An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks

The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical struc...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 11; no. 4; p. e0150329
Main Authors: Xie, Xiurui, Qu, Hong, Liu, Guisong, Zhang, Malu, Kurths, Jürgen
Format: Journal Article
Language:English
Published: United States Public Library of Science 04.04.2016
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.
AbstractList The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.
Audience Academic
Author Kurths, Jürgen
Xie, Xiurui
Qu, Hong
Liu, Guisong
Zhang, Malu
AuthorAffiliation 3 Potsdam Institute for Climate Impact Research(PIK), 14473 Potsdam, Germany
Georgia State University, UNITED STATES
1 Department of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
2 Department of Physics, Humboldt University, 12489, Berlin, Berlin, Germany
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
– name: Georgia State University, UNITED STATES
– name: 3 Potsdam Institute for Climate Impact Research(PIK), 14473 Potsdam, Germany
– name: 2 Department of Physics, Humboldt University, 12489, Berlin, Berlin, Germany
Author_xml – sequence: 1
  givenname: Xiurui
  surname: Xie
  fullname: Xie, Xiurui
– sequence: 2
  givenname: Hong
  surname: Qu
  fullname: Qu, Hong
– sequence: 3
  givenname: Guisong
  surname: Liu
  fullname: Liu, Guisong
– sequence: 4
  givenname: Malu
  surname: Zhang
  fullname: Zhang, Malu
– sequence: 5
  givenname: Jürgen
  surname: Kurths
  fullname: Kurths, Jürgen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27044001$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhITgosWOnQ_vAqmaBlQaTNDBreX4I3XnxsV2Bvv3ODRFzTQB8oWt4-d97XPsc5wctLaVSfIUgilEJXyzsp1rmZluYngKYA5QRh4kR5CgbFJkAB3srQ-TY-9XAOSoKopHyWFWAowBgEfJ51mbniuluZZtSBfdRrob7aVIrxzTrW6bdGYa63RYrlNlXfqxM0Ebditdutjo6x74JDvHTJzCD-uu_ePkoWLGyyfDfJJ8fXd-dfZhcnH5fn42u5jwksAwUaiWWJJKElwrJWGOAUJccAgyWGNYVKoSICuYqEukao4I4rkgtZS5AEXFc3SSPN_6boz1dKiGp7AsKwwqQFAk5ltCWLaiG6fXzN1SyzT9HbCuocwFzY2kBUeMFEgJICoMsSAwVyzjgOCScwVF9Ho7nNbVayl4rFZMemQ63mn1kjb2huIqAzArosGrwcDZ7530ga6159IY1krbxXtXIMekyEn5b7QsCchAAXv0xR30_kIMVMNirrpVNl6R96Z0hnOE8wwSEqnpPVQcQq41j79M6RgfCV6PBJEJ8mdoWOc9nS--_D97-W3Mvtxjl5KZsPTWdEHb1o_BZ_uP8uc1dt87AqdbgDvrvZOKch1Y7xNT04ZCQPte2hWN9r1Eh16KYnxHvPP_q-wXl18iNA
CitedBy_id crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1109_TCAD_2021_3138347
crossref_primary_10_1016_j_apm_2022_10_055
crossref_primary_10_1145_3580514
crossref_primary_10_1007_s11042_019_7487_6
crossref_primary_10_1007_s00500_018_3576_0
crossref_primary_10_1007_s00521_020_05388_3
crossref_primary_10_1016_j_neucom_2018_11_014
crossref_primary_10_1007_s00521_025_11374_4
crossref_primary_10_1016_j_neucom_2019_10_104
crossref_primary_10_1088_1742_6596_2216_1_012078
Cites_doi 10.1088/0954-898X_8_2_003
10.1038/nrn2315
10.1162/NECO_a_00395
10.1162/08997660152002852
10.1371/journal.pone.0057453
10.1162/neco.1996.8.3.511
10.1142/S0129065712500128
10.1371/journal.pone.0078318
10.1016/S0925-2312(01)00658-0
10.1109/GlobalSIP.2013.6737023
10.55782/ane-2011-1862
10.1016/S0925-2312(02)00838-X
10.1162/NECO_a_00387
10.1162/NECO_a_00396
10.1111/j.1469-1809.1936.tb02137.x
10.1113/jphysiol.1962.sp006837
10.1162/neco.2009.11-08-901
10.1016/j.neunet.2009.04.003
10.1073/pnas.87.23.9193
10.1162/089976601300014321
10.1037/h0042519
10.1023/B:NACO.0000027755.02868.60
10.1007/BF02478259
10.1162/neco.2008.06-08-804
10.1016/j.neucom.2014.03.086
10.1371/journal.pone.0040233
10.1109/TNN.2010.2074212
10.1007/BF00961885
10.1038/nature00807
10.1162/NECO_a_00450
10.1146/annurev.neuro.23.1.315
10.1016/j.neunet.2013.02.003
10.1113/jphysiol.1968.sp008455
10.1016/j.neuron.2010.05.013
10.1038/nn1643
10.1109/TNNLS.2014.2345844
10.1016/j.tins.2004.10.010
ContentType Journal Article
Copyright COPYRIGHT 2016 Public Library of Science
2016 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2016 Xie et al 2016 Xie et al
Copyright_xml – notice: COPYRIGHT 2016 Public Library of Science
– notice: 2016 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2016 Xie et al 2016 Xie et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0150329
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


Agricultural Science Database
MEDLINE - Academic
Engineering Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate An Efficient Training Algorithm for Multilayer Spiking Neural Networks
EISSN 1932-6203
ExternalDocumentID 1778408093
oai_doaj_org_article_6c3a963fd0d8414d915fa2c0947ccf1d
PMC4820126
4010064681
A453452199
27044001
10_1371_journal_pone_0150329
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c791t-f3be4e98e94bffe154033cdc1021b4168f8d026adb73fbc393c5d9bee5d068c53
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373592100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:13 EST 2021
Tue Oct 14 18:48:19 EDT 2025
Tue Nov 04 01:51:50 EST 2025
Tue Oct 07 09:52:25 EDT 2025
Sun Nov 09 09:47:35 EST 2025
Tue Oct 07 07:21:47 EDT 2025
Sat Nov 29 13:25:28 EST 2025
Sat Nov 29 10:18:01 EST 2025
Wed Nov 26 09:41:09 EST 2025
Wed Nov 26 10:12:35 EST 2025
Thu May 22 21:16:31 EDT 2025
Wed Feb 19 02:33:56 EST 2025
Tue Nov 18 20:40:16 EST 2025
Sat Nov 29 04:41:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c791t-f3be4e98e94bffe154033cdc1021b4168f8d026adb73fbc393c5d9bee5d068c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: XX HQ. Performed the experiments: XX MZ. Analyzed the data: XX GL. Contributed reagents/materials/analysis tools: XX MZ. Wrote the paper: XX JK.
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/6c3a963fd0d8414d915fa2c0947ccf1d
PMID 27044001
PQID 1778408093
PQPubID 1436336
ParticipantIDs plos_journals_1778408093
doaj_primary_oai_doaj_org_article_6c3a963fd0d8414d915fa2c0947ccf1d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4820126
proquest_miscellaneous_1805496597
proquest_miscellaneous_1779020617
proquest_journals_1778408093
gale_infotracmisc_A453452199
gale_infotracacademiconefile_A453452199
gale_incontextgauss_ISR_A453452199
gale_incontextgauss_IOV_A453452199
gale_healthsolutions_A453452199
pubmed_primary_27044001
crossref_citationtrail_10_1371_journal_pone_0150329
crossref_primary_10_1371_journal_pone_0150329
PublicationCentury 2000
PublicationDate 2016-04-04
PublicationDateYYYYMMDD 2016-04-04
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2016
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S McKennoch (ref29) 2006; 48
ref34
W Gerstner (ref37) 2002
F Rosenblatt (ref8) 1958; 65
ref33
J Hu (ref3) 2013; 25
F Ponulak (ref24) 2010; 71
DH Hubel (ref25) 1968; 195
T Masquelier (ref19) 2009; 21
Y Xu (ref21) 2013; 25
R Desimone (ref35) 1989; 2
MR Mehta (ref10) 2002; 417
ref39
S Schreiber (ref38) 2003; 52
DH Hubel (ref26) 1962; 160
RV Florian (ref15) 2012; 7
HP Snippe (ref41) 1996; 8
JJ Wade (ref22) 2010; 21
S Ghosh-Dastidara (ref30) 2009; 22
F Ponulak (ref20) 2010; 22
F Theunissen (ref1) 1995; 2
S.M Bohte (ref12) 2004; 3
Z Zhang (ref6) 2015; 151
R Gütig (ref14) 2006; 9
Y Xu (ref31) 2013; 43
W Song (ref27) 2013; 8
WH Wolberg (ref42) 1990; 87
RV Rullen (ref11) 2001; 13
MJ O’Brien (ref4) 2013; 25
SKALG Ungerleider (ref36) 2000; 23
F Naveros (ref5) 2015; 26
P Tiesinga (ref9) 2008; 9
SM Bohte (ref28) 2002; 48
K Benchenanel (ref13) 2010; 66
RA Fisher (ref40) 1936; 7
R V Rullen (ref2) 2005; 28
Q Yu (ref23) 2013; 8
A Mohemmed (ref16) 2012; 22
WS McCulloch (ref7) 1943; 5
JD Victor (ref17) 1997; 8
I Sporea (ref32) 2013; 25
MC van Rossum (ref18) 2001; 13
References_xml – volume: 8
  start-page: 127
  year: 1997
  ident: ref17
  article-title: Metric-space analysis of spike trains: theory, algorithms and application
  publication-title: Network: computation in neural systems
  doi: 10.1088/0954-898X_8_2_003
– volume: 9
  start-page: 97
  year: 2008
  ident: ref9
  article-title: Regulation of spike timing in visual cortical circuits
  publication-title: Nature reviews neuroscience
  doi: 10.1038/nrn2315
– ident: ref39
– volume: 25
  start-page: 450
  year: 2013
  ident: ref3
  article-title: A Spike-Timing-Based Integrated Model for Pattern Recognition
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00395
– volume: 13
  start-page: 1255
  year: 2001
  ident: ref11
  article-title: Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex
  publication-title: Neural Computation
  doi: 10.1162/08997660152002852
– volume: 8
  start-page: e57453
  issue: 3
  year: 2013
  ident: ref27
  article-title: Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex
  publication-title: Plos one
  doi: 10.1371/journal.pone.0057453
– volume: 8
  start-page: 511
  year: 1996
  ident: ref41
  article-title: Parameter extraction from population codes: A critical assessment
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.3.511
– volume: 22
  start-page: 1250012
  year: 2012
  ident: ref16
  article-title: Span: Spike pattern association neuron for learning spatio-temporal spike patterns
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065712500128
– volume: 8
  start-page: e78318
  year: 2013
  ident: ref23
  article-title: Precise-spike-driven synaptic plasticity: Learning hetero-association of spatiotemporal spike patterns
  publication-title: Plos one
  doi: 10.1371/journal.pone.0078318
– volume: 48
  start-page: 17
  year: 2002
  ident: ref28
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– ident: ref34
  doi: 10.1109/GlobalSIP.2013.6737023
– volume: 71
  start-page: 409
  year: 2010
  ident: ref24
  article-title: Introduction to spiking neural networks: Information processing, learning and applications
  publication-title: Acta neurobiologiae experimentalis
  doi: 10.55782/ane-2011-1862
– volume: 52
  start-page: 925
  year: 2003
  ident: ref38
  article-title: A new correlation-based measure of spike timing reliability
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00838-X
– volume: 25
  start-page: 123
  year: 2013
  ident: ref4
  article-title: Spiking Neural Model for Stable Reinforcement of Synapses Based on Multiple Distal Rewards
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00387
– volume: 48
  start-page: 3970
  year: 2006
  ident: ref29
  article-title: Fast Modifications of the SpikeProp Algorithm
  publication-title: IEEE International Joint Conference on Neural Networks, IEEE
– volume: 25
  start-page: 473
  year: 2013
  ident: ref32
  article-title: Supervised Learning in Multilayer Spiking Neural Networks
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00396
– volume: 7
  start-page: 179
  year: 1936
  ident: ref40
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Annals of eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 160
  start-page: 106
  year: 1962
  ident: ref26
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: The Journal of physiology
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 22
  start-page: 467
  year: 2010
  ident: ref20
  article-title: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.11-08-901
– volume: 22
  start-page: 1419
  year: 2009
  ident: ref30
  article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.04.003
– volume: 87
  start-page: 9193
  year: 1990
  ident: ref42
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the national academy of sciences
  doi: 10.1073/pnas.87.23.9193
– volume: 13
  start-page: 751
  year: 2001
  ident: ref18
  article-title: A novel spike distance
  publication-title: Neural Computation
  doi: 10.1162/089976601300014321
– volume: 65
  start-page: 386
  year: 1958
  ident: ref8
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychological review
  doi: 10.1037/h0042519
– volume: 3
  start-page: 195
  year: 2004
  ident: ref12
  article-title: The Evidence for Neural Information Processing with Precise Spike-times: A Survey
  publication-title: Natural Computation
  doi: 10.1023/B:NACO.0000027755.02868.60
– volume: 5
  start-page: 115
  year: 1943
  ident: ref7
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: The bulletin of mathematical biophysics
  doi: 10.1007/BF02478259
– volume: 21
  start-page: 1259
  year: 2009
  ident: ref19
  article-title: Competitive STDP-based spike pattern learning
  publication-title: Neural computation
  doi: 10.1162/neco.2008.06-08-804
– volume: 151
  start-page: 985
  year: 2015
  ident: ref6
  article-title: Wavelet transform and texture recognition based on spiking neural network for visual images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.086
– volume: 7
  start-page: e40233
  year: 2012
  ident: ref15
  article-title: The chronotron: a neuron that learns to fire temporally precise spike patterns
  publication-title: Plos one
  doi: 10.1371/journal.pone.0040233
– volume: 21
  start-page: 1817
  year: 2010
  ident: ref22
  article-title: SWAT: a spiking neural network training algorithm for classification problems
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2074212
– volume: 2
  start-page: 149
  year: 1995
  ident: ref1
  article-title: Temporal encoding in nervous systems: a rigorous definition
  publication-title: Journal of computational neuroscience
  doi: 10.1007/BF00961885
– volume: 417
  start-page: 741
  year: 2002
  ident: ref10
  article-title: Role of experience and oscillations in transforming a rate code into a temporal code
  publication-title: Nature
  doi: 10.1038/nature00807
– volume: 25
  start-page: 1472
  year: 2013
  ident: ref21
  article-title: A new supervised learning algorithm for spiking neurons
  publication-title: Neural computation
  doi: 10.1162/NECO_a_00450
– volume: 23
  start-page: 315
  year: 2000
  ident: ref36
  article-title: Mechanisms of visual attention in the human cortex
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.23.1.315
– volume: 43
  start-page: 99
  year: 2013
  ident: ref31
  article-title: A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.02.003
– volume: 195
  start-page: 215
  year: 1968
  ident: ref25
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: The Journal of physiology
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 66
  start-page: 921
  year: 2010
  ident: ref13
  article-title: Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.05.013
– volume: 2
  start-page: 267
  year: 1989
  ident: ref35
  article-title: Neural mechanisms of visual processing in monkeys
  publication-title: Handbook of neuropsychology
– volume: 9
  start-page: 420
  year: 2006
  ident: ref14
  article-title: The tempotron: a neuron that learns spike timing-based decisions
  publication-title: Nature neuroscience
  doi: 10.1038/nn1643
– volume: 26
  start-page: 1567
  year: 2015
  ident: ref5
  article-title: A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2345844
– year: 2002
  ident: ref37
  article-title: Spiking Nerual Models: Single Neurons, Populations, Plasticity
– volume: 28
  start-page: 1
  year: 2005
  ident: ref2
  article-title: Spike times make sense
  publication-title: Trends in Neurosciences
  doi: 10.1016/j.tins.2004.10.010
– ident: ref33
SSID ssj0053866
Score 2.3064392
Snippet The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0150329
SubjectTerms Algorithms
Analysis
Animals
Artificial neural networks
Back propagation
Biology and Life Sciences
Coding
Cognition - physiology
Cognitive ability
Cognitive tasks
Computation
Computational neuroscience
Computer and Information Sciences
Data processing
Efficiency
Electric potential
Feedforward
Firing pattern
Humans
Information processing
Machine Learning
Medicine and Health Sciences
Models, Neurological
Nerve Net - physiology
Neural networks
Neurons
Parameter sensitivity
Parameters
Pattern recognition
Physical Sciences
Physiological aspects
Physiology
Propagation
Quadratic equations
Research and Analysis Methods
Sensitivity
Spiking
Structural hierarchy
Teaching methods
Training
Vibration
Voltage
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg8MALML5WGBAQEvCQLY6d2H5CBW2ClwLrmPYWxV9dpZKEpuXv5-y4GUHTQOKx8c914jtffuec7xB6pcpU5parWNqcx1SWSSy5sLEqsVZYWMOE9MUm2HTKz87El7Dh1oawyq1N9IZa18rtkR9gxsAX4eCAv2t-xK5qlPu6GkpoXEc3sOPGoM_s-HRriWEt53k4LkcYPgjS2W_qyuw7T594YnnxOvJZ-3vbPGqWdXsZ8fwzfvK3F9LRnf99lLvodqCi0aTTnR10zVT30E5Y7G30JmSkfnsffZ1U0aHPNQG3Es02jTMwrdHRSSgwEU2Wcxhhff49AhIc-VO9yxLYfDRrFm4zPnJJQGCwaRd13j5A344OTz58jEMthlgxgdexJdJQI7gRVFprgHglhCgQJ3AECaSOW67BnSu1ZMRKRQRRmRbSmEwnOVcZeYhGFcz7LopSXdJcpVyDI0xNmsCvVGYiNRRj6E_GiGxFUqiQqNzVy1gW_usbA4elm6DCCbIIghyjuO_VdIk6_oJ_76TdY12abX-hXs2LsGqLXJESLJTVieYUUy1wZstUgUvMlLJYj9FzpytFd2a1NxbFhGaEAjESMMxLj3CpNioXyzMvN21bfPp8-g-g2fEA9DqAbA3TocpwfgKeyaXwGiD3BkgwGGrQvOs0ezsrbXGhj9Bzq7GXN7_om92fuvi8ytQbjxHgeAAdvgLDwT1w-SsB86hbQP3sp8yVPk_wGLHB0hqIZ9hSLc59NnTqOGyaP7761p-gWwDLfcwV3UOj9WpjnqKb6ud60a6eebPxCya4eYI
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLag8MALMG4rFAgICXjISGzHl8eCVoGEyqAD7S2Kb1ulklZNy-_n2HEDmTYuj6k_x_GxffKd5vgzQi90hRVzQqfKMZFSVWWpEtKlusqNzqWzXKpw2ASfTsXJiTz6FSie-4JPeP4m2vRgtaztgY_PCZZX0TVMGPPB1uTo487zwtplLG6Pu6xm7_UTVPo7XzxYLZbNRUTzfL7kby-gya3_ffTb6Gakmsm4nRt76Iqt76C9uJib5FVUnH59F30e18lh0JKAppPZduUdSGNNchwPkEjGi9Pler45-54AyU3Crt1FBWw9ma3m_s_2xIt8QGPTNqu8uYe-Tg6P371P41kLqeYy36SOKEutFFZS5ZwFYpURomG4gAMoIG3CCQPhWmUUJ05pIokujFTWFiZjQhfkPhrU0M19lGBTUaaxMBDoUoszuMKqkNjSPIf6ZIjIbghKHYXI_XkYizJ8XeMQkLQGKr3dymi3IUq7WqtWiOMv-Ld-dDusl9EOP8AAlXFVlkyTCjyQM5kRNKdG5oWrsIaQl2vtcjNET_3cKNs9qZ0zKMe0IBSIj4RmngeEl9Kofa7OabVtmvLDp2__AJp96YFeRpBbgjl0FfdHQJ-8RFcPOeohwSHoXvG-n8k7qzRlzjmE8SKTYPrRbnZfXPysK_Y39fl3tV1uA0ZCYAF09w8YAfTf61MC5kG7YDrrY-6PNs_yIeK9pdQbnn5JPT8LaufUc1TMHl7eq0foBkBYyKeiIzTYrLf2Mbquf2zmzfpJcBE_AWIIZ58
  priority: 102
  providerName: Public Library of Science
Title An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/27044001
https://www.proquest.com/docview/1778408093
https://www.proquest.com/docview/1779020617
https://www.proquest.com/docview/1805496597
https://pubmed.ncbi.nlm.nih.gov/PMC4820126
https://doaj.org/article/6c3a963fd0d8414d915fa2c0947ccf1d
http://dx.doi.org/10.1371/journal.pone.0150329
Volume 11
WOSCitedRecordID wos000373592100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg8MALYnytUEpASMBDujh2YvuxnVoxjZXQjmnjJUr8sVUqadW0_P2cnbQsaGI88HJS67PT3od9155_h9A7mYV5bLj0cxNzn-ZZ4OdcGF9mWEksjGYid80m2HjMz89Fcq3Vl60Jq-CBK8EdxJJkYCRGBYpTTJXAkclCCVkJk9JgZXffgIltMlXtweDFcVxflCMMH9R66S0Xhe7ZHJ-4kPL3QeTw-ne7cms5X5Q3hZx_Vk5eO4pGj9DDOob0-tVn30N3dPEY7dVeWnofaijpj0_Q137hDR1IBKzkTTdLuzOUWnmndWcIrz-_XKxm66sfHkSvnruOO88gDPemy5n9Fd2z6B3wsHFVLl4-Rd9Gw9PDT37dRMGXTOC1b0iuqRZcC5oboyFiCgiRoAc43HOIxrjhCvKwTOWMmFwSQWSkRK51pIKYy4g8Q60CxLaPvFBlNJYhV5DBUh0G8CrMIxFqijHMJ21EthJNZY0wbhtdzFP3txmDTKMSUGr1kNZ6aCN_N2tZIWzcwj-wytrxWnxs9wZYTVpbTXqb1bTRa6vqtLpsuvPytE8jQiGiEfCYt47DYmQUtgjnMtuUZXr05ewfmKaTBtP7msksQBwyqy8-wHey2FsNzk6DEzxdNob3rWFupVKmmDHIz3kgQPSdrbHePPxmN2wXtYV1hV5sHI-AjAHi2L_wcIjrLfAk8Dyv7H8n_ZDZnuUBbiPW8IyGepojxezKwZhTG3yG8Yv_oc-X6AEsFruSKtpBrfVqo1-h-_Lnelauuugum5xZes4c5UD5Ie6ie4PhOJl03d4BdJR8Bno86AE9CY4tZYmjU6BJ9B1mJEcnycUvGOx4Vw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXoLy6UKhBIOCQNnGchw8ILdCqq5alsAuquIT4tV1pScJmF8Sf4jcydh4lqCpceuC48edN7Mx8nonHMwg9EinhoY6Fw3UYO5SnrsNjph2RelJ4TKuIcVtsIhoO46MjdriCfjZnYUxYZcOJlqhlLsw38m0visAXicEBf1F8dUzVKLO72pTQqMRiX_34Di5b-XzwGt7vY0J2d8av9py6qoAjIuYtHO1zRRWLFaNcawUmhOv7Ah4MVjsO5kmsYwmOSSp55GsufOaLQDKuVCDdMBamSgRQ_gVKiWu06DD41DA_cEcY1sfz_MjbrqVhq8gztWW-LPjWkD1Z_myVgHYtWC1meXmaoftnvOZvC-Du1f9t6q6hK7WpjfuVbqyhFZVdR2s1mZX4aZ1x-9kN9K6f4R2bSwOGjkfLwhBoqSQe1wU0cH82gREtjr9gMPKxPbU8S8FbwaNiajYbsElyAjcbVlH15U304VyGdgutZvCe1xEmMqWhILEER58q4sIvwgNGFPU86O_3kN-IQCLqROymHsgssbuLEThk1QQlRnCSWnB6yGl7FVUikr_gXxrparEmjbi9kM8nSc1KSSj8FBhYS1fG1KOSeYFOiQCXPxJCe7KHNo1sJtWZ3JYMkz4NfAqGH4PbPLQIk0okM7FKk3RZlsng7cd_AI3ed0BPapDOYTpEWp8PgTGZFGUd5EYHCYQoOs3rRpOaWSmTE_mHno2GnN78oG02f2riDzOVLy2GgWMF5v4ZmBjcH5OfEzC3K4VtZ59EprS76_VQ1FHlzuvptmTTY5vtnRobnYR3zn70TXRpb_zmIDkYDPfvosvQJbTxZXQDrS7mS3UPXRTfFtNyft9SFkafz1vRfwEKGdht
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemghAvwPhaYTCDQMBD1iTOh_2AUGGrqIZKoQNNvITEH12lkoSmBfGv8ddxdpyOoGnwsgceE_-cxOe78118vkPoEU_9LFKUO5mKqBNkqetklCmHp57gHlMyZpkpNhGPRvToiI030M_mLIwOq2x0olHUouD6H3nPi2PwRSg44D1lwyLGe4MX5VdHV5DSO61NOY2aRQ7kj-_gvlXPh3sw1499f7B_-Oq1YysMODxm3tJRJJOBZFSyIFNKgjnhEsLhI2Hly8BUoYoKcFJSkcVEZZwwwkPBMilD4UaU64oRoP4vxOBj6nDCcfipWQVAj0SRPapHYq9nOWO3LHK5q_8yEGPUniyFpmLAel3olPOiOs3o_TN287fFcHD1fybjNXTFmuC4X8vMJtqQ-XW0aZVchZ_aTNzPbqB3_RzvmxwbQAY8WZVasVZS4ENbWAP351MY0fL4CwbjH5vTzPMUvBg8KWd6EwLr5CfwslEdbV_dRB_OZWi3UCeHOd9C2BdpEHGfCg-MWOm7cOVnIfNl4HnQn3QRadgh4TZBu64TMk_MrmMMjlpNoEQzUWKZqIucda-yTlDyF_xLzWlrrE4vbm4Ui2litVUScZKCZlbCFTTwAsG8UKU-d1kQc6480UU7mk-T-qzuWkkm_SAkARiEDF7z0CB0ipFcc9k0XVVVMnz78R9Ak_ct0BMLUgWQg6f23AiMSacuayG3W0hQlLzVvKWlqqFKlZzIAvRspOX05gfrZv1QHZeYy2JlMAwcLnADzsBQcIt03k7A3K6Fd019P9Yl312vi-KWWLemp92Sz45NFvhA2-5-dOfsT99Bl0C-kzfD0cFddBl6RCbsLNhGneViJe-hi_zbclYt7hvthdHn85bzX5Jw4Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Supervised+Training+Algorithm+for+Multilayer+Spiking+Neural+Networks&rft.jtitle=PloS+one&rft.au=Xiurui+Xie&rft.au=Hong+Qu&rft.au=Guisong+Liu&rft.au=Malu+Zhang&rft.date=2016-04-04&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=11&rft.issue=4&rft.spage=e0150329&rft_id=info:doi/10.1371%2Fjournal.pone.0150329&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c3a963fd0d8414d915fa2c0947ccf1d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon