Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding protei...
Uloženo v:
| Vydáno v: | PLoS biology Ročník 7; číslo 1; s. e1000013 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
01.01.2009
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1545-7885, 1544-9173, 1545-7885 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. |
|---|---|
| AbstractList |
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-Nabound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Author Summary Although all cells of a developing organism have the same DNA, they express different genes and transmit these gene expression patterns to daughter cells through multiple rounds of cell division. This cellular memory for gene expression states is maintained by two groups of proteins: Polycomb-group proteins (PcG), which establish and maintain stable gene silencing, and trithorax group proteins (trxG), which counteract silencing and enable gene activation. It is unknown how this balance works and how exactly these proteins are recruited to their target sequences. By mapping the genome-wide distribution of PcG and trxG factors and proteins known to recruit them to chromatin, we found that putative PcG recruiters are not only colocalized at PcG binding sites, but also bind to many other genomic regions that are actually the binding sites of the Trithorax complex. We identified new DNA sequences important for the recruitment of both PcG and trxG proteins and showed that the differential binding of the recruiters PHO and PHOL may discriminate between active and inactive regions. Finally, we found that the two fragments of the Trithorax protein have different chromosomal distributions, suggesting that they may have distinct nuclear functions. Comparison of the genome-wide distribution of PcG, trxG, and sequence-specific DNA binding proteins allowed the identification of key signals leading to Polycomb or Trithorax recruitment. Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (Chip) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N–bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Comparison of the genome-wide distribution of PcG, trxG, and sequence-specific DNA binding proteins allowed the identification of key signals leading to Polycomb or Trithorax recruitment. Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. |
| Audience | Academic |
| Author | van Lohuizen, Maarten Schuettengruber, Bernd Ganapathi, Mythily Tolhuis, Bas Jaschek, Rami Portoso, Manuela Leblanc, Benjamin Cavalli, Giacomo Tanay, Amos |
| AuthorAffiliation | 2 Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel Harvard University, United States of America 3 Division of Molecular Genetics, and the Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands 1 Institut de Génétique Humaine, CNRS, Montpellier, France |
| AuthorAffiliation_xml | – name: 2 Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel – name: Harvard University, United States of America – name: 1 Institut de Génétique Humaine, CNRS, Montpellier, France – name: 3 Division of Molecular Genetics, and the Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands |
| Author_xml | – sequence: 1 givenname: Bernd surname: Schuettengruber fullname: Schuettengruber, Bernd – sequence: 2 givenname: Mythily surname: Ganapathi fullname: Ganapathi, Mythily – sequence: 3 givenname: Benjamin surname: Leblanc fullname: Leblanc, Benjamin – sequence: 4 givenname: Manuela surname: Portoso fullname: Portoso, Manuela – sequence: 5 givenname: Rami surname: Jaschek fullname: Jaschek, Rami – sequence: 6 givenname: Bas surname: Tolhuis fullname: Tolhuis, Bas – sequence: 7 givenname: Maarten surname: van Lohuizen fullname: van Lohuizen, Maarten – sequence: 8 givenname: Amos surname: Tanay fullname: Tanay, Amos – sequence: 9 givenname: Giacomo surname: Cavalli fullname: Cavalli, Giacomo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19143474$$D View this record in MEDLINE/PubMed https://hal.science/hal-00357174$$DView record in HAL |
| BookMark | eNqVk11v0zAUhiM0xD7gHyCIhIS0ixbbSWxnF0hV2ViliiEYcGmdOE7rKbGL7Uzrv8dZO1gnxEdyEef4eV_nnJxzmOwZa1SSPMdojDOG31zZ3hlox6tK2zFG8cLZo-QAF3kxYpwXe_fW-8mh91cIEVIS_iTZxyXOs5zlB8m3s97IoG10SicGgu3WqW3Sj7ZdS9tVKZg6vXQ6LK2Dm3S6dLaDoE06jxtewkr5NL69c9bb1VK3kJ52lVtb_zR53EDr1bPt8yj5cnZ6OT0fzS_ez6aT-UiykoYRlQ3wiuZFrlShIJMAUpKyKjmUmCBUYNpUMmtqWVFJas5jkOWMAme1lCXOjpKXG99Va73Y1sQLHBPNEOO4iMRsQ9QWrsTK6Q7cWljQ4jZg3UKAC1q2SvCCVgwRBkRBThkGDBwrXmPKWFnXWfR6uz2trzpVS2WCg3bHdHfH6KVY2GtBKMGE0mhwvDFYPpCdT-ZiiCGUFQyz_HpI7fX2MGe_98oH0WkvVduCUbb3glJOCaHoryDBiLFoHMFXG3ABMVttGhs_Ug6wmOCyiA2Ebws2_g0V71p1WsYmbHSM7wiOdwSRCeomLKD3Xsw-f_oP9sO_sxdfd9kX9__Mz9redXoE8g0gY696p5pfCBLDQN01jxgGSmwHKspOHsikDjAMTCyKbv8s_gFBjSVm |
| CitedBy_id | crossref_primary_10_1134_S1022795417020028 crossref_primary_10_1007_s00412_015_0539_4 crossref_primary_10_1371_journal_pbio_3002629 crossref_primary_10_1371_journal_pgen_1002266 crossref_primary_10_1093_nar_gkt598 crossref_primary_10_1093_nar_gkq1322 crossref_primary_10_1534_genetics_115_177030 crossref_primary_10_1242_dev_065599 crossref_primary_10_1186_1471_2105_11_557 crossref_primary_10_1007_s00018_022_04383_2 crossref_primary_10_1016_j_ygeno_2010_03_012 crossref_primary_10_3389_fgene_2014_00277 crossref_primary_10_1016_j_bbagrm_2022_194786 crossref_primary_10_1016_j_ygeno_2017_05_010 crossref_primary_10_1007_s00412_011_0312_2 crossref_primary_10_1093_nar_gkr869 crossref_primary_10_1128_MCB_01451_09 crossref_primary_10_1002_dvg_20609 crossref_primary_10_1016_j_bbagrm_2018_03_006 crossref_primary_10_1016_j_febslet_2011_05_010 crossref_primary_10_1016_j_molcel_2013_01_016 crossref_primary_10_1242_jcs_210179 crossref_primary_10_1371_journal_pcbi_1009423 crossref_primary_10_1073_pnas_1002059108 crossref_primary_10_1016_j_tcb_2016_04_009 crossref_primary_10_1038_cdd_2016_135 crossref_primary_10_1016_j_gene_2020_144368 crossref_primary_10_1038_nrg3607 crossref_primary_10_1534_genetics_115_185116 crossref_primary_10_1038_hdy_2015_91 crossref_primary_10_1093_jxb_err155 crossref_primary_10_1146_annurev_cellbio_100913_013027 crossref_primary_10_1093_nar_gkt217 crossref_primary_10_1371_journal_pgen_1003571 crossref_primary_10_1101_gr_239848_118 crossref_primary_10_1016_j_gde_2013_11_016 crossref_primary_10_1038_ng_3848 crossref_primary_10_1007_s00441_014_1824_x crossref_primary_10_1038_s41598_017_07282_w crossref_primary_10_1093_nar_gkv195 crossref_primary_10_1016_j_cell_2012_03_035 crossref_primary_10_1016_j_cell_2010_12_026 crossref_primary_10_1080_15384101_2018_1553338 crossref_primary_10_3390_ijms241411394 crossref_primary_10_1016_j_bbagrm_2016_12_003 crossref_primary_10_1534_genetics_115_185132 crossref_primary_10_1016_j_molcel_2014_03_004 crossref_primary_10_1186_s13059_017_1333_9 crossref_primary_10_1016_j_cell_2017_08_002 crossref_primary_10_1016_j_ydbio_2013_03_011 crossref_primary_10_7554_eLife_02833 crossref_primary_10_1158_1541_7786_MCR_10_0398 crossref_primary_10_1534_g3_119_400579 crossref_primary_10_1016_j_ydbio_2011_12_001 crossref_primary_10_1242_dev_076687 crossref_primary_10_1073_pnas_1515276112 crossref_primary_10_1016_j_ydbio_2011_12_007 crossref_primary_10_1371_journal_pgen_1003159 crossref_primary_10_1371_journal_pgen_1003951 crossref_primary_10_1038_s41586_024_07328_w crossref_primary_10_1101_gr_159608_113 crossref_primary_10_1016_j_gpb_2018_12_009 crossref_primary_10_1016_j_ygcen_2016_03_028 crossref_primary_10_14348_molcells_2014_0249 crossref_primary_10_3390_epigenomes6030025 crossref_primary_10_1101_gad_223834_113 crossref_primary_10_15252_embr_201846762 crossref_primary_10_1371_journal_pone_0073983 crossref_primary_10_3389_fgene_2023_1108104 crossref_primary_10_1042_BST20160173 crossref_primary_10_1146_annurev_cellbio_101011_155824 crossref_primary_10_1088_1478_3975_10_2_026006 crossref_primary_10_1182_blood_2010_04_280149 crossref_primary_10_1101_gr_209486_116 crossref_primary_10_1038_nrm2763 crossref_primary_10_1245_s10434_013_3135_y crossref_primary_10_1098_rsos_150011 crossref_primary_10_1038_nchembio_2247 crossref_primary_10_1016_j_ydbio_2022_12_008 crossref_primary_10_1073_pnas_0904638106 crossref_primary_10_1371_journal_pone_0161997 crossref_primary_10_26508_lsa_202302369 crossref_primary_10_1093_g3journal_jkab237 crossref_primary_10_1242_dev_183400 crossref_primary_10_1134_S1607672919010095 crossref_primary_10_1101_gr_114348_110 crossref_primary_10_1371_journal_pgen_1008152 crossref_primary_10_1371_journal_pgen_1002040 crossref_primary_10_1371_journal_pgen_1007187 crossref_primary_10_7554_eLife_00861 crossref_primary_10_1101_gad_1886410 crossref_primary_10_1007_s12032_014_0271_6 crossref_primary_10_1371_journal_pone_0073649 crossref_primary_10_1016_j_molcel_2012_01_002 crossref_primary_10_1002_dvdy_24228 crossref_primary_10_1073_pnas_1520926113 crossref_primary_10_1371_journal_pone_0163128 crossref_primary_10_1101_gad_325050_119 crossref_primary_10_1534_genetics_112_146340 crossref_primary_10_3390_epigenomes2010001 crossref_primary_10_1016_j_jmb_2014_09_013 crossref_primary_10_1101_gad_260562_115 crossref_primary_10_3390_epigenomes2010004 crossref_primary_10_1186_s13072_019_0301_x crossref_primary_10_1111_exd_14415 crossref_primary_10_1371_journal_pone_0173602 crossref_primary_10_1038_nbt_1662 crossref_primary_10_1016_j_cell_2009_08_020 crossref_primary_10_3389_fcell_2021_727972 crossref_primary_10_1007_s00412_012_0361_1 crossref_primary_10_1242_dev_047761 crossref_primary_10_1098_rsob_140006 crossref_primary_10_1016_j_devcel_2019_09_011 crossref_primary_10_1038_ng_3671 crossref_primary_10_1371_journal_pgen_1003512 crossref_primary_10_1093_nar_gkz617 crossref_primary_10_1016_j_bbagrm_2013_07_002 crossref_primary_10_1097_MOH_0b013e328338c439 crossref_primary_10_1074_jbc_RA118_005010 crossref_primary_10_7554_eLife_13550 crossref_primary_10_1371_journal_pgen_1005376 crossref_primary_10_3390_ijms26167954 crossref_primary_10_1016_j_sbi_2010_09_012 crossref_primary_10_1186_s13064_015_0029_7 crossref_primary_10_1371_journal_pgen_1000805 crossref_primary_10_1038_nature09725 crossref_primary_10_1586_epr_12_30 crossref_primary_10_1016_j_bbagrm_2011_07_014 crossref_primary_10_1139_gen_2014_0127 crossref_primary_10_1146_annurev_genet_110711_155603 crossref_primary_10_1091_mbc_e12_04_0267 crossref_primary_10_1101_gad_2015411 crossref_primary_10_1007_s00412_021_00762_z crossref_primary_10_1371_journal_pgen_1003069 crossref_primary_10_1016_j_cell_2013_04_045 crossref_primary_10_1186_gb_2013_14_2_r18 crossref_primary_10_1007_s00438_017_1309_1 crossref_primary_10_1038_ng_414 crossref_primary_10_1111_jipb_12157 crossref_primary_10_1016_j_ygeno_2015_11_002 crossref_primary_10_1038_s41467_020_18507_4 crossref_primary_10_1371_journal_pone_0056531 crossref_primary_10_1016_j_ceb_2012_03_009 crossref_primary_10_1242_dev_097204 crossref_primary_10_1371_journal_pone_0070184 crossref_primary_10_2217_epi_11_15 crossref_primary_10_1016_j_ceb_2012_03_007 crossref_primary_10_3389_fpls_2017_00459 crossref_primary_10_1101_gad_305987_117 crossref_primary_10_1016_j_devcel_2009_08_005 crossref_primary_10_1007_s00018_012_1143_x crossref_primary_10_1242_jcs_080523 crossref_primary_10_1371_journal_pone_0015651 crossref_primary_10_1038_emboj_2011_194 crossref_primary_10_1128_MCB_00231_10 crossref_primary_10_1016_j_devcel_2011_10_008 crossref_primary_10_1186_1756_8935_4_4 crossref_primary_10_1038_s41594_024_01375_7 crossref_primary_10_1016_j_ygeno_2013_03_009 crossref_primary_10_1016_j_devcel_2009_08_014 crossref_primary_10_1371_journal_pgen_1004495 crossref_primary_10_1101_gad_219626_113 crossref_primary_10_1016_j_scienta_2025_114392 crossref_primary_10_1093_genetics_iyad075 crossref_primary_10_3390_molecules29020323 crossref_primary_10_1186_gb_2010_11_4_r42 crossref_primary_10_1002_bdra_20774 crossref_primary_10_1371_journal_pgen_1002465 crossref_primary_10_1038_s41467_023_38849_z crossref_primary_10_1038_srep33422 crossref_primary_10_1042_BST20180605 crossref_primary_10_1007_s12038_019_9975_2 crossref_primary_10_1007_s00412_016_0582_9 crossref_primary_10_1186_1471_2105_11_359 crossref_primary_10_1038_nature09784 crossref_primary_10_1038_nsmb_2848 crossref_primary_10_3892_ol_2018_9240 crossref_primary_10_1101_gr_151472_112 crossref_primary_10_1371_journal_pgen_1001244 crossref_primary_10_1016_j_ceb_2012_01_008 crossref_primary_10_1038_s41467_019_09624_w crossref_primary_10_1101_gad_279141_116 crossref_primary_10_1134_S1607672910030026 crossref_primary_10_1101_gad_226621_113 crossref_primary_10_1093_pcp_pcx092 crossref_primary_10_3390_biomedicines13071552 crossref_primary_10_3390_insects12100884 crossref_primary_10_1038_s41467_019_10130_2 crossref_primary_10_1016_j_molcel_2024_11_021 crossref_primary_10_1186_s12864_016_2457_0 crossref_primary_10_1038_s41467_018_05945_4 crossref_primary_10_1146_annurev_immunol_020711_075003 crossref_primary_10_1093_nar_gks209 crossref_primary_10_1101_gr_163642_113 crossref_primary_10_1186_1471_2164_14_593 crossref_primary_10_3389_fmala_2024_1347790 crossref_primary_10_1038_srep40536 crossref_primary_10_1242_dev_033902 crossref_primary_10_1111_febs_13165 crossref_primary_10_1186_s13072_015_0010_z crossref_primary_10_1016_j_biocel_2015_05_006 crossref_primary_10_1016_j_tig_2011_06_008 crossref_primary_10_1101_gad_16651211 crossref_primary_10_2217_epi_09_28 crossref_primary_10_1101_gad_292870_116 crossref_primary_10_1101_gad_1812609 crossref_primary_10_1093_genetics_iyab096 crossref_primary_10_1371_journal_pgen_1001343 crossref_primary_10_1371_journal_pgen_1003883 crossref_primary_10_1186_s13148_018_0441_z crossref_primary_10_1242_dev_201297 crossref_primary_10_1016_j_molcel_2018_05_032 crossref_primary_10_1016_j_semcdb_2009_06_004 crossref_primary_10_1080_19336934_2019_1619438 crossref_primary_10_1002_wsbm_1165 crossref_primary_10_1371_journal_pgen_1000814 crossref_primary_10_1016_j_cell_2012_01_010 crossref_primary_10_1093_bib_bbw041 |
| Cites_doi | 0955-0674(2008)020[0266:PCAES]2.0.CO;2 1553-0833(1994)002[0028:FAMMBE]2.0.CO;2 1097-2765(2004)014[0637:HROPGS]2.0.CO;2 0890-9369(2003)017[1101:GBBTDM]2.0.CO;2 1934-5909(2007)001[0299:WAOHHL]2.0.CO;2 1098-5549(2001)021[1311:TIPREM]2.0.CO;2 0959-437X(2006)016[0476:PREATO]2.0.CO;2 1534-5807(2003)005[0759:GPOTRE]2.0.CO;2 1474-175X(2006)006[0846:PSCCFD]2.0.CO;2 1934-5909(2007)001[0286:WMOHHL]2.0.CO;2 1061-4036(2006)038[0694:GPOPAP]2.0.CO;2 0890-9369(2006)020[1110:APGPCW]2.0.CO;2 0092-8674(2006)125[0301:CODRBP]2.0.CO;2 1476-4687(2007)448[0553:GMOCSI]2.0.CO;2 0092-8674(1998)092[0105:FAFTFT]2.0.CO;2 0021-9258(2006)281[29064:PCATPO]2.0.CO;2 0959-437X(2003)013[0448:GRBPGP]2.0.CO;2 1465-6914(2004)005[R101:GFAOGD]2.0.CO;2 1088-9051(2006)016[0890:SBTSRO]2.0.CO;2 1091-6490(2007)104[16615:CAARES]2.0.CO;2 1476-4687(2005)434[0533:RODPGP]2.0.CO;2 0959-437X(2004)014[0155:TFOEMO]2.0.CO;2 1011-6370(2003)130[0285:TDPGEA]2.0.CO;2 0092-8674(2003)115[0293:TATARF]2.0.CO;2 1097-2765(2006)024[0091:AOAPNC]2.0.CO;2 0890-9369(2006)020[2041:HTATMO]2.0.CO;2 1011-6370(2008)135[2383:AOTAPP]2.0.CO;2 1534-5807(2006)011[0117:PBOTSI]2.0.CO;2 0092-8674(2006)125[0315:ABCSMK]2.0.CO;2 0305-1048(2006)034[W546:JAVTFT]2.0.CO;2 1098-5549(2002)022[7473:PCLPTD]2.0.CO;2 0092-8674(2007)128[0735:GRBPAT]2.0.CO;2 0305-1048(2005)033[5181:AKBSII]2.0.CO;2 0092-8674(2006)127[1209:TOBNRP]2.0.CO;2 1098-5549(2003)023[0186:PCOMGA]2.0.CO;2 0092-8674(1988)053[0699:TFTATU]2.0.CO;2 1476-4687(2006)441[0349:PCRDRI]2.0.CO;2 1061-4036(2006)038[1151:BFOUTD]2.0.CO;2 0967-3849(2006)014[0363:FGTETT]2.0.CO;2 1011-6370(1999)126[3905:TDPGPP]2.0.CO;2 1011-6370(2001)128[2163:TMSOTD]2.0.CO;2 0890-9369(2006)020[1123:GMOPTG]2.0.CO;2 10.1371/journal.pbio.0040170 10.1371/journal.pgen.1000178 10.1371/journal.pbio.0050238 1088-9051(2006)016[0962:ELTIIT]2.0.CO;2 1091-6490(2004)101[8378:PIATGO]2.0.CO;2 1066-5277(1998)005[0211:MASFCM]2.0.CO;2 1476-4687(1983)306[0591:DEOBCG]2.0.CO;2 1476-4687(1999)400[0284:TCTEFF]2.0.CO;2 1476-4687(2001)412[0655:ADPGCI]2.0.CO;2 10.1371/journal.pcbi.0020130 1061-4036(2006)038[0700:GAOPTI]2.0.CO;2 1097-2765(1998)001[1065:ACSMIP]2.0.CO;2 1095-564X(2000)218[0038:FAORBS]2.0.CO;2 0193-4511(2007)315[1408:HRMTBO]2.0.CO;2 1097-2765(1998)001[1057:TDPGGP]2.0.CO;2 1460-2075(2004)023[0857:CIUZBR]2.0.CO;2 1471-0056(2007)008[0009:PSMATM]2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2009 Public Library of Science Attribution 2009 Schuettengruber et al. 2009 2009 Schuettengruber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, et al. (2009) Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biol 7(1): e1000013. doi:10.1371/journal.pbio.1000013 |
| Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Attribution – notice: 2009 Schuettengruber et al. 2009 – notice: 2009 Schuettengruber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, et al. (2009) Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biol 7(1): e1000013. doi:10.1371/journal.pbio.1000013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7SS 7TM 7X8 1XC VOOES 5PM DOA CZG |
| DOI | 10.1371/journal.pbio.1000013 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science Entomology Abstracts (Full archive) Nucleic Acids Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | Entomology Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Polycomb and Trithorax Chromatin Anatomy |
| EISSN | 1545-7885 |
| EndPage | e1000013 |
| ExternalDocumentID | 1292307815 oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3 PMC2621266 oai:HAL:hal-00357174v1 A195013115 19143474 10_1371_journal_pbio_1000013 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUFD ABUWG ACCTH ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M 3V. AGJBV ALIPV CGR CUY CVF ECM EIF M~E NPM YIN 7SS 7TM PUEGO 7X8 .GJ 1XC ADXHL PV9 QF4 RZL VOOES WOQ 5PM AAPBV ABPTK CZG ZA5 |
| ID | FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262811000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-7885 1544-9173 |
| IngestDate | Sun Oct 01 00:20:30 EDT 2023 Tue Oct 14 19:08:39 EDT 2025 Tue Nov 04 01:52:27 EST 2025 Tue Oct 14 20:04:04 EDT 2025 Thu Oct 02 05:32:57 EDT 2025 Fri Sep 05 10:37:43 EDT 2025 Tue Nov 11 10:55:01 EST 2025 Tue Nov 04 18:13:49 EST 2025 Thu Nov 13 16:12:07 EST 2025 Thu Nov 13 16:11:40 EST 2025 Thu Nov 13 16:12:10 EST 2025 Wed Feb 19 02:32:01 EST 2025 Sat Nov 29 02:40:04 EST 2025 Tue Nov 18 21:27:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Drosophila Proteins Chromatin Animals Polycomb Repressive Complex 1 Chromatin Immunoprecipitation Gene Expression Regulation, Developmental Chromosomal Proteins, Non-Histone Reverse Transcriptase Polymerase Chain Reaction Drosophila melanogaster |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 PMCID: PMC2621266 |
| ORCID | 0000-0003-3709-3469 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pbio.1000013 |
| PMID | 19143474 |
| PQID | 21077003 |
| PQPubID | 23462 |
| PageCount | 18 |
| ParticipantIDs | plos_journals_1292307815 doaj_primary_oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2621266 hal_primary_oai_HAL_hal_00357174v1 proquest_miscellaneous_66862260 proquest_miscellaneous_21077003 gale_infotracmisc_A195013115 gale_infotracacademiconefile_A195013115 gale_incontextgauss_ISR_A195013115 gale_incontextgauss_ISN_A195013115 gale_incontextgauss_IOV_A195013115 pubmed_primary_19143474 crossref_primary_10_1371_journal_pbio_1000013 crossref_citationtrail_10_1371_journal_pbio_1000013 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-01-01 |
| PublicationDateYYYYMMDD | 2009-01-01 |
| PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS biology |
| PublicationTitleAlternate | PLoS Biol |
| PublicationYear | 2009 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | Ringrose (journal-pbio-1000013-b025) 2003; 5 Grimaud (journal-pbio-1000013-b008) 2006; 14 Hsieh (journal-pbio-1000013-b010) 2003; 23 Schwartz (journal-pbio-1000013-b001) 2008; 20 Ingham (journal-pbio-1000013-b052) 1983; 306 Hsieh (journal-pbio-1000013-b009) 2003; 115 Brown (journal-pbio-1000013-b033) 1998; 1 Mishra (journal-pbio-1000013-b046) 2001; 21 Kahn (journal-pbio-1000013-b055) 2006; 281 Cao (journal-pbio-1000013-b006) 2004; 14 Mito (journal-pbio-1000013-b051) 2007; 315 Bailey (journal-pbio-1000013-b058) 1998; 5 Brown (journal-pbio-1000013-b038) 2005; 33 Fiedler (journal-pbio-1000013-b024) 2006; 34 Oktaba (journal-pbio-1000013-b056) 2008 Orphanides (journal-pbio-1000013-b049) 1999; 400 Petruk (journal-pbio-1000013-b054) 2008; 135 Beisel (journal-pbio-1000013-b041) 2007; 104 Otte (journal-pbio-1000013-b011) 2003; 13 Negre (journal-pbio-1000013-b019) 2006; 4 Orian (journal-pbio-1000013-b036) 2003; 17 Muller (journal-pbio-1000013-b004) 2006; 16 Dejardin (journal-pbio-1000013-b047) 2004; 23 Klymenko (journal-pbio-1000013-b040) 2006; 20 Busturia (journal-pbio-1000013-b045) 2001; 128 Bailey (journal-pbio-1000013-b057) 1994; 2 Mikkelsen (journal-pbio-1000013-b027) 2007; 448 Fritsch (journal-pbio-1000013-b043) 1999; 126 Zhao (journal-pbio-1000013-b029) 2007; 1 Dejardin (journal-pbio-1000013-b014) 2005; 434 Schwartz (journal-pbio-1000013-b020) 2006; 38 Mohd-Sarip (journal-pbio-1000013-b013) 2002; 22 Squazzo (journal-pbio-1000013-b021) 2006; 16 Shimell (journal-pbio-1000013-b044) 2000; 218 Martin (journal-pbio-1000013-b060) 2004; 5 Tanay (journal-pbio-1000013-b035) 2006; 16 Biggin (journal-pbio-1000013-b032) 1988; 53 Brown (journal-pbio-1000013-b015) 2003; 130 Orphanides (journal-pbio-1000013-b048) 1998; 92 Mohd-Sarip (journal-pbio-1000013-b050) 2006; 24 Bracken (journal-pbio-1000013-b017) 2006; 20 Pan (journal-pbio-1000013-b028) 2007; 1 Schuettengruber (journal-pbio-1000013-b005) 2007; 128 Tolhuis (journal-pbio-1000013-b022) 2006; 38 Moses (journal-pbio-1000013-b031) 2006; 2 Papp (journal-pbio-1000013-b039) 2006; 20 Mihaly (journal-pbio-1000013-b042) 1998; 1 Kwong (journal-pbio-1000013-b030) 2008; 4 Saurin (journal-pbio-1000013-b007) 2001; 412 Wang (journal-pbio-1000013-b012) 2004; 14 Pi (journal-pbio-1000013-b037) 2004; 101 Sparmann (journal-pbio-1000013-b002) 2006; 6 Schwartz (journal-pbio-1000013-b003) 2007; 8 Lee (journal-pbio-1000013-b018) 2006; 125 Kim (journal-pbio-1000013-b034) 2007; 5 Petruk (journal-pbio-1000013-b053) 2006; 127 Boyer (journal-pbio-1000013-b016) 2006; 441 Manak (journal-pbio-1000013-b023) 2006; 38 Comet (journal-pbio-1000013-b059) 2006; 11 Bernstein (journal-pbio-1000013-b026) 2006; 125 |
| References_xml | – volume: 20 start-page: 266 issn: 0955-0674 year: 2008 ident: journal-pbio-1000013-b001 publication-title: Curr Opin Cell Biol doi: 0955-0674(2008)020[0266:PCAES]2.0.CO;2 – volume: 2 start-page: 28 issn: 1553-0833 year: 1994 ident: journal-pbio-1000013-b057 publication-title: Proc Int Conf Intell Syst Mol Biol doi: 1553-0833(1994)002[0028:FAMMBE]2.0.CO;2 – volume: 14 start-page: 637 issn: 1097-2765 year: 2004 ident: journal-pbio-1000013-b012 publication-title: Mol Cell doi: 1097-2765(2004)014[0637:HROPGS]2.0.CO;2 – volume: 17 start-page: 1101 issn: 0890-9369 year: 2003 ident: journal-pbio-1000013-b036 publication-title: Genes Dev doi: 0890-9369(2003)017[1101:GBBTDM]2.0.CO;2 – volume: 1 start-page: 299 issn: 1934-5909 year: 2007 ident: journal-pbio-1000013-b028 publication-title: Cell Stem Cell doi: 1934-5909(2007)001[0299:WAOHHL]2.0.CO;2 – volume: 21 start-page: 1311 issn: 1098-5549 year: 2001 ident: journal-pbio-1000013-b046 publication-title: Mol Cell Biol doi: 1098-5549(2001)021[1311:TIPREM]2.0.CO;2 – volume: 16 start-page: 476 issn: 0959-437X year: 2006 ident: journal-pbio-1000013-b004 publication-title: Curr Opin Genet Dev doi: 0959-437X(2006)016[0476:PREATO]2.0.CO;2 – volume: 5 start-page: 759 issn: 1534-5807 year: 2003 ident: journal-pbio-1000013-b025 publication-title: Dev Cell doi: 1534-5807(2003)005[0759:GPOTRE]2.0.CO;2 – volume: 6 start-page: 846 issn: 1474-175X year: 2006 ident: journal-pbio-1000013-b002 publication-title: Nat Rev Cancer doi: 1474-175X(2006)006[0846:PSCCFD]2.0.CO;2 – volume: 1 start-page: 286 issn: 1934-5909 year: 2007 ident: journal-pbio-1000013-b029 publication-title: Cell Stem Cell doi: 1934-5909(2007)001[0286:WMOHHL]2.0.CO;2 – volume: 38 start-page: 694 issn: 1061-4036 year: 2006 ident: journal-pbio-1000013-b022 publication-title: Nat Genet doi: 1061-4036(2006)038[0694:GPOPAP]2.0.CO;2 – volume: 20 start-page: 1110 issn: 0890-9369 year: 2006 ident: journal-pbio-1000013-b040 publication-title: Genes Dev doi: 0890-9369(2006)020[1110:APGPCW]2.0.CO;2 – volume: 125 start-page: 301 issn: 0092-8674 year: 2006 ident: journal-pbio-1000013-b018 publication-title: Cell doi: 0092-8674(2006)125[0301:CODRBP]2.0.CO;2 – volume: 448 start-page: 553 issn: 1476-4687 year: 2007 ident: journal-pbio-1000013-b027 publication-title: Nature doi: 1476-4687(2007)448[0553:GMOCSI]2.0.CO;2 – volume: 92 start-page: 105 issn: 0092-8674 year: 1998 ident: journal-pbio-1000013-b048 publication-title: Cell doi: 0092-8674(1998)092[0105:FAFTFT]2.0.CO;2 – volume: 281 start-page: 29064 issn: 0021-9258 year: 2006 ident: journal-pbio-1000013-b055 publication-title: J Biol Chem doi: 0021-9258(2006)281[29064:PCATPO]2.0.CO;2 – volume: 13 start-page: 448 issn: 0959-437X year: 2003 ident: journal-pbio-1000013-b011 publication-title: Curr Opin Genet Dev doi: 0959-437X(2003)013[0448:GRBPGP]2.0.CO;2 – volume: 5 start-page: R101 issn: 1465-6914 year: 2004 ident: journal-pbio-1000013-b060 publication-title: Genome Biol doi: 1465-6914(2004)005[R101:GFAOGD]2.0.CO;2 – volume: 16 start-page: 890 issn: 1088-9051 year: 2006 ident: journal-pbio-1000013-b021 publication-title: Genome Res doi: 1088-9051(2006)016[0890:SBTSRO]2.0.CO;2 – volume: 104 start-page: 16615 issn: 1091-6490 year: 2007 ident: journal-pbio-1000013-b041 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2007)104[16615:CAARES]2.0.CO;2 – volume: 434 start-page: 533 issn: 1476-4687 year: 2005 ident: journal-pbio-1000013-b014 publication-title: Nature doi: 1476-4687(2005)434[0533:RODPGP]2.0.CO;2 – volume: 14 start-page: 155 issn: 0959-437X year: 2004 ident: journal-pbio-1000013-b006 publication-title: Curr Opin Genet Dev doi: 0959-437X(2004)014[0155:TFOEMO]2.0.CO;2 – volume: 130 start-page: 285 issn: 1011-6370 year: 2003 ident: journal-pbio-1000013-b015 publication-title: Development doi: 1011-6370(2003)130[0285:TDPGEA]2.0.CO;2 – volume: 115 start-page: 293 issn: 0092-8674 year: 2003 ident: journal-pbio-1000013-b009 publication-title: Cell doi: 0092-8674(2003)115[0293:TATARF]2.0.CO;2 – volume: 24 start-page: 91 issn: 1097-2765 year: 2006 ident: journal-pbio-1000013-b050 publication-title: Mol Cell doi: 1097-2765(2006)024[0091:AOAPNC]2.0.CO;2 – volume: 20 start-page: 2041 issn: 0890-9369 year: 2006 ident: journal-pbio-1000013-b039 publication-title: Genes Dev doi: 0890-9369(2006)020[2041:HTATMO]2.0.CO;2 – volume: 135 start-page: 2383 issn: 1011-6370 year: 2008 ident: journal-pbio-1000013-b054 publication-title: Development doi: 1011-6370(2008)135[2383:AOTAPP]2.0.CO;2 – volume: 11 start-page: 117 issn: 1534-5807 year: 2006 ident: journal-pbio-1000013-b059 publication-title: Dev Cell doi: 1534-5807(2006)011[0117:PBOTSI]2.0.CO;2 – volume: 125 start-page: 315 issn: 0092-8674 year: 2006 ident: journal-pbio-1000013-b026 publication-title: Cell doi: 0092-8674(2006)125[0315:ABCSMK]2.0.CO;2 – volume: 34 start-page: W546 issn: 0305-1048 year: 2006 ident: journal-pbio-1000013-b024 publication-title: Nucleic Acids Res doi: 0305-1048(2006)034[W546:JAVTFT]2.0.CO;2 – volume: 22 start-page: 7473 issn: 1098-5549 year: 2002 ident: journal-pbio-1000013-b013 publication-title: Mol Cell Biol doi: 1098-5549(2002)022[7473:PCLPTD]2.0.CO;2 – volume: 128 start-page: 735 issn: 0092-8674 year: 2007 ident: journal-pbio-1000013-b005 publication-title: Cell doi: 0092-8674(2007)128[0735:GRBPAT]2.0.CO;2 – volume: 33 start-page: 5181 issn: 0305-1048 year: 2005 ident: journal-pbio-1000013-b038 publication-title: Nucleic Acids Res doi: 0305-1048(2005)033[5181:AKBSII]2.0.CO;2 – volume: 127 start-page: 1209 issn: 0092-8674 year: 2006 ident: journal-pbio-1000013-b053 publication-title: Cell doi: 0092-8674(2006)127[1209:TOBNRP]2.0.CO;2 – volume: 23 start-page: 186 issn: 1098-5549 year: 2003 ident: journal-pbio-1000013-b010 publication-title: Mol Cell Biol doi: 1098-5549(2003)023[0186:PCOMGA]2.0.CO;2 – volume: 53 start-page: 699 issn: 0092-8674 year: 1988 ident: journal-pbio-1000013-b032 publication-title: Cell doi: 0092-8674(1988)053[0699:TFTATU]2.0.CO;2 – volume: 441 start-page: 349 issn: 1476-4687 year: 2006 ident: journal-pbio-1000013-b016 publication-title: Nature doi: 1476-4687(2006)441[0349:PCRDRI]2.0.CO;2 – volume: 38 start-page: 1151 issn: 1061-4036 year: 2006 ident: journal-pbio-1000013-b023 publication-title: Nat Genet doi: 1061-4036(2006)038[1151:BFOUTD]2.0.CO;2 – volume: 14 start-page: 363 issn: 0967-3849 year: 2006 ident: journal-pbio-1000013-b008 publication-title: Chromosome Res doi: 0967-3849(2006)014[0363:FGTETT]2.0.CO;2 – volume: 126 start-page: 3905 issn: 1011-6370 year: 1999 ident: journal-pbio-1000013-b043 publication-title: Development doi: 1011-6370(1999)126[3905:TDPGPP]2.0.CO;2 – volume: 128 start-page: 2163 issn: 1011-6370 year: 2001 ident: journal-pbio-1000013-b045 publication-title: Development doi: 1011-6370(2001)128[2163:TMSOTD]2.0.CO;2 – volume: 20 start-page: 1123 issn: 0890-9369 year: 2006 ident: journal-pbio-1000013-b017 publication-title: Genes Dev doi: 0890-9369(2006)020[1123:GMOPTG]2.0.CO;2 – volume: 4 year: 2006 ident: journal-pbio-1000013-b019 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040170 – volume: 4 year: 2008 ident: journal-pbio-1000013-b030 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000178 – volume: 5 year: 2007 ident: journal-pbio-1000013-b034 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050238 – volume: 16 start-page: 962 issn: 1088-9051 year: 2006 ident: journal-pbio-1000013-b035 publication-title: Genome Res doi: 1088-9051(2006)016[0962:ELTIIT]2.0.CO;2 – volume: 101 start-page: 8378 issn: 1091-6490 year: 2004 ident: journal-pbio-1000013-b037 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2004)101[8378:PIATGO]2.0.CO;2 – volume: 5 start-page: 211 issn: 1066-5277 year: 1998 ident: journal-pbio-1000013-b058 publication-title: J Comput Biol doi: 1066-5277(1998)005[0211:MASFCM]2.0.CO;2 – year: 2008 ident: journal-pbio-1000013-b056 publication-title: Dev Cell – volume: 306 start-page: 591 issn: 1476-4687 year: 1983 ident: journal-pbio-1000013-b052 publication-title: Nature doi: 1476-4687(1983)306[0591:DEOBCG]2.0.CO;2 – volume: 400 start-page: 284 issn: 1476-4687 year: 1999 ident: journal-pbio-1000013-b049 publication-title: Nature doi: 1476-4687(1999)400[0284:TCTEFF]2.0.CO;2 – volume: 412 start-page: 655 issn: 1476-4687 year: 2001 ident: journal-pbio-1000013-b007 publication-title: Nature doi: 1476-4687(2001)412[0655:ADPGCI]2.0.CO;2 – volume: 2 year: 2006 ident: journal-pbio-1000013-b031 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020130 – volume: 38 start-page: 700 issn: 1061-4036 year: 2006 ident: journal-pbio-1000013-b020 publication-title: Nat Genet doi: 1061-4036(2006)038[0700:GAOPTI]2.0.CO;2 – volume: 1 start-page: 1065 issn: 1097-2765 year: 1998 ident: journal-pbio-1000013-b042 publication-title: Mol Cell doi: 1097-2765(1998)001[1065:ACSMIP]2.0.CO;2 – volume: 218 start-page: 38 issn: 1095-564X year: 2000 ident: journal-pbio-1000013-b044 publication-title: Dev Biol doi: 1095-564X(2000)218[0038:FAORBS]2.0.CO;2 – volume: 315 start-page: 1408 issn: 0193-4511 year: 2007 ident: journal-pbio-1000013-b051 publication-title: Science doi: 0193-4511(2007)315[1408:HRMTBO]2.0.CO;2 – volume: 1 start-page: 1057 issn: 1097-2765 year: 1998 ident: journal-pbio-1000013-b033 publication-title: Mol Cell doi: 1097-2765(1998)001[1057:TDPGGP]2.0.CO;2 – volume: 23 start-page: 857 issn: 1460-2075 year: 2004 ident: journal-pbio-1000013-b047 publication-title: Embo J doi: 1460-2075(2004)023[0857:CIUZBR]2.0.CO;2 – volume: 8 start-page: 9 issn: 1471-0056 year: 2007 ident: journal-pbio-1000013-b003 publication-title: Nat Rev Genet doi: 1471-0056(2007)008[0009:PSMATM]2.0.CO;2 |
| SSID | ssj0022928 |
| Score | 2.430034 |
| Snippet | Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In... Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In... |
| SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1000013 |
| SubjectTerms | Animals Biochemistry, Molecular Biology Cell Biology Cell division Chromatin Chromatin - physiology Chromatin Immunoprecipitation Chromosomal Proteins, Non-Histone - physiology Chromosomes Classification Deoxyribonucleic acid Developmental Biology DNA Drosophila Drosophila melanogaster - embryology Drosophila Proteins - physiology Embryo Epigenetics Evaluation Gene expression Gene Expression Regulation, Developmental - physiology Genetic aspects Genetic regulation Genetics Genetics and Genomics Genomes Genomics Life Sciences Molecular Biology Ontology Polycomb Repressive Complex 1 Properties Protein binding Proteins Reverse Transcriptase Polymerase Chain Reaction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF5BBBIviLuGAhZC4sltfO3xGI6oSCggzr6t9nIdKbUjO6nIv2dm7YQYUZUHHrP57MQzs56Z3dlvCHnpaGYKk9IoK8Z5lFnuIuVyFhW2MOAStBVM-2YTbDbjp6fi016rL6wJ6-iBO8Ed85xqBrmTSpyCSR2rWPHYcRtTxoS1nucTop5tMtWnWonwXVWRagamM0v7Q3Mpi497HR0t9bw-6la304FT8tz9uzf09RILJEfLRd3-LQj9s5ZyzzlN75DbfVQZTrqnuUuuueoeudn1mdzcJz-m4L26Rb9QVZBmn2_CugiX9WIDBqdhzIZIyl-CPfwMTdnUGMdWoT8HjBVSbQif3ja-58F8oUJ3rptN3T4g36bvvr45ifqOCpFhgq4iagrFNZJ4OZc7lRqljEmEFlyJGNeXYlpokxbWaGoSy8H7I8E-VZxZY0ScPiSjqq7cAQkxqYZYRTvHVKasEWqsILzhGcdWWEUekHQrUml6unHserGQfg-NQdrRyUaiImSviIBEu6uWHd3GFfjXqK0dFsmy_QCYkOxNSF5lQgF5gbqWSIdRYb3NmVq3rXz_8bucYJdcz0h0GejL7F9AnwegVz2oqEEiRvUHIUCuyMU1QB4OkDDzzfDXSpTH3rOfTD5IHMMNYkjUs4s4IAdou1vptRICPCz-53j98609S7w1lttVrl63MonHjME9LkdQPFkEuXBAHnX2_1tdAkLwjGUBYYOZMfifw2-qeemJzRMKgRSlj_-HUp-QW93GH66WHZLRqlm7p-SGuVjN2-aZf1v8Aq5NbXk priority: 102 providerName: Directory of Open Access Journals |
| Title | Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19143474 https://www.proquest.com/docview/21077003 https://www.proquest.com/docview/66862260 https://hal.science/hal-00357174 https://pubmed.ncbi.nlm.nih.gov/PMC2621266 https://doaj.org/article/856b7027a2ea4671a1a81e8d16779dd3 http://dx.doi.org/10.1371/journal.pbio.1000013 |
| Volume | 7 |
| WOSCitedRecordID | wos000262811000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: M7P dateStart: 20031001 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: PATMY dateStart: 20031001 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: 7X7 dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: BENPR dateStart: 20031001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: PIMPY dateStart: 20031001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: FPL dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF6RFCReyk1TSrAQEk9u4yN7PKaQqJVCsEqB8LRa765JpNSO4qQi_54Z20nrigh4iRR7dm3PHnPszDeEvLM01IkOqBsmna4bGm5dZbvMTUyiQSTERrC4KDbBRiM-HovoxlC8c4IfMO-k4unxPJ5mx6U3OmiQPT-gFEO4BtFwa2D5wudVetyuljXxU6D0b_fixgRDIZvzWZb_Sd28GzV5SwwNHv3vBzwm-5XC6fTKGfKE3LPpU_KgLEG5fka-D0Cwlf5Ap5eCBX61drLEibLZGuZi7KjUOJeL6XICU-WXg1C6qOKmzhBThDF4Knfg38dFUQ5hOlNO_yperLP8Ofk66F9-OHOrYguuZoIuXaoTxWPE97K2a1WgldLaF7HgSnjoevJoEusgMTqm2jccFAPE3qeKM6O18IIXpJlmqT0gDtrboMbE1jIVKqOF6ijQfHjIsUpW0m2RYDMGUldI5FgQYyaL4zUGFknJG4kskxXLWsTdtpqXSBx_oT_F4d3SIo52cQHGRlbLUvIujRlY5sq3CkSGpzzFPcuNRxkTxkAnb3FySETKSDEU56da5bk8__xN9rCAbgFWtIvoy-hfiC5qRO8roiQDjmhV5UgAXxGmq0Z5VKOETUHXnzZBftz69rPeUOI1PDsGGz689lrkACf7hnu5BN0P8wI4tn-zWQASu8ZIvNRmq1z6Xocx6GM3BcWkIzCTW-RluWBuhkuAdh6ysEVYbSnV3rN-J51OCsxzn4KORenh7ld-RR6WJ33oHjsizeViZV-T-_p6Oc0XbdJgY1b88jbZO-2Poot24X9pF1tIG2N-I7gTnX-KfvwGi0xurw |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdYAcEL37DCYBZC4ildnaT-eCywqhOlVDBgb5bjOLRSl0xNO9H_nrvELQuiggfe2vTsOuePu_Pd_Y6QV47HNrMRD-Ks2wviVLrAuJ4IsjSzIBKSVImkKjYhxmN5dqYmHlIIc2E8B8FGnBdl5cnHD0Xujjwna8dph0WCbYg7F8ms6NQX1dEeuS4UkxjdNZiMtrZXqELpM-d2tWxIpgrAf3tM700xSrKFQ_mTJvp7QOUVCTW4-x_f7R6549VU2q9b3CfXXP6A3KwLV64fkm8DEIf1LSLt52C3n69pkdFJMV_DCk6oyVN6upgtp7DAflAE4EXFOKcjTCzGkKuSwrd3i6qIwmxu6PF5slgX5SPyZXB8-nYY-BINgRWKLwNuMyMTRAVzrudMZI2xNlSJkkYxvLBiPEtslKU24TZMJagTiNjPjRSptYpFj0krBw7sE4pWOig_iXPCxCa1ynQN6EsyllhbK-u1SbSZHm09fjmW0ZjryiknwI6peaORZdqzrE2CbauLGr_jL_RvcOa3tIi-XT2A6dJ-mrTs8USAPW9CZ0DQMMOMZE6mjAuh0hQ6eYnrRiO-Ro4BPN_Nqiz1ycevuo9ldyuIo11En8f_QvSpQfTaE2UFcMQan1kBfEVwrwblQYMSjhLb_Lcp8uPKuw_7I43P0OMMln98ydpkH5fthnulBo0Rswkktj_c7A2NXWP8Xu6KValD1hUC-thNwTFVCYzrNnlS76Vf06VAp49F3Caiscsa42z-ks-mFVJ6yEEz4_zp7iEfklvD0w8jPToZv39Gbte-QrxgOyCt5WLlnpMb9nI5KxcvqvPkJ6iAgJg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28iFe-IYVBosQgqd0dZL647GwVZuoSgUD9jJZ_gqt1CVT0030v-cuScuCqOCFtzY9u875bN_57n5HyGvPEpvamIVJ2u2FiRM-1L7Hw9SlFo4E4yQ3ZbEJPhqJ01M53iJnq1yYmoNgI87yovTk44c88_s1J_cRr6jynnZozOmqRefCTPNOdVsdvykRh_BmbIEJSNvkBpdUoG02GA_X9lgkI1Fn023qqHFalaD-6617e4KRky0c3p-009-DLK-dWoN7__l975O7tTob9KteHpAtnz0kt6oCl8tH5NsAjs3qtjHoZ2Dfny-DPA3G-WwJkm4CnbngZD5dTEAQfwQI1IsKdBYMMQEZQ7OKAL4dzMtiC9OZDg7PzXyZF4_Jl8HhyfujsC7lEFou2SJkNtXCIHqY9z2vY6u1tZE0UmhJ8WKLstTYOHXWMBs5AWoHIvszLbizVtL4CWllwJUdEqA1D0qS8Z7rRDsrdVeDXiUSgTW40l6bxKspU7bGOcdyGzNVOu842DsVbxRyUNUcbJNw3eqiwvn4C_07lIY1LaJ0lw9gClU9dUr0mOFg9-vIaziQqKZaUC8cZZxL56CTVyhLCnE4Mgz0-a4vi0Idf_yq-liet4RC2kT0efQvRJ8aRG9rojQHjlhdZ2AAX1HIGpS7DUrYcmzz3ybIj2vvftQfKnyGnmkOVu4VbZMdFOUV9woFmiVmHQhsv7daLwq7xji_zOeXhYpol3PoYzMFw5QmMMLb5Gm1vn5NlwTdP-FJm_DGymuMs_lLNp2UiOoRAw2OsWebh7xHbo8PBmp4PPrwnNypXIp4D7dLWov5pX9BbtqrxbSYvyy3mJ-EFI_N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Anatomy+of+Polycomb+and+Trithorax+Chromatin+Landscapes+in+Drosophila+Embryos&rft.jtitle=PLoS+biology&rft.au=Schuettengruber%2C+Bernd&rft.au=Ganapathi%2C+Mythily&rft.au=Leblanc%2C+Benjamin&rft.au=Portoso%2C+Manuela&rft.date=2009-01-01&rft.pub=Public+Library+of+Science&rft.eissn=1545-7885&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pbio.1000013&rft.externalDocID=1292307815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |