A more accurate method for colocalisation analysis allowing for multiple causal variants
In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes th...
Uložené v:
| Vydané v: | PLoS genetics Ročník 17; číslo 9; s. e1009440 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
29.09.2021
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist. |
|---|---|
| AbstractList | In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist. In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist. In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist. Genetic association studies have found evidence that human disease risk or other traits are under the influence of genetic variants. As results of studies are made publicly available, more research focuses on whether different traits are under influence of the same variants, which may help us understand how variants lead to differences in disease risk. However, one of the popular methods to answer this question, coloc, makes the simplifying assumption that no two members of the set of causal variants for any one trait are close to each other. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants in proximity to be evaluated simultaneously. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist. |
| Audience | Academic |
| Author | Wallace, Chris |
| AuthorAffiliation | Newcastle University, UNITED KINGDOM 1 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom 2 MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom |
| AuthorAffiliation_xml | – name: 1 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom – name: 2 MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom – name: Newcastle University, UNITED KINGDOM |
| Author_xml | – sequence: 1 givenname: Chris orcidid: 0000-0001-9755-1703 surname: Wallace fullname: Wallace, Chris |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34587156$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk2uL1DAUhousuBf9B6IFQfTDjEmbNKkfhGHxMrC44A2_hdNMMpMlbcYkXd1_b2amI9NlEaWBluR539Ocy2l21LlOZdljjKa4ZPjVlet9B3a6XqpuihGqCUH3shNMaTlhBJGjg-_j7DSEK4RKymv2IDsuCeUM0-ok-z7LW-dVDlL2HqLKWxVXbpFr53PprJNgTYBoXJdDinYTTMjBWvfTdMst1PY2mrVVuYQ-gM2vwRvoYniY3ddgg3o0vM-yr-_efjn_MLm4fD8_n11MJKuLOFG6UQgo403ZaF1hIJwxXWpNG12VJSG6rGXBC0IIVZJiAhgqSvUCV6QmXJVn2dOd79q6IIakBFFQnlZdlCgR8x2xcHAl1t604G-EAyO2G84vBfhopFWCUUlwgciCyxQPVw0GTaguSuBA6ponrzdDtL5p1UKqLnqwI9PxSWdWYumuBaeIsKJKBi8GA-9-9CpE0ZoglbXQKddv_ptxTGpesYQ-u4XefbuBWkK6gOm0S3HlxlTMKsYoKjgvEjW9g0rPQrVGpsbSJu2PBC9HgsRE9SsuU5GDmH_-9B_sx39nL7-N2ecH7EqBjavgbL_pxjAGnxxW5U859m2egNc7QHoXgldaSBO3XZ3SYKzASGxmap9gsZkpMcxUEpNb4r3_X2W_AQbMJBY |
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2025_03_003 crossref_primary_10_1038_s41467_025_57829_z crossref_primary_10_1038_s41586_024_07501_1 crossref_primary_10_1007_s10654_024_01103_x crossref_primary_10_1371_journal_pgen_1011412 crossref_primary_10_1016_j_cell_2024_01_023 crossref_primary_10_1016_j_xgen_2025_101004 crossref_primary_10_1038_s41588_025_02223_0 crossref_primary_10_1111_ceo_14440 crossref_primary_10_1093_ije_dyac124 crossref_primary_10_1186_s12920_025_02171_y crossref_primary_10_1186_s13195_023_01244_3 crossref_primary_10_3389_fpsyt_2024_1375209 crossref_primary_10_1038_s41586_022_05165_3 crossref_primary_10_1186_s12967_025_06099_w crossref_primary_10_1016_j_xgen_2025_100844 crossref_primary_10_1038_s41467_025_56695_z crossref_primary_10_1016_j_xgen_2025_100840 crossref_primary_10_1016_j_cmet_2025_07_007 crossref_primary_10_1093_brain_awaf057 crossref_primary_10_1016_j_jaci_2024_11_033 crossref_primary_10_1038_s43586_022_00188_6 crossref_primary_10_1161_ATVBAHA_124_320674 crossref_primary_10_1016_j_ebiom_2025_105807 crossref_primary_10_1186_s40478_023_01563_4 crossref_primary_10_1038_s41467_025_57483_5 crossref_primary_10_1038_s41588_025_02099_0 crossref_primary_10_1136_annrheumdis_2022_222345 crossref_primary_10_1002_jcsm_13720 crossref_primary_10_1038_s41588_023_01462_3 crossref_primary_10_1371_journal_pcbi_1010436 crossref_primary_10_1186_s13059_023_02993_y crossref_primary_10_1038_s41467_022_34323_4 crossref_primary_10_1016_j_ajhg_2023_12_013 crossref_primary_10_1007_s12035_025_04961_y crossref_primary_10_1016_j_bpsgos_2023_08_007 crossref_primary_10_1080_01621459_2024_2347667 crossref_primary_10_1016_S2665_9913_22_00180_1 crossref_primary_10_1016_j_ajhg_2021_11_019 crossref_primary_10_1111_imm_13902 crossref_primary_10_1016_j_jid_2025_08_014 crossref_primary_10_1016_j_ebiom_2025_105596 crossref_primary_10_1007_s00240_024_01627_7 crossref_primary_10_1038_s41588_023_01569_7 crossref_primary_10_1016_j_clnu_2024_09_044 crossref_primary_10_1038_s41588_024_02064_3 crossref_primary_10_3389_fimmu_2023_1148591 crossref_primary_10_1038_s41467_023_44451_0 crossref_primary_10_1038_s42255_024_01008_9 crossref_primary_10_1038_s41467_025_59524_5 crossref_primary_10_1038_s41588_024_01973_7 crossref_primary_10_1016_j_leukres_2024_107499 crossref_primary_10_1038_s41467_025_60868_1 crossref_primary_10_1371_journal_pgen_1010929 crossref_primary_10_3389_fonc_2024_1525767 crossref_primary_10_3389_fcimb_2025_1607476 crossref_primary_10_1002_gepi_70012 crossref_primary_10_1002_alz_13741 crossref_primary_10_1016_j_ebiom_2025_105580 crossref_primary_10_1038_s41467_025_61720_2 crossref_primary_10_1016_j_molmet_2024_101973 crossref_primary_10_1111_jth_15754 crossref_primary_10_1016_j_ajhg_2025_04_010 crossref_primary_10_1371_journal_pgen_1011697 crossref_primary_10_1038_s41467_025_59950_5 crossref_primary_10_1016_j_atherosclerosis_2024_117558 crossref_primary_10_1038_s41598_025_92210_6 crossref_primary_10_5582_irdr_2024_01064 crossref_primary_10_1016_j_tig_2023_02_014 crossref_primary_10_1038_s41467_025_61423_8 crossref_primary_10_1093_hmg_ddae110 crossref_primary_10_1038_s41467_025_57457_7 crossref_primary_10_1097_MD_0000000000044693 crossref_primary_10_1186_s13073_023_01255_7 crossref_primary_10_7554_eLife_88768 crossref_primary_10_1038_s41588_023_01428_5 crossref_primary_10_1093_cvr_cvaf078 crossref_primary_10_1038_s42003_023_05737_7 crossref_primary_10_1186_s12967_024_05782_8 crossref_primary_10_12688_wellcomeopenres_20861_1 crossref_primary_10_12688_wellcomeopenres_20861_2 crossref_primary_10_1016_j_ebiom_2024_105232 crossref_primary_10_1016_j_metabol_2025_156263 crossref_primary_10_24072_pcjournal_544 crossref_primary_10_1007_s12035_025_05221_9 crossref_primary_10_1016_j_thromres_2025_109376 crossref_primary_10_1007_s00403_025_04126_w crossref_primary_10_1038_s41562_025_02145_1 crossref_primary_10_1038_s41467_022_31085_x crossref_primary_10_1016_j_ebiom_2022_104112 crossref_primary_10_1038_s41588_024_01972_8 crossref_primary_10_1038_s44161_025_00609_1 crossref_primary_10_1038_s41576_025_00869_4 crossref_primary_10_1186_s12969_025_01140_0 crossref_primary_10_1186_s13040_024_00385_x crossref_primary_10_1161_JAHA_123_034132 crossref_primary_10_1186_s12872_024_04209_y crossref_primary_10_1002_alz_14139 crossref_primary_10_1002_mds_29508 crossref_primary_10_1016_j_xgen_2025_100810 crossref_primary_10_3389_fgene_2023_1180500 crossref_primary_10_1016_j_ajhg_2021_12_012 crossref_primary_10_1016_j_heliyon_2024_e38036 crossref_primary_10_1016_j_jsbmb_2025_106815 crossref_primary_10_1038_s42003_025_08615_6 crossref_primary_10_14814_phy2_70513 crossref_primary_10_1016_j_jid_2024_03_013 crossref_primary_10_1038_s41591_024_03284_0 crossref_primary_10_1016_j_tcb_2024_03_005 crossref_primary_10_1016_j_exger_2025_112789 crossref_primary_10_1038_s41588_023_01586_6 crossref_primary_10_1007_s11427_023_2522_8 crossref_primary_10_1038_s41467_025_62463_w crossref_primary_10_1016_j_ebiom_2024_104977 crossref_primary_10_1093_nar_gkae848 crossref_primary_10_1007_s00439_024_02672_3 crossref_primary_10_1038_s41588_024_01896_3 crossref_primary_10_1016_j_mocell_2025_100256 crossref_primary_10_1093_hmg_ddac243 crossref_primary_10_1038_s41467_025_62884_7 crossref_primary_10_1038_s41586_023_06921_9 crossref_primary_10_1002_art_43081 crossref_primary_10_1038_s41562_024_01963_z crossref_primary_10_1038_s41588_025_02100_w crossref_primary_10_1016_j_jtha_2023_11_027 crossref_primary_10_1186_s13073_022_01140_9 crossref_primary_10_1002_art_43088 crossref_primary_10_1038_s41467_025_55919_6 crossref_primary_10_1016_j_intimp_2024_112910 crossref_primary_10_1111_cns_14817 crossref_primary_10_1093_bioadv_vbaf110 crossref_primary_10_1161_JAHA_124_038857 crossref_primary_10_1016_j_ajhg_2024_07_010 crossref_primary_10_1016_j_ajhg_2024_07_017 crossref_primary_10_1016_j_ajo_2025_03_007 crossref_primary_10_1002_alz_70452 crossref_primary_10_1038_s41467_024_45652_x crossref_primary_10_1038_s41467_023_44680_3 crossref_primary_10_1038_s41588_024_01702_0 crossref_primary_10_2147_ITT_S494692 crossref_primary_10_1038_s41467_024_49263_4 crossref_primary_10_1371_journal_pgen_1011599 crossref_primary_10_1007_s00439_023_02627_0 crossref_primary_10_1038_s41598_024_80122_w crossref_primary_10_1016_j_isci_2024_110715 crossref_primary_10_1016_j_ebiom_2024_105168 crossref_primary_10_7554_eLife_102447_4 crossref_primary_10_1016_j_jad_2025_01_093 crossref_primary_10_1016_j_jbi_2025_104903 crossref_primary_10_1038_s41531_024_00729_8 crossref_primary_10_1038_s41588_024_01982_6 crossref_primary_10_1016_j_diabres_2025_111987 crossref_primary_10_1038_s42003_023_04497_8 crossref_primary_10_1161_ATVBAHA_125_323057 crossref_primary_10_7554_eLife_88768_3 crossref_primary_10_1038_s41588_023_01648_9 crossref_primary_10_1371_journal_pgen_1010932 crossref_primary_10_1038_s41467_024_49990_8 crossref_primary_10_1080_21678421_2024_2407408 crossref_primary_10_1038_s41562_024_02040_1 crossref_primary_10_1016_j_pharmthera_2023_108530 crossref_primary_10_3389_fgene_2024_1385339 crossref_primary_10_1016_j_ajhg_2022_04_001 crossref_primary_10_1016_j_ajhg_2025_06_013 crossref_primary_10_1186_s13024_022_00592_2 crossref_primary_10_1038_s44325_024_00015_9 crossref_primary_10_1007_s00335_025_10158_4 crossref_primary_10_1016_j_jpain_2024_104754 crossref_primary_10_1038_s42003_024_05887_2 crossref_primary_10_1038_s41467_024_53595_6 crossref_primary_10_1183_23120541_00457_2023 crossref_primary_10_1016_j_ebiom_2023_104488 crossref_primary_10_7554_eLife_83118 crossref_primary_10_1016_j_ajhg_2025_06_001 crossref_primary_10_1038_s41598_025_04902_8 crossref_primary_10_1016_j_athplu_2024_11_002 crossref_primary_10_1038_s41591_025_03872_8 crossref_primary_10_1016_j_ajhg_2022_12_017 crossref_primary_10_1038_s41467_024_46834_3 crossref_primary_10_1038_s41467_023_37729_w crossref_primary_10_1161_HYPERTENSIONAHA_124_24151 crossref_primary_10_1038_s41588_023_01314_0 crossref_primary_10_1126_science_ads6601 crossref_primary_10_1038_s41598_023_35098_4 crossref_primary_10_3389_fneur_2024_1321216 crossref_primary_10_1038_s43587_024_00778_x crossref_primary_10_2337_db24_0451 crossref_primary_10_1007_s00240_024_01669_x crossref_primary_10_1146_annurev_biodatasci_122120_024910 crossref_primary_10_1038_s41586_024_07708_2 crossref_primary_10_1038_s41598_024_80483_2 crossref_primary_10_1016_j_xhgg_2025_100410 crossref_primary_10_1038_s41698_025_00895_9 crossref_primary_10_1038_s41398_025_03349_9 crossref_primary_10_1038_s43856_024_00506_x crossref_primary_10_1186_s12888_024_06392_w crossref_primary_10_1111_jcmm_18255 crossref_primary_10_1186_s12916_023_02878_8 crossref_primary_10_1016_j_ajhg_2025_01_018 crossref_primary_10_1038_s41467_023_35808_6 crossref_primary_10_1093_ajh_hpaf011 crossref_primary_10_1002_alz_70429 crossref_primary_10_1038_s41467_024_55635_7 crossref_primary_10_1016_j_hrthm_2024_05_021 crossref_primary_10_1002_ana_26672 crossref_primary_10_1016_j_jad_2024_07_069 crossref_primary_10_1093_nar_gkae1270 crossref_primary_10_1371_journal_pgen_1010184 crossref_primary_10_1038_s41467_025_63299_0 crossref_primary_10_1038_s44325_025_00073_7 crossref_primary_10_1111_jcpp_13782 crossref_primary_10_3389_fpls_2024_1436532 crossref_primary_10_1136_gutjnl_2024_332121 crossref_primary_10_1038_s42003_023_05113_5 crossref_primary_10_7554_eLife_102447 crossref_primary_10_1073_pnas_2404364121 crossref_primary_10_1016_j_ebiom_2024_105530 crossref_primary_10_1038_s41467_024_52129_4 crossref_primary_10_1038_s42003_023_05454_1 |
| Cites_doi | 10.1371/journal.pgen.1000529 10.1534/genetics.114.167908 10.1038/nature15393 10.1002/gepi.21953 10.1016/j.ajhg.2016.10.003 10.1371/journal.pcbi.1007778 10.1093/bioinformatics/btw018 10.1038/s41467-019-11271-0 10.1111/rssb.12388 10.1371/journal.pgen.1008720 10.1038/ng.2435 10.2307/2981576 10.1002/gepi.20359 10.1371/journal.pgen.1004383 10.1093/bioinformatics/btv546 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Chris Wallace. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Chris Wallace 2021 Chris Wallace |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Chris Wallace. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Chris Wallace 2021 Chris Wallace |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1009440 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Statistics |
| DocumentTitleAlternate | coloc allowing for multiple causal variants |
| EISSN | 1553-7404 |
| ExternalDocumentID | 2582589230 oai_doaj_org_article_75c41204d8c44516b1af45f23a8a4998 PMC8504726 A677502882 34587156 10_1371_journal_pgen_1009440 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: Department of Health grantid: BRC-1215-20014 – fundername: Wellcome Trust grantid: WT220788 – fundername: Medical Research Council grantid: MC_UU_00002/4 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: WT107881 – fundername: Medical Research Council grantid: MC UU 00002/4 – fundername: ; grantid: BRC-1215-20014 – fundername: ; grantid: WT220788 – fundername: ; grantid: WT107881 – fundername: ; grantid: MC UU 00002/4 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM - AAPBV ABPTK ADACO BBAFP M~E |
| ID | FETCH-LOGICAL-c792t-efbe0a578b3bff61a4877f3ff5bf63344f39c2824445ec514a1a655fd164948e3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 263 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701334500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Sun May 01 00:11:09 EDT 2022 Fri Oct 03 12:31:07 EDT 2025 Tue Nov 04 01:55:39 EST 2025 Fri Sep 05 11:12:52 EDT 2025 Sat Nov 29 14:23:50 EST 2025 Tue Nov 11 10:29:07 EST 2025 Tue Nov 04 17:56:59 EST 2025 Thu Nov 13 15:07:58 EST 2025 Thu Nov 13 14:59:46 EST 2025 Thu Nov 13 15:05:09 EST 2025 Thu May 22 21:20:57 EDT 2025 Mon Jul 21 06:03:13 EDT 2025 Sat Nov 29 06:26:37 EST 2025 Tue Nov 18 21:45:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c792t-efbe0a578b3bff61a4877f3ff5bf63344f39c2824445ec514a1a655fd164948e3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-9755-1703 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pgen.1009440 |
| PMID | 34587156 |
| PQID | 2582589230 |
| PQPubID | 1436339 |
| ParticipantIDs | plos_journals_2582589230 doaj_primary_oai_doaj_org_article_75c41204d8c44516b1af45f23a8a4998 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504726 proquest_miscellaneous_2578149867 proquest_journals_2582589230 gale_infotracmisc_A677502882 gale_infotracacademiconefile_A677502882 gale_incontextgauss_ISR_A677502882 gale_incontextgauss_ISN_A677502882 gale_incontextgauss_IOV_A677502882 gale_healthsolutions_A677502882 pubmed_primary_34587156 crossref_citationtrail_10_1371_journal_pgen_1009440 crossref_primary_10_1371_journal_pgen_1009440 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-29 |
| PublicationDateYYYYMMDD | 2021-09-29 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | JL Asimit (pgen.1009440.ref009) 2019; 10 T Berisa (pgen.1009440.ref016) 2016; 32 M Fortune (pgen.1009440.ref017) 2018 The Wellcome Trust Case Control Consortium (pgen.1009440.ref004) 2012; 44 X Zhu (pgen.1009440.ref013) 2017; 11 1000 Genomes Project Consortium (pgen.1009440.ref014) 2015; 526 C Giambartolomei (pgen.1009440.ref001) 2014; 10 Y Deng (pgen.1009440.ref019) 2020; 16 Genetic Investigation of ANthropometric Traits (GIANT) Consortium (pgen.1009440.ref018) 2012; 44 G Wang (pgen.1009440.ref012) 2020; 82 F Hormozdiari (pgen.1009440.ref005) 2016; 99 AJ Miller (pgen.1009440.ref008) 1984; 147 C Wallace (pgen.1009440.ref003) 2020; 16 J Wakefield (pgen.1009440.ref002) 2009; 33 BN Howie (pgen.1009440.ref015) 2009; 5 C Benner (pgen.1009440.ref010) 2016; 32 PJ Newcombe (pgen.1009440.ref011) 2016; 40 Y Wu (pgen.1009440.ref007) 2018; 9 F Hormozdiari (pgen.1009440.ref006) 2014; 198 |
| References_xml | – volume: 5 start-page: 1 issue: 6 year: 2009 ident: pgen.1009440.ref015 article-title: A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1000529 – volume: 9 year: 2018 ident: pgen.1009440.ref007 article-title: Integrative Analysis of Omics Summary Data Reveals Putative Mechanisms Underlying Complex Traits publication-title: Nat Commun – volume: 198 start-page: 497 issue: 2 year: 2014 ident: pgen.1009440.ref006 article-title: Identifying Causal Variants at Loci with Multiple Signals of Association publication-title: Genetics doi: 10.1534/genetics.114.167908 – volume: 526 start-page: 68 issue: 7571 year: 2015 ident: pgen.1009440.ref014 article-title: A Global Reference for Human Genetic Variation publication-title: Nature doi: 10.1038/nature15393 – volume: 40 start-page: 188 year: 2016 ident: pgen.1009440.ref011 article-title: JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects publication-title: Genet Epidemiol doi: 10.1002/gepi.21953 – volume: 99 start-page: 1245 issue: 6 year: 2016 ident: pgen.1009440.ref005 article-title: Colocalization of GWAS and eQTL Signals Detects Target Genes publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2016.10.003 – volume: 16 start-page: e1007778 year: 2020 ident: pgen.1009440.ref019 article-title: A powerful and versatile colocalization test publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1007778 – year: 2018 ident: pgen.1009440.ref017 article-title: simGWAS: A Fast Method for Simulation of Large Scale Case-Control GWAS Summary Statistics publication-title: Bioinformatics – volume: 32 start-page: 1493 issue: 10 year: 2016 ident: pgen.1009440.ref010 article-title: FINEMAP: Efficient Variable Selection Using Summary Data from Genome-Wide Association Studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw018 – volume: 10 start-page: 3216 issue: 1 year: 2019 ident: pgen.1009440.ref009 article-title: Stochastic Search and Joint Fine-Mapping Increases Accuracy and Identifies Previously Unreported Associations in Immune-Mediated Diseases publication-title: Nature Communications doi: 10.1038/s41467-019-11271-0 – volume: 82 start-page: 1273 issue: 5 year: 2020 ident: pgen.1009440.ref012 article-title: A Simple New Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12388 – volume: 16 start-page: e1008720 issue: 4 year: 2020 ident: pgen.1009440.ref003 article-title: Eliciting Priors and Relaxing the Single Causal Variant Assumption in Colocalisation Analyses publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1008720 – volume: 44 start-page: 1294 issue: 12 year: 2012 ident: pgen.1009440.ref004 article-title: Bayesian Refinement of Association Signals for 14 Loci in 3 Common Diseases publication-title: Nat Genet doi: 10.1038/ng.2435 – volume: 147 start-page: 389 issue: 3 year: 1984 ident: pgen.1009440.ref008 article-title: Selection of Subsets of Regression Variables publication-title: J R Stat Soc Ser A doi: 10.2307/2981576 – volume: 44 start-page: 369S1 issue: 4 year: 2012 ident: pgen.1009440.ref018 article-title: Conditional and Joint Multiple-SNP Analysis of GWAS Summary Statistics Identifies Additional Variants Influencing Complex Traits publication-title: Nat Genet – volume: 11 start-page: 1561 issue: 3 year: 2017 ident: pgen.1009440.ref013 article-title: Bayesian large-scale multiple regression with summary statistics from genome-wide association studies publication-title: The annals of applied statistics – volume: 33 start-page: 79 issue: 1 year: 2009 ident: pgen.1009440.ref002 article-title: Bayes Factors for Genome-Wide Association Studies: Comparison with P -Values publication-title: Genet Epidemiol doi: 10.1002/gepi.20359 – volume: 10 start-page: e1004383 issue: 5 year: 2014 ident: pgen.1009440.ref001 article-title: Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1004383 – volume: 32 start-page: 283 issue: 2 year: 2016 ident: pgen.1009440.ref016 article-title: Approximately Independent Linkage Disequilibrium Blocks in Human Populations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv546 |
| SSID | ssj0035897 |
| Score | 2.7057893 |
| Snippet | In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1009440 |
| SubjectTerms | Adaptation Analysis Bayes Theorem Bayesian statistical decision theory Biology and Life Sciences Causality Computational biology Datasets Gene mapping Genetic Predisposition to Disease Genetic variation Genome-wide association studies Genome-Wide Association Study Genomes Genomics Haplotypes Humans Hypotheses Linkage Disequilibrium Medicine and Health Sciences Methods Research and Analysis Methods Statistics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5SFHwRf996VaMIPq3X3SSb5LGKh4JU8Rd9W7LTjR4c23Lb3uF_78wmu3Tl4O5B6FPztaUzk2S-zeQbxl45W1uHa3_qMXVLpXEK55xz6WpWzUCjmwE6EddPerEwy6X9stfqi2rCgjxwMNyRViCzfCZXBkhLq6gy56XyuXDGYbbeXfPFrKcnU2ENFsqEtipKiVQjrY-X5oTOjqKP3mzQQVQjYCU9-NjblDrt_mGFnmxO1-1l6ee_VZR729LxXXYn5pN8Hv7HPXajbu6zW6HD5J8HbDnnVEnLHcCORCF46BjNMVXlpFcNpH_YOYe7KE_C6Sj-Ane0DtQXHHJwuxZ_6By5NZXOPGQ_jt9_f_chjc0UUtA236a1r-qZw_lZicr7InPIVLQX3qvKF0JI6YUF5F8SrVwDplEuc4VSfoV8ykpTi0ds0qyb-oBxVejM6RpkpZC9OLACKmsAczMoVqvKJEz01iwhKo1Tw4vTsjs-08g4gnFK8kEZfZCwdPjUJihtXIF_S44asKST3b2B0VPG6Cmvip6EPSc3l-HS6TDby3mhMZXKkX4k7GWHIK2MhopxfqG52_Lj55_XAH1bXAf0dQR6HUF-jTYDF29JoOVJqGuEnI6QuCzAaPiAIrc3XVvmyuAL83m03LSP5suHXwzD9KVUhdfU6x1hSCDNmkIn7HEI_sH8Qirk3qpImB5Ni5F_xiPNye9Oz9wokiwtnvwPhx6y2zlVHdG5oZ2yyfZsVz9lN-F8e9KePesWib_XU2ma priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegA2kvfIyPBQYEhMRTtiS24_gJdWgTSKhM40N9i5xLPJCmpLTrEP89d44TFjTBJF7rc5ve-S73s8-_Y-yl0bU2GPsji6lbJHIj0eeMiaq4jEGhmQEciet7NZvl87k-8htuK19W2cdEF6irFmiPfC-ViGVyTEfi14vvEXWNotNV30LjOtsgpjIxYRv7B7Oj4z4Wc5zh2qtIySOF8N5fnuMq2fO22l2goahWQAvaALnwcnIc_kOknixO29Vlaeif1ZQXXk-Ht__3j91ht3xiGk67lXSXXaubLXaza1X5c4ttUlbakTrfY_NpSPW5oQFYE9VE2PWhDjEBDokFG4hV0Zk8NJ70JKQD_h_4nnRCfRljCGa9wl89R8ROBTn32efDg09v3ka-RUMESqdnUW3LOjbo9SUvrc0Sg_hHWW6tLG3GuRCWa0BUJ4SQNWByZhKTSWkrRGla5DV_wCZN29TbLJSZSoyqQZQSMZEBzaHUOWDGB1lVlXnAeG-bAjx_ObXROC3coZxCHNNpqiCLFt6iAYuGWYuOv-Mf8vtk9kGW2LfdB-3ypPDOXCgJIkljUeVA_G5ZmRgrpE25yQ0iSHzUZ7Roiu4q6xBDimmmMEFLEdQE7IWTIAaOhkp8TlDdq-Ldhy9XEPo4u4rQ8UjolReyLeoMjL97gZon-q-R5M5IEoMNjIa3yQ961a2K36sXZ_br-_Lh58MwfSnV9jV1uyYZol3TeaYC9rBzpUH9XEhE9DILmBo52cg-45Hm21fHkp5LIkLNHv39sR6zzZSqlOicUe-wydlyXT9hN-AcXWr51IeTX4oLflY priority: 102 providerName: ProQuest |
| Title | A more accurate method for colocalisation analysis allowing for multiple causal variants |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34587156 https://www.proquest.com/docview/2582589230 https://www.proquest.com/docview/2578149867 https://pubmed.ncbi.nlm.nih.gov/PMC8504726 https://doaj.org/article/75c41204d8c44516b1af45f23a8a4998 http://dx.doi.org/10.1371/journal.pgen.1009440 |
| Volume | 17 |
| WOSCitedRecordID | wos000701334500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BClIvPMqjgRAMQuLkEnvfxxQ1olIJVnkonKz1xAtIlRM1TRH_npm1Y3DViiJFOWTHyeqbndmZzOy3jL1ytrQOfX_sMXSLhXESbc65eD4qRqBRzQCBxPVIT6dmNrPZn0TxQgWf6-RNg-neEgGlmr4VAlP0rZQrRS1ck-xo43m5NFY3x-OuerKz_QSW_tYX95Yni9VlgebFfsm_NqDJ3f-d-j12pwk1o3G9Nu6zG2W1w27Xl0_-2mHbFGfWNM0P2GwcUcdt5ADWRB4R1TdLRxjSRsRrDcSTGJQYuYbGJKKS_U_c-YLQpjExArde4a-eYw5OLTYP2efJwae37-Lm0oUYtE3P4tIX5cihHRe88F4lDjMa7bn3svCKcyE8t4B5mhBCloDhlkucktLPMe-ywpT8EetVi6rcZZFUOnG6BFFIzHIcWA6FNYAxHKj5vDB9xje6yKFhJKeLMU7yUGbTmJnUSOUEYN4A2Gdx-9SyZuT4h_w-qbmVJT7t8AFqKm_MM9cSRJKOxNwAMbapInFeSJ9yZxzmhDjV57RI8vpwausV8rHSGHKlmKb02csgQZwaFTXtfEO4V_nhhy_XEPo4vY7QcUfodSPkF4gZuOY0BSJPhF4dyUFHEt0HdIZ3ad1voFvlqTT4wrgfkRtsbOHy4RftMH0pdetV5WJNMkSkZo3Sffa4Np0Wfi4k5uhS9ZnuGFVHP92R6sf3wHtuJFGbqidXz_gp206p54iqhnbAemen6_IZuwXnaE6nQ3ZTz3R4N0O2tX8wzY6H4T-YYXAjQ-r7zXAkO3yfff0NhmlwXw |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAqIXHuXRQKEBgTiFJrEdxweElkfVVZcFQYv2ZhwnLkhVsmx2W_VP8RuZyYsGVdBLD1zXk2wynhl_E4-_IeSplpnUEPs9C9DNY7Hm4HNae6mf-EbANBtTkbiOxWQST6fy4wr52Z6FwbLKNiZWgTotDH4j3wo55DIxwBH_1eyHh12jcHe1baFRm8VudnIMKVv5cvQW5vdZGG6_23uz4zVdBTwjZLjwMptkvgZDTWhibRRogOzCUmt5YiNKGbNUGkhEGGM8M4AndKAjzm0KiYVkcUbhvpfIZYjjAkvIxLRL8Cg8X9XMhXPqCSr95qgeFcFWYxkvZmAWWJkgGX5uObUUVh0DunVhMDssyrNA75-1m6cWw-0b_5sab5LrDex2h7Wf3CIrWb5GrtaNOE_WyCpi7pqy-jaZDl2sPna1MUsk0nDrLtsuwHsXOb4NckZWBu3qhtLFxfKFY0ABlVBbpOkavSzhX480eHm-KO-Q_Qt5x7tkkBd5tk5cHolAi8ywhEPGp42kJpGxATxrojRNYofQ1haUadjZsUnIoaq2HAVkabWmFFqQaizIIV531axmJ_mH_Gs0s04WucWrH4r5gWpClRLcsCD0WRobZK-LkkBbxm1IdawhP4ZH3UQjVfVB3S5CqmEkAH6GkLI55EklgfwiORYwHYC6SzX68OUcQp8n5xH61BN63gjZAnRmdHOyBDSP5GY9yY2eJIRS0xteR79rVVeq394CV7b-dPbw424Yb4qVi3lWLFEGSeVkHAmH3Ktdt1M_ZTwWAY8cInpO3Zuf_kj-_VvFAR9zpHmN7v_9sTbJtZ2992M1Hk12H5DVEOuxcEdVbpDBYr7MHpIr5gjca_6oCmQu-XrRLv8LeNnZ4Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFlAvPMqjC4UGBOIUNont2DkgtKWtWLVaVuWhvQXHiQtSlSyb3Vb9a_w6ZhInNKiCXnrgup5kk_F845l4_A0hL1SURQp8v2sgdHOZVBwwp5SbeomnBUyz1hWJ64EYj-V0Gk1WyM_mLAyWVTY-sXLUaaHxG_kg4JDLSAhHvIGxZRGTnb23sx8udpDCndamnUZtIvvZ2Smkb-Wb0Q7M9csg2Nv99O69azsMuFpEwcLNTJJ5Cow2oYkxoa8gfBeGGsMTE1LKmKGRhqSEMcYzDbGF8lXIuUkhyYiYzCjc9xpZFRBkALpWt3fHk8NmHaDwtFVrF86pCxKePbhHhT-wdvJ6BkaCdQoRw48v5xbGqn9Au0r0ZsdFeVEI_Gcl57mlce_2_6zUO-SWDcidYY2gu2Qly9fJjbpF59k6WcNovCazvkemQwfrkh2l9RIpNpy6_7YDgb-D7N8a2SQrU3eUJXtxsLDhFOKDSqgp33S0WpbwrycK8J8vyvvk85W84wPSy4s82yAOD4WvRKZZwiEXVDqiOomkhkhXh2mayD6hjV3E2vK2Y_uQ47jajBSQv9WaitGaYmtNfeK2V81q3pJ_yG-jybWyyDpe_VDMj2LrxGLBNfMDj6VSI69dmPjKMG4CqqSCzBkedQsNNq6P8La-Mx6GAgLTAJK5PnleSSDzSI7mdgTqLuPRhy-XEPo4vozQYUfolRUyBehMK3vmBDSPtGcdyc2OJDhZ3RneQAw2qivj38iBKxtsXTz8rB3Gm2JNY54VS5RBurlIhqJPHtYwbtVPGZfC52GfiA7AO_PTHcm_f6vY4SVHAtjw0d8fa4vcBKTHB6Px_mOyFmChFm61Rpukt5gvsyfkuj4BdM2fWq_mkK9XjflfRjXkAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+more+accurate+method+for+colocalisation+analysis+allowing+for+multiple+causal+variants&rft.jtitle=PLoS+genetics&rft.au=Wallace%2C+Chris&rft.date=2021-09-29&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=17&rft.issue=9&rft.spage=e1009440&rft_id=info:doi/10.1371%2Fjournal.pgen.1009440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1009440 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |