcbi.0020130
1061-4036(2006)038[0700:GAOPTI]2.0.CO;2
1097-2765(1998)001[1065:ACSMIP]2.0.CO;2
1095-564X(2000)218[0038:FAORBS]2.0.CO;2
0193-4511(2007)315[1408:HRMTBO]2.0.CO;2
1097-2765(1998)001[1057:TDPGGP]2.0.CO;2
1460-2075(2004)023[0857:CIUZBR]2.0.CO;2
1471-0056(2007)008[0009:PSMATM]2.0.CO;2
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Attribution
2009 Schuettengruber et al. 2009
2009 Schuettengruber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, et al. (2009) Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biol 7(1): e1000013. doi:10.1371/journal.pbio.1000013
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Attribution
– notice: 2009 Schuettengruber et al. 2009
– notice: 2009 Schuettengruber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, et al. (2009) Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biol 7(1): e1000013. doi:10.1371/journal.pbio.1000013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7SS
7TM
7X8
1XC
VOOES
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1000013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
Entomology Abstracts (Full archive)
Nucleic Acids Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


Entomology Abstracts

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Polycomb and Trithorax Chromatin Anatomy
EISSN 1545-7885
EndPage e1000013
ExternalDocumentID 1292307815
oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3
PMC2621266
oai:HAL:hal-00357174v1
A195013115
19143474
10_1371_journal_pbio_1000013
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUFD
ABUWG
ACCTH
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
3V.
AGJBV
ALIPV
CGR
CUY
CVF
ECM
EIF
M~E
NPM
YIN
7SS
7TM
PUEGO
7X8
.GJ
1XC
ADXHL
PV9
QF4
RZL
VOOES
WOQ
5PM
AAPBV
ABPTK
CZG
ZA5
ID FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913
IEDL.DBID FPL
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262811000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:30 EDT 2023
Tue Oct 14 19:08:39 EDT 2025
Tue Nov 04 01:52:27 EST 2025
Tue Oct 14 20:04:04 EDT 2025
Thu Oct 02 05:32:57 EDT 2025
Fri Sep 05 10:37:43 EDT 2025
Tue Nov 11 10:55:01 EST 2025
Tue Nov 04 18:13:49 EST 2025
Thu Nov 13 16:12:07 EST 2025
Thu Nov 13 16:11:40 EST 2025
Thu Nov 13 16:12:10 EST 2025
Wed Feb 19 02:32:01 EST 2025
Sat Nov 29 02:40:04 EST 2025
Tue Nov 18 21:27:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Drosophila Proteins
Chromatin
Animals
Polycomb Repressive Complex 1
Chromatin Immunoprecipitation
Gene Expression Regulation, Developmental
Chromosomal Proteins, Non-Histone
Reverse Transcriptase Polymerase Chain Reaction
Drosophila melanogaster
Language English
License Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMCID: PMC2621266
ORCID 0000-0003-3709-3469
OpenAccessLink http://dx.doi.org/10.1371/journal.pbio.1000013
PMID 19143474
PQID 21077003
PQPubID 23462
PageCount 18
ParticipantIDs plos_journals_1292307815
doaj_primary_oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2621266
hal_primary_oai_HAL_hal_00357174v1
proquest_miscellaneous_66862260
proquest_miscellaneous_21077003
gale_infotracmisc_A195013115
gale_infotracacademiconefile_A195013115
gale_incontextgauss_ISR_A195013115
gale_incontextgauss_ISN_A195013115
gale_incontextgauss_IOV_A195013115
pubmed_primary_19143474
crossref_primary_10_1371_journal_pbio_1000013
crossref_citationtrail_10_1371_journal_pbio_1000013
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Ringrose (journal-pbio-1000013-b025) 2003; 5
Grimaud (journal-pbio-1000013-b008) 2006; 14
Hsieh (journal-pbio-1000013-b010) 2003; 23
Schwartz (journal-pbio-1000013-b001) 2008; 20
Ingham (journal-pbio-1000013-b052) 1983; 306
Hsieh (journal-pbio-1000013-b009) 2003; 115
Brown (journal-pbio-1000013-b033) 1998; 1
Mishra (journal-pbio-1000013-b046) 2001; 21
Kahn (journal-pbio-1000013-b055) 2006; 281
Cao (journal-pbio-1000013-b006) 2004; 14
Mito (journal-pbio-1000013-b051) 2007; 315
Bailey (journal-pbio-1000013-b058) 1998; 5
Brown (journal-pbio-1000013-b038) 2005; 33
Fiedler (journal-pbio-1000013-b024) 2006; 34
Oktaba (journal-pbio-1000013-b056) 2008
Orphanides (journal-pbio-1000013-b049) 1999; 400
Petruk (journal-pbio-1000013-b054) 2008; 135
Beisel (journal-pbio-1000013-b041) 2007; 104
Otte (journal-pbio-1000013-b011) 2003; 13
Negre (journal-pbio-1000013-b019) 2006; 4
Orian (journal-pbio-1000013-b036) 2003; 17
Muller (journal-pbio-1000013-b004) 2006; 16
Dejardin (journal-pbio-1000013-b047) 2004; 23
Klymenko (journal-pbio-1000013-b040) 2006; 20
Busturia (journal-pbio-1000013-b045) 2001; 128
Bailey (journal-pbio-1000013-b057) 1994; 2
Mikkelsen (journal-pbio-1000013-b027) 2007; 448
Fritsch (journal-pbio-1000013-b043) 1999; 126
Zhao (journal-pbio-1000013-b029) 2007; 1
Dejardin (journal-pbio-1000013-b014) 2005; 434
Schwartz (journal-pbio-1000013-b020) 2006; 38
Mohd-Sarip (journal-pbio-1000013-b013) 2002; 22
Squazzo (journal-pbio-1000013-b021) 2006; 16
Shimell (journal-pbio-1000013-b044) 2000; 218
Martin (journal-pbio-1000013-b060) 2004; 5
Tanay (journal-pbio-1000013-b035) 2006; 16
Biggin (journal-pbio-1000013-b032) 1988; 53
Brown (journal-pbio-1000013-b015) 2003; 130
Orphanides (journal-pbio-1000013-b048) 1998; 92
Mohd-Sarip (journal-pbio-1000013-b050) 2006; 24
Bracken (journal-pbio-1000013-b017) 2006; 20
Pan (journal-pbio-1000013-b028) 2007; 1
Schuettengruber (journal-pbio-1000013-b005) 2007; 128
Tolhuis (journal-pbio-1000013-b022) 2006; 38
Moses (journal-pbio-1000013-b031) 2006; 2
Papp (journal-pbio-1000013-b039) 2006; 20
Mihaly (journal-pbio-1000013-b042) 1998; 1
Kwong (journal-pbio-1000013-b030) 2008; 4
Saurin (journal-pbio-1000013-b007) 2001; 412
Wang (journal-pbio-1000013-b012) 2004; 14
Pi (journal-pbio-1000013-b037) 2004; 101
Sparmann (journal-pbio-1000013-b002) 2006; 6
Schwartz (journal-pbio-1000013-b003) 2007; 8
Lee (journal-pbio-1000013-b018) 2006; 125
Kim (journal-pbio-1000013-b034) 2007; 5
Petruk (journal-pbio-1000013-b053) 2006; 127
Boyer (journal-pbio-1000013-b016) 2006; 441
Manak (journal-pbio-1000013-b023) 2006; 38
Comet (journal-pbio-1000013-b059) 2006; 11
Bernstein (journal-pbio-1000013-b026) 2006; 125
References_xml – volume: 20
  start-page: 266
  issn: 0955-0674
  year: 2008
  ident: journal-pbio-1000013-b001
  publication-title: Curr Opin Cell Biol
  doi: 0955-0674(2008)020[0266:PCAES]2.0.CO;2
– volume: 2
  start-page: 28
  issn: 1553-0833
  year: 1994
  ident: journal-pbio-1000013-b057
  publication-title: Proc Int Conf Intell Syst Mol Biol
  doi: 1553-0833(1994)002[0028:FAMMBE]2.0.CO;2
– volume: 14
  start-page: 637
  issn: 1097-2765
  year: 2004
  ident: journal-pbio-1000013-b012
  publication-title: Mol Cell
  doi: 1097-2765(2004)014[0637:HROPGS]2.0.CO;2
– volume: 17
  start-page: 1101
  issn: 0890-9369
  year: 2003
  ident: journal-pbio-1000013-b036
  publication-title: Genes Dev
  doi: 0890-9369(2003)017[1101:GBBTDM]2.0.CO;2
– volume: 1
  start-page: 299
  issn: 1934-5909
  year: 2007
  ident: journal-pbio-1000013-b028
  publication-title: Cell Stem Cell
  doi: 1934-5909(2007)001[0299:WAOHHL]2.0.CO;2
– volume: 21
  start-page: 1311
  issn: 1098-5549
  year: 2001
  ident: journal-pbio-1000013-b046
  publication-title: Mol Cell Biol
  doi: 1098-5549(2001)021[1311:TIPREM]2.0.CO;2
– volume: 16
  start-page: 476
  issn: 0959-437X
  year: 2006
  ident: journal-pbio-1000013-b004
  publication-title: Curr Opin Genet Dev
  doi: 0959-437X(2006)016[0476:PREATO]2.0.CO;2
– volume: 5
  start-page: 759
  issn: 1534-5807
  year: 2003
  ident: journal-pbio-1000013-b025
  publication-title: Dev Cell
  doi: 1534-5807(2003)005[0759:GPOTRE]2.0.CO;2
– volume: 6
  start-page: 846
  issn: 1474-175X
  year: 2006
  ident: journal-pbio-1000013-b002
  publication-title: Nat Rev Cancer
  doi: 1474-175X(2006)006[0846:PSCCFD]2.0.CO;2
– volume: 1
  start-page: 286
  issn: 1934-5909
  year: 2007
  ident: journal-pbio-1000013-b029
  publication-title: Cell Stem Cell
  doi: 1934-5909(2007)001[0286:WMOHHL]2.0.CO;2
– volume: 38
  start-page: 694
  issn: 1061-4036
  year: 2006
  ident: journal-pbio-1000013-b022
  publication-title: Nat Genet
  doi: 1061-4036(2006)038[0694:GPOPAP]2.0.CO;2
– volume: 20
  start-page: 1110
  issn: 0890-9369
  year: 2006
  ident: journal-pbio-1000013-b040
  publication-title: Genes Dev
  doi: 0890-9369(2006)020[1110:APGPCW]2.0.CO;2
– volume: 125
  start-page: 301
  issn: 0092-8674
  year: 2006
  ident: journal-pbio-1000013-b018
  publication-title: Cell
  doi: 0092-8674(2006)125[0301:CODRBP]2.0.CO;2
– volume: 448
  start-page: 553
  issn: 1476-4687
  year: 2007
  ident: journal-pbio-1000013-b027
  publication-title: Nature
  doi: 1476-4687(2007)448[0553:GMOCSI]2.0.CO;2
– volume: 92
  start-page: 105
  issn: 0092-8674
  year: 1998
  ident: journal-pbio-1000013-b048
  publication-title: Cell
  doi: 0092-8674(1998)092[0105:FAFTFT]2.0.CO;2
– volume: 281
  start-page: 29064
  issn: 0021-9258
  year: 2006
  ident: journal-pbio-1000013-b055
  publication-title: J Biol Chem
  doi: 0021-9258(2006)281[29064:PCATPO]2.0.CO;2
– volume: 13
  start-page: 448
  issn: 0959-437X
  year: 2003
  ident: journal-pbio-1000013-b011
  publication-title: Curr Opin Genet Dev
  doi: 0959-437X(2003)013[0448:GRBPGP]2.0.CO;2
– volume: 5
  start-page: R101
  issn: 1465-6914
  year: 2004
  ident: journal-pbio-1000013-b060
  publication-title: Genome Biol
  doi: 1465-6914(2004)005[R101:GFAOGD]2.0.CO;2
– volume: 16
  start-page: 890
  issn: 1088-9051
  year: 2006
  ident: journal-pbio-1000013-b021
  publication-title: Genome Res
  doi: 1088-9051(2006)016[0890:SBTSRO]2.0.CO;2
– volume: 104
  start-page: 16615
  issn: 1091-6490
  year: 2007
  ident: journal-pbio-1000013-b041
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2007)104[16615:CAARES]2.0.CO;2
– volume: 434
  start-page: 533
  issn: 1476-4687
  year: 2005
  ident: journal-pbio-1000013-b014
  publication-title: Nature
  doi: 1476-4687(2005)434[0533:RODPGP]2.0.CO;2
– volume: 14
  start-page: 155
  issn: 0959-437X
  year: 2004
  ident: journal-pbio-1000013-b006
  publication-title: Curr Opin Genet Dev
  doi: 0959-437X(2004)014[0155:TFOEMO]2.0.CO;2
– volume: 130
  start-page: 285
  issn: 1011-6370
  year: 2003
  ident: journal-pbio-1000013-b015
  publication-title: Development
  doi: 1011-6370(2003)130[0285:TDPGEA]2.0.CO;2
– volume: 115
  start-page: 293
  issn: 0092-8674
  year: 2003
  ident: journal-pbio-1000013-b009
  publication-title: Cell
  doi: 0092-8674(2003)115[0293:TATARF]2.0.CO;2
– volume: 24
  start-page: 91
  issn: 1097-2765
  year: 2006
  ident: journal-pbio-1000013-b050
  publication-title: Mol Cell
  doi: 1097-2765(2006)024[0091:AOAPNC]2.0.CO;2
– volume: 20
  start-page: 2041
  issn: 0890-9369
  year: 2006
  ident: journal-pbio-1000013-b039
  publication-title: Genes Dev
  doi: 0890-9369(2006)020[2041:HTATMO]2.0.CO;2
– volume: 135
  start-page: 2383
  issn: 1011-6370
  year: 2008
  ident: journal-pbio-1000013-b054
  publication-title: Development
  doi: 1011-6370(2008)135[2383:AOTAPP]2.0.CO;2
– volume: 11
  start-page: 117
  issn: 1534-5807
  year: 2006
  ident: journal-pbio-1000013-b059
  publication-title: Dev Cell
  doi: 1534-5807(2006)011[0117:PBOTSI]2.0.CO;2
– volume: 125
  start-page: 315
  issn: 0092-8674
  year: 2006
  ident: journal-pbio-1000013-b026
  publication-title: Cell
  doi: 0092-8674(2006)125[0315:ABCSMK]2.0.CO;2
– volume: 34
  start-page: W546
  issn: 0305-1048
  year: 2006
  ident: journal-pbio-1000013-b024
  publication-title: Nucleic Acids Res
  doi: 0305-1048(2006)034[W546:JAVTFT]2.0.CO;2
– volume: 22
  start-page: 7473
  issn: 1098-5549
  year: 2002
  ident: journal-pbio-1000013-b013
  publication-title: Mol Cell Biol
  doi: 1098-5549(2002)022[7473:PCLPTD]2.0.CO;2
– volume: 128
  start-page: 735
  issn: 0092-8674
  year: 2007
  ident: journal-pbio-1000013-b005
  publication-title: Cell
  doi: 0092-8674(2007)128[0735:GRBPAT]2.0.CO;2
– volume: 33
  start-page: 5181
  issn: 0305-1048
  year: 2005
  ident: journal-pbio-1000013-b038
  publication-title: Nucleic Acids Res
  doi: 0305-1048(2005)033[5181:AKBSII]2.0.CO;2
– volume: 127
  start-page: 1209
  issn: 0092-8674
  year: 2006
  ident: journal-pbio-1000013-b053
  publication-title: Cell
  doi: 0092-8674(2006)127[1209:TOBNRP]2.0.CO;2
– volume: 23
  start-page: 186
  issn: 1098-5549
  year: 2003
  ident: journal-pbio-1000013-b010
  publication-title: Mol Cell Biol
  doi: 1098-5549(2003)023[0186:PCOMGA]2.0.CO;2
– volume: 53
  start-page: 699
  issn: 0092-8674
  year: 1988
  ident: journal-pbio-1000013-b032
  publication-title: Cell
  doi: 0092-8674(1988)053[0699:TFTATU]2.0.CO;2
– volume: 441
  start-page: 349
  issn: 1476-4687
  year: 2006
  ident: journal-pbio-1000013-b016
  publication-title: Nature
  doi: 1476-4687(2006)441[0349:PCRDRI]2.0.CO;2
– volume: 38
  start-page: 1151
  issn: 1061-4036
  year: 2006
  ident: journal-pbio-1000013-b023
  publication-title: Nat Genet
  doi: 1061-4036(2006)038[1151:BFOUTD]2.0.CO;2
– volume: 14
  start-page: 363
  issn: 0967-3849
  year: 2006
  ident: journal-pbio-1000013-b008
  publication-title: Chromosome Res
  doi: 0967-3849(2006)014[0363:FGTETT]2.0.CO;2
– volume: 126
  start-page: 3905
  issn: 1011-6370
  year: 1999
  ident: journal-pbio-1000013-b043
  publication-title: Development
  doi: 1011-6370(1999)126[3905:TDPGPP]2.0.CO;2
– volume: 128
  start-page: 2163
  issn: 1011-6370
  year: 2001
  ident: journal-pbio-1000013-b045
  publication-title: Development
  doi: 1011-6370(2001)128[2163:TMSOTD]2.0.CO;2
– volume: 20
  start-page: 1123
  issn: 0890-9369
  year: 2006
  ident: journal-pbio-1000013-b017
  publication-title: Genes Dev
  doi: 0890-9369(2006)020[1123:GMOPTG]2.0.CO;2
– volume: 4
  year: 2006
  ident: journal-pbio-1000013-b019
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040170
– volume: 4
  year: 2008
  ident: journal-pbio-1000013-b030
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000178
– volume: 5
  year: 2007
  ident: journal-pbio-1000013-b034
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050238
– volume: 16
  start-page: 962
  issn: 1088-9051
  year: 2006
  ident: journal-pbio-1000013-b035
  publication-title: Genome Res
  doi: 1088-9051(2006)016[0962:ELTIIT]2.0.CO;2
– volume: 101
  start-page: 8378
  issn: 1091-6490
  year: 2004
  ident: journal-pbio-1000013-b037
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2004)101[8378:PIATGO]2.0.CO;2
– volume: 5
  start-page: 211
  issn: 1066-5277
  year: 1998
  ident: journal-pbio-1000013-b058
  publication-title: J Comput Biol
  doi: 1066-5277(1998)005[0211:MASFCM]2.0.CO;2
– year: 2008
  ident: journal-pbio-1000013-b056
  publication-title: Dev Cell
– volume: 306
  start-page: 591
  issn: 1476-4687
  year: 1983
  ident: journal-pbio-1000013-b052
  publication-title: Nature
  doi: 1476-4687(1983)306[0591:DEOBCG]2.0.CO;2
– volume: 400
  start-page: 284
  issn: 1476-4687
  year: 1999
  ident: journal-pbio-1000013-b049
  publication-title: Nature
  doi: 1476-4687(1999)400[0284:TCTEFF]2.0.CO;2
– volume: 412
  start-page: 655
  issn: 1476-4687
  year: 2001
  ident: journal-pbio-1000013-b007
  publication-title: Nature
  doi: 1476-4687(2001)412[0655:ADPGCI]2.0.CO;2
– volume: 2
  year: 2006
  ident: journal-pbio-1000013-b031
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020130
– volume: 38
  start-page: 700
  issn: 1061-4036
  year: 2006
  ident: journal-pbio-1000013-b020
  publication-title: Nat Genet
  doi: 1061-4036(2006)038[0700:GAOPTI]2.0.CO;2
– volume: 1
  start-page: 1065
  issn: 1097-2765
  year: 1998
  ident: journal-pbio-1000013-b042
  publication-title: Mol Cell
  doi: 1097-2765(1998)001[1065:ACSMIP]2.0.CO;2
– volume: 218
  start-page: 38
  issn: 1095-564X
  year: 2000
  ident: journal-pbio-1000013-b044
  publication-title: Dev Biol
  doi: 1095-564X(2000)218[0038:FAORBS]2.0.CO;2
– volume: 315
  start-page: 1408
  issn: 0193-4511
  year: 2007
  ident: journal-pbio-1000013-b051
  publication-title: Science
  doi: 0193-4511(2007)315[1408:HRMTBO]2.0.CO;2
– volume: 1
  start-page: 1057
  issn: 1097-2765
  year: 1998
  ident: journal-pbio-1000013-b033
  publication-title: Mol Cell
  doi: 1097-2765(1998)001[1057:TDPGGP]2.0.CO;2
– volume: 23
  start-page: 857
  issn: 1460-2075
  year: 2004
  ident: journal-pbio-1000013-b047
  publication-title: Embo J
  doi: 1460-2075(2004)023[0857:CIUZBR]2.0.CO;2
– volume: 8
  start-page: 9
  issn: 1471-0056
  year: 2007
  ident: journal-pbio-1000013-b003
  publication-title: Nat Rev Genet
  doi: 1471-0056(2007)008[0009:PSMATM]2.0.CO;2
SSID ssj0022928
Score 2.4299538
Snippet Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In...
  Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000013
SubjectTerms Animals
Biochemistry, Molecular Biology
Cell Biology
Cell division
Chromatin
Chromatin - physiology
Chromatin Immunoprecipitation
Chromosomal Proteins, Non-Histone - physiology
Chromosomes
Classification
Deoxyribonucleic acid
Developmental Biology
DNA
Drosophila
Drosophila melanogaster - embryology
Drosophila Proteins - physiology
Embryo
Epigenetics
Evaluation
Gene expression
Gene Expression Regulation, Developmental - physiology
Genetic aspects
Genetic regulation
Genetics
Genetics and Genomics
Genomes
Genomics
Life Sciences
Molecular Biology
Ontology
Polycomb Repressive Complex 1
Properties
Protein binding
Proteins
Reverse Transcriptase Polymerase Chain Reaction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagAokL4r2BBSKExCm7cZL6cSyPapFWBfHcm2U7DqnUTaqkXdF_z4yTlgaxWg4c40zcZmacmbFnviHk5RhsPITSMtJAEWUSwh0dx3nkipQJK5hkY18ofMpnM3F2Jj_utfrCnLAOHrhj3LEYM8MhdtKJ07CoqaZaUCdyyjiXee5xPsHr2QZTfaiVSN9VFaFmYDnztC-aSzk97mV0tDTz-qjb3U4HRslj9---0NdLTJAcLRd1-zcn9M9cyj3jNL1DbvdeZTjp3uYuueaqe-Rm12dyc598n4L16jb9Ql1BmH2-CesiXNaLDSicgbE8RFD-EvThZ2jLpkY_tgp9HTBmSLUhXL1tfM-D-UKH7tw0m7p9QL5O3315cxL1HRUiyyVbRcwWWhgE8XJu7HRqtbY2kUYKLSnuL1FWGJsWuTXMJrkA648A-0wLnlsrafqQjKq6cgckTBKTpRnOUsgMwiCdxoXlwjgXO1HENiDplqXK9nDj2PViofwZGoewo-ONQkGoXhABiXZPLTu4jSvoX6O0drQIlu0HQIVUr0LqKhUKyAuUtUI4jArzbX7odduq9x--qQl2yfWIRJcRfZ79C9GnAdGrnqiogSNW94UQwFfE4hpQHg4oYeXb4a-VyI-9dz-ZnCocwwNiCNSzCxqQA9TdLfdaBQ4eJv8LfP75Vp8VTo3pdpWr161KaMw5zHE5BcPKIoiFA_Ko0__f4pLggmc8CwgfrIzB_xzeqealBzZPGDhSjD3-H0J9Qm51B3-4W3ZIRqtm7Z6SG_ZiNW-bZ_5r8Qt5sG0V
  priority: 102
  providerName: Directory of Open Access Journals
Title Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos
URI https://www.ncbi.nlm.nih.gov/pubmed/19143474
https://www.proquest.com/docview/21077003
https://www.proquest.com/docview/66862260
https://hal.science/hal-00357174
https://pubmed.ncbi.nlm.nih.gov/PMC2621266
https://doaj.org/article/856b7027a2ea4671a1a81e8d16779dd3
http://dx.doi.org/10.1371/journal.pbio.1000013
Volume 7
WOSCitedRecordID wos000262811000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: M7P
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: PATMY
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: 7X7
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: BENPR
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: PIMPY
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: FPL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF7RFCReuKGBElYIiSe3vrLHYwqJWikEqxQIT6v1ek0ipXYUJxX598zYTlpXRMBLpNiza3v2mGNnviHkXRdkPJjS0tFA4YQSzB3tuolj04AJI5hk3TJReMhHIzEey-jaULx1gh9w77jm6dE8nuZHlTc62CP7fsAYhnANouHWwPKlL-r0uF0tG-KnROnf7sV7EwyFbM1nefEndfN21OQNMTR4-L8f8Ig8qBVO2qtmyGNyx2ZPyL2qBOX6Kfk-AMFW-QNpLwML_HJN85RG-WwNczGmOkvoxWK6nMBU-UURShdV3IwOMUUYg6cKCv8-LspyCNOZpv3LeLHOi2fk66B_8eHUqYstOIZLtnSYSbWIEd_L2q7VgdHaGF_GUmjpoevJY2lsgjQxMTN-IkAxQOx9pgVPjJFe8Jy0sjyzB4T6fhwGIfaSyhAsJB24qeEitta1InVNmwSbMVCmRiLHghgzVR6vcbBIKt4oZJmqWdYmzrbVvELi-Av9CQ7vlhZxtMsLMDaqXpZKdFnMwTLXvtUgMjztaeFZkXiMc5kk0MlbnBwKkTIyDMX5qVdFoc4-f1M9LKBbghXtIvoy-hei8wbR-5oozYEjRtc5EsBXhOlqUB42KGFTMM2nTZAfN779tDdUeA3PjsGGD6-8NjnAyb7hXqFA98O8AIHt32wWgMKuMRIvs_mqUL7ncg597KZgmHQEZnKbvKgWzPVwSdDOQx62CW8spcZ7Nu9k00mJee4z0LEYe7n7lV-R-9VJH7rHDklruVjZ1-SuuVpOi0WH7PExL39Fh-yf9EfReaf0v3TKLaSDMb8R3InOPkU_fgM5TW5L
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdYAcEL37DCYBFC4ildnKT-eCywqhOhVDBgb5bjOLRSl0xNO9H_nrvELQuiggfe2vRn1zl_3J199zMhr_qg48GVlr4GhB9LcHd0EGS-zSMmjGCS9etE4YSPx-LsTE4cpRDmwjgJgo84L6v6JB8_lIU9cpJsDk57NOJ0A-5dpLOy12xUR3vkOpdUYHTXcJJsfa9QhsJlzu0q2dJMNYH_dpnem2KUZAeb8idL9PeAyisaanj3P77bPXLHmaneoClxn1yzxQNys7m4cv2QfBuCOmx2Eb1BAX77-dorc29SztcwglNPF5l3upgtpzDAfnhIwIuGceElmFiMIVeVB9_eLepLFGZz7R2fp4t1WT0iX4bHp29HvruiwTdcsqXPTK5Fiqxg1vatjozWxoQylUJLihtWlOWpifLMpMyEmQBzAhn7mRY8M0bS6DHpFCCBfeKFYRpHMdaSyxj8Kh0FueEitTawIg9Ml0Sb7lHG8ZfjNRpzVR_KcfBjGtkoFJlyIusSf1vqouHv-Av-Dfb8Fovs2_UD6C7lukmJPks5-PM6tBoUDdVUC2pFRhnnMsugkpc4bhTyaxQYwPNdr6pKnXz8qgZ47W5NcbQL9Hn8L6BPLdBrB8pLkIjRLrMC5IrkXi3kQQsJS4lp_9sU5XHl3UeDROEzPHEGzz--pF2yj8N2I71KgcWI2QQCyx9u5obCqjF-r7DlqlIhDTiHOnYjGKYqgXPdJU-aufSruyTY9DGPu4S3Zlmrne1fitm0ZkoPGVhmjD3d3eRDcmt0-iFRycn4_TNyuzkrxA22A9JZLlb2OblhLpezavGiXk9-AiUdgDQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28qG98M1WGMxCCJ7SxUnqj8fCVm2iKhUM2MtkOY5DK3XJ1LQT_e-5S9KyICp44a1Nz1fnfLbvZ_t-JuR1F-Z4gNLKMyDhRQrgjvH9xHNpyKWVXPFumSg8EMOhPD9Xoy1yscqFqS0IGHGaF-VOPn7IM3dYW_IQ-Yqq3dMOCwVblehcxZO8U61Wh29KxiFcGZtjAtI2uSUUk4jN-qPBGo8FKpB1Nt0mRY3ZqiT1Xw_d22M8OdnC6v0pOv39kOWNWat__z-_7wNyrw5naa_S8pBsuewRuVNdcLl8TL71YdqsVhtpLwN8f7mkeUpH-XQJnh5TkyX0bDaZj8ERf1Ak6sUAOqMDTEDGo1kFhW9Hs_KyhcnU0OPLeLbMiyfkS__47P2JV1_l4Fmh-NzjNjUyRvYw57rOhNYYawMVK2kUw4UtxtPYhmliY26DRELYgcz-3EiRWKtY-JS0MrDKHqFBEEdhhFpSFQH-MqGfWiFj53wnU9-2SbhqMm1rnnO8bmOqy807AXinso1GC-ragm3irUtdVTwff5F_h96wlkWW7vIBNKGum07LLo8F4H4TOAMTEjPMSOZkwrgQKklAySv0JY08HBke9PluFkWhTz9-1T28nrekQtok9Hn4L0KfGkJva6E0B4tYU2dggF3RyRqS-w1JGHJs89_GaI8b737SG2h8hjvTAlDuNWuTPXTllfUKDZElZh1ILH-w6i8aVeM5v8zli0IHzBcCdGyW4JjSBCC8TXar_vWruRTE_pGI2kQ0el6jns1fssm4ZFQPOERwnD_bXOUDcnd01NeD0-GH52Sn2lLEdbh90prPFu4FuW2v55Ni9rIcYn4C1FaPaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+anatomy+of+polycomb+and+trithorax+chromatin+landscapes+in+Drosophila+embryos&rft.jtitle=PLoS+biology&rft.au=Schuettengruber%2C+Bernd&rft.au=Ganapathi%2C+Mythily&rft.au=Leblanc%2C+Benjamin&rft.au=Portoso%2C+Manuela&rft.date=2009-01-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.volume=7&rft.issue=1&rft.spage=146&rft_id=info:doi/10.1371%2Fjournal.pbio.1000013&rft.externalDBID=ISN&rft.externalDocID=A195013115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon