A more accurate method for colocalisation analysis allowing for multiple causal variants

In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS genetics Ročník 17; číslo 9; s. e1009440
Hlavný autor: Wallace, Chris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 29.09.2021
Public Library of Science (PLoS)
Predmet:
ISSN:1553-7404, 1553-7390, 1553-7404
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.
AbstractList In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.
In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.
In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist. Genetic association studies have found evidence that human disease risk or other traits are under the influence of genetic variants. As results of studies are made publicly available, more research focuses on whether different traits are under influence of the same variants, which may help us understand how variants lead to differences in disease risk. However, one of the popular methods to answer this question, coloc, makes the simplifying assumption that no two members of the set of causal variants for any one trait are close to each other. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants in proximity to be evaluated simultaneously. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.
Audience Academic
Author Wallace, Chris
AuthorAffiliation Newcastle University, UNITED KINGDOM
1 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
2 MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
AuthorAffiliation_xml – name: 1 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
– name: 2 MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
– name: Newcastle University, UNITED KINGDOM
Author_xml – sequence: 1
  givenname: Chris
  orcidid: 0000-0001-9755-1703
  surname: Wallace
  fullname: Wallace, Chris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34587156$$D View this record in MEDLINE/PubMed
BookMark eNqVk2uL1DAUhousuBf9B6IFQfTDjEmbNKkfhGHxMrC44A2_hdNMMpMlbcYkXd1_b2amI9NlEaWBluR539Ocy2l21LlOZdljjKa4ZPjVlet9B3a6XqpuihGqCUH3shNMaTlhBJGjg-_j7DSEK4RKymv2IDsuCeUM0-ok-z7LW-dVDlL2HqLKWxVXbpFr53PprJNgTYBoXJdDinYTTMjBWvfTdMst1PY2mrVVuYQ-gM2vwRvoYniY3ddgg3o0vM-yr-_efjn_MLm4fD8_n11MJKuLOFG6UQgo403ZaF1hIJwxXWpNG12VJSG6rGXBC0IIVZJiAhgqSvUCV6QmXJVn2dOd79q6IIakBFFQnlZdlCgR8x2xcHAl1t604G-EAyO2G84vBfhopFWCUUlwgciCyxQPVw0GTaguSuBA6ponrzdDtL5p1UKqLnqwI9PxSWdWYumuBaeIsKJKBi8GA-9-9CpE0ZoglbXQKddv_ptxTGpesYQ-u4XefbuBWkK6gOm0S3HlxlTMKsYoKjgvEjW9g0rPQrVGpsbSJu2PBC9HgsRE9SsuU5GDmH_-9B_sx39nL7-N2ecH7EqBjavgbL_pxjAGnxxW5U859m2egNc7QHoXgldaSBO3XZ3SYKzASGxmap9gsZkpMcxUEpNb4r3_X2W_AQbMJBY
CitedBy_id crossref_primary_10_1016_j_ymeth_2025_03_003
crossref_primary_10_1038_s41467_025_57829_z
crossref_primary_10_1038_s41586_024_07501_1
crossref_primary_10_1007_s10654_024_01103_x
crossref_primary_10_1371_journal_pgen_1011412
crossref_primary_10_1016_j_cell_2024_01_023
crossref_primary_10_1016_j_xgen_2025_101004
crossref_primary_10_1038_s41588_025_02223_0
crossref_primary_10_1111_ceo_14440
crossref_primary_10_1093_ije_dyac124
crossref_primary_10_1186_s12920_025_02171_y
crossref_primary_10_1186_s13195_023_01244_3
crossref_primary_10_3389_fpsyt_2024_1375209
crossref_primary_10_1038_s41586_022_05165_3
crossref_primary_10_1186_s12967_025_06099_w
crossref_primary_10_1016_j_xgen_2025_100844
crossref_primary_10_1038_s41467_025_56695_z
crossref_primary_10_1016_j_xgen_2025_100840
crossref_primary_10_1016_j_cmet_2025_07_007
crossref_primary_10_1093_brain_awaf057
crossref_primary_10_1016_j_jaci_2024_11_033
crossref_primary_10_1038_s43586_022_00188_6
crossref_primary_10_1161_ATVBAHA_124_320674
crossref_primary_10_1016_j_ebiom_2025_105807
crossref_primary_10_1186_s40478_023_01563_4
crossref_primary_10_1038_s41467_025_57483_5
crossref_primary_10_1038_s41588_025_02099_0
crossref_primary_10_1136_annrheumdis_2022_222345
crossref_primary_10_1002_jcsm_13720
crossref_primary_10_1038_s41588_023_01462_3
crossref_primary_10_1371_journal_pcbi_1010436
crossref_primary_10_1186_s13059_023_02993_y
crossref_primary_10_1038_s41467_022_34323_4
crossref_primary_10_1016_j_ajhg_2023_12_013
crossref_primary_10_1007_s12035_025_04961_y
crossref_primary_10_1016_j_bpsgos_2023_08_007
crossref_primary_10_1080_01621459_2024_2347667
crossref_primary_10_1016_S2665_9913_22_00180_1
crossref_primary_10_1016_j_ajhg_2021_11_019
crossref_primary_10_1111_imm_13902
crossref_primary_10_1016_j_jid_2025_08_014
crossref_primary_10_1016_j_ebiom_2025_105596
crossref_primary_10_1007_s00240_024_01627_7
crossref_primary_10_1038_s41588_023_01569_7
crossref_primary_10_1016_j_clnu_2024_09_044
crossref_primary_10_1038_s41588_024_02064_3
crossref_primary_10_3389_fimmu_2023_1148591
crossref_primary_10_1038_s41467_023_44451_0
crossref_primary_10_1038_s42255_024_01008_9
crossref_primary_10_1038_s41467_025_59524_5
crossref_primary_10_1038_s41588_024_01973_7
crossref_primary_10_1016_j_leukres_2024_107499
crossref_primary_10_1038_s41467_025_60868_1
crossref_primary_10_1371_journal_pgen_1010929
crossref_primary_10_3389_fonc_2024_1525767
crossref_primary_10_3389_fcimb_2025_1607476
crossref_primary_10_1002_gepi_70012
crossref_primary_10_1002_alz_13741
crossref_primary_10_1016_j_ebiom_2025_105580
crossref_primary_10_1038_s41467_025_61720_2
crossref_primary_10_1016_j_molmet_2024_101973
crossref_primary_10_1111_jth_15754
crossref_primary_10_1016_j_ajhg_2025_04_010
crossref_primary_10_1371_journal_pgen_1011697
crossref_primary_10_1038_s41467_025_59950_5
crossref_primary_10_1016_j_atherosclerosis_2024_117558
crossref_primary_10_1038_s41598_025_92210_6
crossref_primary_10_5582_irdr_2024_01064
crossref_primary_10_1016_j_tig_2023_02_014
crossref_primary_10_1038_s41467_025_61423_8
crossref_primary_10_1093_hmg_ddae110
crossref_primary_10_1038_s41467_025_57457_7
crossref_primary_10_1097_MD_0000000000044693
crossref_primary_10_1186_s13073_023_01255_7
crossref_primary_10_7554_eLife_88768
crossref_primary_10_1038_s41588_023_01428_5
crossref_primary_10_1093_cvr_cvaf078
crossref_primary_10_1038_s42003_023_05737_7
crossref_primary_10_1186_s12967_024_05782_8
crossref_primary_10_12688_wellcomeopenres_20861_1
crossref_primary_10_12688_wellcomeopenres_20861_2
crossref_primary_10_1016_j_ebiom_2024_105232
crossref_primary_10_1016_j_metabol_2025_156263
crossref_primary_10_24072_pcjournal_544
crossref_primary_10_1007_s12035_025_05221_9
crossref_primary_10_1016_j_thromres_2025_109376
crossref_primary_10_1007_s00403_025_04126_w
crossref_primary_10_1038_s41562_025_02145_1
crossref_primary_10_1038_s41467_022_31085_x
crossref_primary_10_1016_j_ebiom_2022_104112
crossref_primary_10_1038_s41588_024_01972_8
crossref_primary_10_1038_s44161_025_00609_1
crossref_primary_10_1038_s41576_025_00869_4
crossref_primary_10_1186_s12969_025_01140_0
crossref_primary_10_1186_s13040_024_00385_x
crossref_primary_10_1161_JAHA_123_034132
crossref_primary_10_1186_s12872_024_04209_y
crossref_primary_10_1002_alz_14139
crossref_primary_10_1002_mds_29508
crossref_primary_10_1016_j_xgen_2025_100810
crossref_primary_10_3389_fgene_2023_1180500
crossref_primary_10_1016_j_ajhg_2021_12_012
crossref_primary_10_1016_j_heliyon_2024_e38036
crossref_primary_10_1016_j_jsbmb_2025_106815
crossref_primary_10_1038_s42003_025_08615_6
crossref_primary_10_14814_phy2_70513
crossref_primary_10_1016_j_jid_2024_03_013
crossref_primary_10_1038_s41591_024_03284_0
crossref_primary_10_1016_j_tcb_2024_03_005
crossref_primary_10_1016_j_exger_2025_112789
crossref_primary_10_1038_s41588_023_01586_6
crossref_primary_10_1007_s11427_023_2522_8
crossref_primary_10_1038_s41467_025_62463_w
crossref_primary_10_1016_j_ebiom_2024_104977
crossref_primary_10_1093_nar_gkae848
crossref_primary_10_1007_s00439_024_02672_3
crossref_primary_10_1038_s41588_024_01896_3
crossref_primary_10_1016_j_mocell_2025_100256
crossref_primary_10_1093_hmg_ddac243
crossref_primary_10_1038_s41467_025_62884_7
crossref_primary_10_1038_s41586_023_06921_9
crossref_primary_10_1002_art_43081
crossref_primary_10_1038_s41562_024_01963_z
crossref_primary_10_1038_s41588_025_02100_w
crossref_primary_10_1016_j_jtha_2023_11_027
crossref_primary_10_1186_s13073_022_01140_9
crossref_primary_10_1002_art_43088
crossref_primary_10_1038_s41467_025_55919_6
crossref_primary_10_1016_j_intimp_2024_112910
crossref_primary_10_1111_cns_14817
crossref_primary_10_1093_bioadv_vbaf110
crossref_primary_10_1161_JAHA_124_038857
crossref_primary_10_1016_j_ajhg_2024_07_010
crossref_primary_10_1016_j_ajhg_2024_07_017
crossref_primary_10_1016_j_ajo_2025_03_007
crossref_primary_10_1002_alz_70452
crossref_primary_10_1038_s41467_024_45652_x
crossref_primary_10_1038_s41467_023_44680_3
crossref_primary_10_1038_s41588_024_01702_0
crossref_primary_10_2147_ITT_S494692
crossref_primary_10_1038_s41467_024_49263_4
crossref_primary_10_1371_journal_pgen_1011599
crossref_primary_10_1007_s00439_023_02627_0
crossref_primary_10_1038_s41598_024_80122_w
crossref_primary_10_1016_j_isci_2024_110715
crossref_primary_10_1016_j_ebiom_2024_105168
crossref_primary_10_7554_eLife_102447_4
crossref_primary_10_1016_j_jad_2025_01_093
crossref_primary_10_1016_j_jbi_2025_104903
crossref_primary_10_1038_s41531_024_00729_8
crossref_primary_10_1038_s41588_024_01982_6
crossref_primary_10_1016_j_diabres_2025_111987
crossref_primary_10_1038_s42003_023_04497_8
crossref_primary_10_1161_ATVBAHA_125_323057
crossref_primary_10_7554_eLife_88768_3
crossref_primary_10_1038_s41588_023_01648_9
crossref_primary_10_1371_journal_pgen_1010932
crossref_primary_10_1038_s41467_024_49990_8
crossref_primary_10_1080_21678421_2024_2407408
crossref_primary_10_1038_s41562_024_02040_1
crossref_primary_10_1016_j_pharmthera_2023_108530
crossref_primary_10_3389_fgene_2024_1385339
crossref_primary_10_1016_j_ajhg_2022_04_001
crossref_primary_10_1016_j_ajhg_2025_06_013
crossref_primary_10_1186_s13024_022_00592_2
crossref_primary_10_1038_s44325_024_00015_9
crossref_primary_10_1007_s00335_025_10158_4
crossref_primary_10_1016_j_jpain_2024_104754
crossref_primary_10_1038_s42003_024_05887_2
crossref_primary_10_1038_s41467_024_53595_6
crossref_primary_10_1183_23120541_00457_2023
crossref_primary_10_1016_j_ebiom_2023_104488
crossref_primary_10_7554_eLife_83118
crossref_primary_10_1016_j_ajhg_2025_06_001
crossref_primary_10_1038_s41598_025_04902_8
crossref_primary_10_1016_j_athplu_2024_11_002
crossref_primary_10_1038_s41591_025_03872_8
crossref_primary_10_1016_j_ajhg_2022_12_017
crossref_primary_10_1038_s41467_024_46834_3
crossref_primary_10_1038_s41467_023_37729_w
crossref_primary_10_1161_HYPERTENSIONAHA_124_24151
crossref_primary_10_1038_s41588_023_01314_0
crossref_primary_10_1126_science_ads6601
crossref_primary_10_1038_s41598_023_35098_4
crossref_primary_10_3389_fneur_2024_1321216
crossref_primary_10_1038_s43587_024_00778_x
crossref_primary_10_2337_db24_0451
crossref_primary_10_1007_s00240_024_01669_x
crossref_primary_10_1146_annurev_biodatasci_122120_024910
crossref_primary_10_1038_s41586_024_07708_2
crossref_primary_10_1038_s41598_024_80483_2
crossref_primary_10_1016_j_xhgg_2025_100410
crossref_primary_10_1038_s41698_025_00895_9
crossref_primary_10_1038_s41398_025_03349_9
crossref_primary_10_1038_s43856_024_00506_x
crossref_primary_10_1186_s12888_024_06392_w
crossref_primary_10_1111_jcmm_18255
crossref_primary_10_1186_s12916_023_02878_8
crossref_primary_10_1016_j_ajhg_2025_01_018
crossref_primary_10_1038_s41467_023_35808_6
crossref_primary_10_1093_ajh_hpaf011
crossref_primary_10_1002_alz_70429
crossref_primary_10_1038_s41467_024_55635_7
crossref_primary_10_1016_j_hrthm_2024_05_021
crossref_primary_10_1002_ana_26672
crossref_primary_10_1016_j_jad_2024_07_069
crossref_primary_10_1093_nar_gkae1270
crossref_primary_10_1371_journal_pgen_1010184
crossref_primary_10_1038_s41467_025_63299_0
crossref_primary_10_1038_s44325_025_00073_7
crossref_primary_10_1111_jcpp_13782
crossref_primary_10_3389_fpls_2024_1436532
crossref_primary_10_1136_gutjnl_2024_332121
crossref_primary_10_1038_s42003_023_05113_5
crossref_primary_10_7554_eLife_102447
crossref_primary_10_1073_pnas_2404364121
crossref_primary_10_1016_j_ebiom_2024_105530
crossref_primary_10_1038_s41467_024_52129_4
crossref_primary_10_1038_s42003_023_05454_1
Cites_doi 10.1371/journal.pgen.1000529
10.1534/genetics.114.167908
10.1038/nature15393
10.1002/gepi.21953
10.1016/j.ajhg.2016.10.003
10.1371/journal.pcbi.1007778
10.1093/bioinformatics/btw018
10.1038/s41467-019-11271-0
10.1111/rssb.12388
10.1371/journal.pgen.1008720
10.1038/ng.2435
10.2307/2981576
10.1002/gepi.20359
10.1371/journal.pgen.1004383
10.1093/bioinformatics/btv546
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Chris Wallace. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Chris Wallace 2021 Chris Wallace
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Chris Wallace. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Chris Wallace 2021 Chris Wallace
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1009440
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
DocumentTitleAlternate coloc allowing for multiple causal variants
EISSN 1553-7404
ExternalDocumentID 2582589230
oai_doaj_org_article_75c41204d8c44516b1af45f23a8a4998
PMC8504726
A677502882
34587156
10_1371_journal_pgen_1009440
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Department of Health
  grantid: BRC-1215-20014
– fundername: Wellcome Trust
  grantid: WT220788
– fundername: Medical Research Council
  grantid: MC_UU_00002/4
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: WT107881
– fundername: Medical Research Council
  grantid: MC UU 00002/4
– fundername: ;
  grantid: BRC-1215-20014
– fundername: ;
  grantid: WT220788
– fundername: ;
  grantid: WT107881
– fundername: ;
  grantid: MC UU 00002/4
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c792t-efbe0a578b3bff61a4877f3ff5bf63344f39c2824445ec514a1a655fd164948e3
IEDL.DBID FPL
ISICitedReferencesCount 263
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701334500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Sun May 01 00:11:09 EDT 2022
Fri Oct 03 12:31:07 EDT 2025
Tue Nov 04 01:55:39 EST 2025
Fri Sep 05 11:12:52 EDT 2025
Sat Nov 29 14:23:50 EST 2025
Tue Nov 11 10:29:07 EST 2025
Tue Nov 04 17:56:59 EST 2025
Thu Nov 13 15:07:58 EST 2025
Thu Nov 13 14:59:46 EST 2025
Thu Nov 13 15:05:09 EST 2025
Thu May 22 21:20:57 EDT 2025
Mon Jul 21 06:03:13 EDT 2025
Sat Nov 29 06:26:37 EST 2025
Tue Nov 18 21:45:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c792t-efbe0a578b3bff61a4877f3ff5bf63344f39c2824445ec514a1a655fd164948e3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-9755-1703
OpenAccessLink http://dx.doi.org/10.1371/journal.pgen.1009440
PMID 34587156
PQID 2582589230
PQPubID 1436339
ParticipantIDs plos_journals_2582589230
doaj_primary_oai_doaj_org_article_75c41204d8c44516b1af45f23a8a4998
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504726
proquest_miscellaneous_2578149867
proquest_journals_2582589230
gale_infotracmisc_A677502882
gale_infotracacademiconefile_A677502882
gale_incontextgauss_ISR_A677502882
gale_incontextgauss_ISN_A677502882
gale_incontextgauss_IOV_A677502882
gale_healthsolutions_A677502882
pubmed_primary_34587156
crossref_citationtrail_10_1371_journal_pgen_1009440
crossref_primary_10_1371_journal_pgen_1009440
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JL Asimit (pgen.1009440.ref009) 2019; 10
T Berisa (pgen.1009440.ref016) 2016; 32
M Fortune (pgen.1009440.ref017) 2018
The Wellcome Trust Case Control Consortium (pgen.1009440.ref004) 2012; 44
X Zhu (pgen.1009440.ref013) 2017; 11
1000 Genomes Project Consortium (pgen.1009440.ref014) 2015; 526
C Giambartolomei (pgen.1009440.ref001) 2014; 10
Y Deng (pgen.1009440.ref019) 2020; 16
Genetic Investigation of ANthropometric Traits (GIANT) Consortium (pgen.1009440.ref018) 2012; 44
G Wang (pgen.1009440.ref012) 2020; 82
F Hormozdiari (pgen.1009440.ref005) 2016; 99
AJ Miller (pgen.1009440.ref008) 1984; 147
C Wallace (pgen.1009440.ref003) 2020; 16
J Wakefield (pgen.1009440.ref002) 2009; 33
BN Howie (pgen.1009440.ref015) 2009; 5
C Benner (pgen.1009440.ref010) 2016; 32
PJ Newcombe (pgen.1009440.ref011) 2016; 40
Y Wu (pgen.1009440.ref007) 2018; 9
F Hormozdiari (pgen.1009440.ref006) 2014; 198
References_xml – volume: 5
  start-page: 1
  issue: 6
  year: 2009
  ident: pgen.1009440.ref015
  article-title: A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1000529
– volume: 9
  year: 2018
  ident: pgen.1009440.ref007
  article-title: Integrative Analysis of Omics Summary Data Reveals Putative Mechanisms Underlying Complex Traits
  publication-title: Nat Commun
– volume: 198
  start-page: 497
  issue: 2
  year: 2014
  ident: pgen.1009440.ref006
  article-title: Identifying Causal Variants at Loci with Multiple Signals of Association
  publication-title: Genetics
  doi: 10.1534/genetics.114.167908
– volume: 526
  start-page: 68
  issue: 7571
  year: 2015
  ident: pgen.1009440.ref014
  article-title: A Global Reference for Human Genetic Variation
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 40
  start-page: 188
  year: 2016
  ident: pgen.1009440.ref011
  article-title: JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21953
– volume: 99
  start-page: 1245
  issue: 6
  year: 2016
  ident: pgen.1009440.ref005
  article-title: Colocalization of GWAS and eQTL Signals Detects Target Genes
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.10.003
– volume: 16
  start-page: e1007778
  year: 2020
  ident: pgen.1009440.ref019
  article-title: A powerful and versatile colocalization test
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1007778
– year: 2018
  ident: pgen.1009440.ref017
  article-title: simGWAS: A Fast Method for Simulation of Large Scale Case-Control GWAS Summary Statistics
  publication-title: Bioinformatics
– volume: 32
  start-page: 1493
  issue: 10
  year: 2016
  ident: pgen.1009440.ref010
  article-title: FINEMAP: Efficient Variable Selection Using Summary Data from Genome-Wide Association Studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw018
– volume: 10
  start-page: 3216
  issue: 1
  year: 2019
  ident: pgen.1009440.ref009
  article-title: Stochastic Search and Joint Fine-Mapping Increases Accuracy and Identifies Previously Unreported Associations in Immune-Mediated Diseases
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11271-0
– volume: 82
  start-page: 1273
  issue: 5
  year: 2020
  ident: pgen.1009440.ref012
  article-title: A Simple New Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12388
– volume: 16
  start-page: e1008720
  issue: 4
  year: 2020
  ident: pgen.1009440.ref003
  article-title: Eliciting Priors and Relaxing the Single Causal Variant Assumption in Colocalisation Analyses
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1008720
– volume: 44
  start-page: 1294
  issue: 12
  year: 2012
  ident: pgen.1009440.ref004
  article-title: Bayesian Refinement of Association Signals for 14 Loci in 3 Common Diseases
  publication-title: Nat Genet
  doi: 10.1038/ng.2435
– volume: 147
  start-page: 389
  issue: 3
  year: 1984
  ident: pgen.1009440.ref008
  article-title: Selection of Subsets of Regression Variables
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2981576
– volume: 44
  start-page: 369S1
  issue: 4
  year: 2012
  ident: pgen.1009440.ref018
  article-title: Conditional and Joint Multiple-SNP Analysis of GWAS Summary Statistics Identifies Additional Variants Influencing Complex Traits
  publication-title: Nat Genet
– volume: 11
  start-page: 1561
  issue: 3
  year: 2017
  ident: pgen.1009440.ref013
  article-title: Bayesian large-scale multiple regression with summary statistics from genome-wide association studies
  publication-title: The annals of applied statistics
– volume: 33
  start-page: 79
  issue: 1
  year: 2009
  ident: pgen.1009440.ref002
  article-title: Bayes Factors for Genome-Wide Association Studies: Comparison with P -Values
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20359
– volume: 10
  start-page: e1004383
  issue: 5
  year: 2014
  ident: pgen.1009440.ref001
  article-title: Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1004383
– volume: 32
  start-page: 283
  issue: 2
  year: 2016
  ident: pgen.1009440.ref016
  article-title: Approximately Independent Linkage Disequilibrium Blocks in Human Populations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv546
SSID ssj0035897
Score 2.7057893
Snippet In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009440
SubjectTerms Adaptation
Analysis
Bayes Theorem
Bayesian statistical decision theory
Biology and Life Sciences
Causality
Computational biology
Datasets
Gene mapping
Genetic Predisposition to Disease
Genetic variation
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Haplotypes
Humans
Hypotheses
Linkage Disequilibrium
Medicine and Health Sciences
Methods
Research and Analysis Methods
Statistics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5SFHwRf996VaMIPq3X3SSb5LGKh4JU8Rd9W7LTjR4c23Lb3uF_78wmu3Tl4O5B6FPztaUzk2S-zeQbxl45W1uHa3_qMXVLpXEK55xz6WpWzUCjmwE6EddPerEwy6X9stfqi2rCgjxwMNyRViCzfCZXBkhLq6gy56XyuXDGYbbeXfPFrKcnU2ENFsqEtipKiVQjrY-X5oTOjqKP3mzQQVQjYCU9-NjblDrt_mGFnmxO1-1l6ee_VZR729LxXXYn5pN8Hv7HPXajbu6zW6HD5J8HbDnnVEnLHcCORCF46BjNMVXlpFcNpH_YOYe7KE_C6Sj-Ane0DtQXHHJwuxZ_6By5NZXOPGQ_jt9_f_chjc0UUtA236a1r-qZw_lZicr7InPIVLQX3qvKF0JI6YUF5F8SrVwDplEuc4VSfoV8ykpTi0ds0qyb-oBxVejM6RpkpZC9OLACKmsAczMoVqvKJEz01iwhKo1Tw4vTsjs-08g4gnFK8kEZfZCwdPjUJihtXIF_S44asKST3b2B0VPG6Cmvip6EPSc3l-HS6TDby3mhMZXKkX4k7GWHIK2MhopxfqG52_Lj55_XAH1bXAf0dQR6HUF-jTYDF29JoOVJqGuEnI6QuCzAaPiAIrc3XVvmyuAL83m03LSP5suHXwzD9KVUhdfU6x1hSCDNmkIn7HEI_sH8Qirk3qpImB5Ni5F_xiPNye9Oz9wokiwtnvwPhx6y2zlVHdG5oZ2yyfZsVz9lN-F8e9KePesWib_XU2ma
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegA2kvfIyPBQYEhMRTtiS24_gJdWgTSKhM40N9i5xLPJCmpLTrEP89d44TFjTBJF7rc5ve-S73s8-_Y-yl0bU2GPsji6lbJHIj0eeMiaq4jEGhmQEciet7NZvl87k-8htuK19W2cdEF6irFmiPfC-ViGVyTEfi14vvEXWNotNV30LjOtsgpjIxYRv7B7Oj4z4Wc5zh2qtIySOF8N5fnuMq2fO22l2goahWQAvaALnwcnIc_kOknixO29Vlaeif1ZQXXk-Ht__3j91ht3xiGk67lXSXXaubLXaza1X5c4ttUlbakTrfY_NpSPW5oQFYE9VE2PWhDjEBDokFG4hV0Zk8NJ70JKQD_h_4nnRCfRljCGa9wl89R8ROBTn32efDg09v3ka-RUMESqdnUW3LOjbo9SUvrc0Sg_hHWW6tLG3GuRCWa0BUJ4SQNWByZhKTSWkrRGla5DV_wCZN29TbLJSZSoyqQZQSMZEBzaHUOWDGB1lVlXnAeG-bAjx_ObXROC3coZxCHNNpqiCLFt6iAYuGWYuOv-Mf8vtk9kGW2LfdB-3ypPDOXCgJIkljUeVA_G5ZmRgrpE25yQ0iSHzUZ7Roiu4q6xBDimmmMEFLEdQE7IWTIAaOhkp8TlDdq-Ldhy9XEPo4u4rQ8UjolReyLeoMjL97gZon-q-R5M5IEoMNjIa3yQ961a2K36sXZ_br-_Lh58MwfSnV9jV1uyYZol3TeaYC9rBzpUH9XEhE9DILmBo52cg-45Hm21fHkp5LIkLNHv39sR6zzZSqlOicUe-wydlyXT9hN-AcXWr51IeTX4oLflY
  priority: 102
  providerName: ProQuest
Title A more accurate method for colocalisation analysis allowing for multiple causal variants
URI https://www.ncbi.nlm.nih.gov/pubmed/34587156
https://www.proquest.com/docview/2582589230
https://www.proquest.com/docview/2578149867
https://pubmed.ncbi.nlm.nih.gov/PMC8504726
https://doaj.org/article/75c41204d8c44516b1af45f23a8a4998
http://dx.doi.org/10.1371/journal.pgen.1009440
Volume 17
WOSCitedRecordID wos000701334500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BClIvPMqjgRAMQuLkEnvfxxQ1olIJVnkonKz1xAtIlRM1TRH_npm1Y3DViiJFOWTHyeqbndmZzOy3jL1ytrQOfX_sMXSLhXESbc65eD4qRqBRzQCBxPVIT6dmNrPZn0TxQgWf6-RNg-neEgGlmr4VAlP0rZQrRS1ck-xo43m5NFY3x-OuerKz_QSW_tYX95Yni9VlgebFfsm_NqDJ3f-d-j12pwk1o3G9Nu6zG2W1w27Xl0_-2mHbFGfWNM0P2GwcUcdt5ADWRB4R1TdLRxjSRsRrDcSTGJQYuYbGJKKS_U_c-YLQpjExArde4a-eYw5OLTYP2efJwae37-Lm0oUYtE3P4tIX5cihHRe88F4lDjMa7bn3svCKcyE8t4B5mhBCloDhlkucktLPMe-ywpT8EetVi6rcZZFUOnG6BFFIzHIcWA6FNYAxHKj5vDB9xje6yKFhJKeLMU7yUGbTmJnUSOUEYN4A2Gdx-9SyZuT4h_w-qbmVJT7t8AFqKm_MM9cSRJKOxNwAMbapInFeSJ9yZxzmhDjV57RI8vpwausV8rHSGHKlmKb02csgQZwaFTXtfEO4V_nhhy_XEPo4vY7QcUfodSPkF4gZuOY0BSJPhF4dyUFHEt0HdIZ3ad1voFvlqTT4wrgfkRtsbOHy4RftMH0pdetV5WJNMkSkZo3Sffa4Np0Wfi4k5uhS9ZnuGFVHP92R6sf3wHtuJFGbqidXz_gp206p54iqhnbAemen6_IZuwXnaE6nQ3ZTz3R4N0O2tX8wzY6H4T-YYXAjQ-r7zXAkO3yfff0NhmlwXw
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAqIXHuXRQKEBgTiFJrEdxweElkfVVZcFQYv2ZhwnLkhVsmx2W_VP8RuZyYsGVdBLD1zXk2wynhl_E4-_IeSplpnUEPs9C9DNY7Hm4HNae6mf-EbANBtTkbiOxWQST6fy4wr52Z6FwbLKNiZWgTotDH4j3wo55DIxwBH_1eyHh12jcHe1baFRm8VudnIMKVv5cvQW5vdZGG6_23uz4zVdBTwjZLjwMptkvgZDTWhibRRogOzCUmt5YiNKGbNUGkhEGGM8M4AndKAjzm0KiYVkcUbhvpfIZYjjAkvIxLRL8Cg8X9XMhXPqCSr95qgeFcFWYxkvZmAWWJkgGX5uObUUVh0DunVhMDssyrNA75-1m6cWw-0b_5sab5LrDex2h7Wf3CIrWb5GrtaNOE_WyCpi7pqy-jaZDl2sPna1MUsk0nDrLtsuwHsXOb4NckZWBu3qhtLFxfKFY0ABlVBbpOkavSzhX480eHm-KO-Q_Qt5x7tkkBd5tk5cHolAi8ywhEPGp42kJpGxATxrojRNYofQ1haUadjZsUnIoaq2HAVkabWmFFqQaizIIV531axmJ_mH_Gs0s04WucWrH4r5gWpClRLcsCD0WRobZK-LkkBbxm1IdawhP4ZH3UQjVfVB3S5CqmEkAH6GkLI55EklgfwiORYwHYC6SzX68OUcQp8n5xH61BN63gjZAnRmdHOyBDSP5GY9yY2eJIRS0xteR79rVVeq394CV7b-dPbw424Yb4qVi3lWLFEGSeVkHAmH3Ktdt1M_ZTwWAY8cInpO3Zuf_kj-_VvFAR9zpHmN7v_9sTbJtZ2992M1Hk12H5DVEOuxcEdVbpDBYr7MHpIr5gjca_6oCmQu-XrRLv8LeNnZ4Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFlAvPMqjC4UGBOIUNont2DkgtKWtWLVaVuWhvQXHiQtSlSyb3Vb9a_w6ZhInNKiCXnrgup5kk_F845l4_A0hL1SURQp8v2sgdHOZVBwwp5SbeomnBUyz1hWJ64EYj-V0Gk1WyM_mLAyWVTY-sXLUaaHxG_kg4JDLSAhHvIGxZRGTnb23sx8udpDCndamnUZtIvvZ2Smkb-Wb0Q7M9csg2Nv99O69azsMuFpEwcLNTJJ5Cow2oYkxoa8gfBeGGsMTE1LKmKGRhqSEMcYzDbGF8lXIuUkhyYiYzCjc9xpZFRBkALpWt3fHk8NmHaDwtFVrF86pCxKePbhHhT-wdvJ6BkaCdQoRw48v5xbGqn9Au0r0ZsdFeVEI_Gcl57mlce_2_6zUO-SWDcidYY2gu2Qly9fJjbpF59k6WcNovCazvkemQwfrkh2l9RIpNpy6_7YDgb-D7N8a2SQrU3eUJXtxsLDhFOKDSqgp33S0WpbwrycK8J8vyvvk85W84wPSy4s82yAOD4WvRKZZwiEXVDqiOomkhkhXh2mayD6hjV3E2vK2Y_uQ47jajBSQv9WaitGaYmtNfeK2V81q3pJ_yG-jybWyyDpe_VDMj2LrxGLBNfMDj6VSI69dmPjKMG4CqqSCzBkedQsNNq6P8La-Mx6GAgLTAJK5PnleSSDzSI7mdgTqLuPRhy-XEPo4vozQYUfolRUyBehMK3vmBDSPtGcdyc2OJDhZ3RneQAw2qivj38iBKxtsXTz8rB3Gm2JNY54VS5RBurlIhqJPHtYwbtVPGZfC52GfiA7AO_PTHcm_f6vY4SVHAtjw0d8fa4vcBKTHB6Px_mOyFmChFm61Rpukt5gvsyfkuj4BdM2fWq_mkK9XjflfRjXkAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+more+accurate+method+for+colocalisation+analysis+allowing+for+multiple+causal+variants&rft.jtitle=PLoS+genetics&rft.au=Wallace%2C+Chris&rft.date=2021-09-29&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=17&rft.issue=9&rft.spage=e1009440&rft_id=info:doi/10.1371%2Fjournal.pgen.1009440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1009440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon