An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical struc...
Uloženo v:
| Vydáno v: | PloS one Ročník 11; číslo 4; s. e0150329 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
04.04.2016
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. |
|---|---|
| AbstractList | The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. |
| Audience | Academic |
| Author | Kurths, Jürgen Xie, Xiurui Qu, Hong Liu, Guisong Zhang, Malu |
| AuthorAffiliation | 3 Potsdam Institute for Climate Impact Research(PIK), 14473 Potsdam, Germany Georgia State University, UNITED STATES 1 Department of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China 2 Department of Physics, Humboldt University, 12489, Berlin, Berlin, Germany |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China – name: Georgia State University, UNITED STATES – name: 3 Potsdam Institute for Climate Impact Research(PIK), 14473 Potsdam, Germany – name: 2 Department of Physics, Humboldt University, 12489, Berlin, Berlin, Germany |
| Author_xml | – sequence: 1 givenname: Xiurui surname: Xie fullname: Xie, Xiurui – sequence: 2 givenname: Hong surname: Qu fullname: Qu, Hong – sequence: 3 givenname: Guisong surname: Liu fullname: Liu, Guisong – sequence: 4 givenname: Malu surname: Zhang fullname: Zhang, Malu – sequence: 5 givenname: Jürgen surname: Kurths fullname: Kurths, Jürgen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27044001$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11v0zAUhiM0xD7gHyCIhITgosWOnQ_vAqmaBlQaTNDBreX4I3XnxsV2Bvv3ODRFzTQB8oWt4-d97XPsc5wctLaVSfIUgilEJXyzsp1rmZluYngKYA5QRh4kR5CgbFJkAB3srQ-TY-9XAOSoKopHyWFWAowBgEfJ51mbniuluZZtSBfdRrob7aVIrxzTrW6bdGYa63RYrlNlXfqxM0Ebditdutjo6x74JDvHTJzCD-uu_ePkoWLGyyfDfJJ8fXd-dfZhcnH5fn42u5jwksAwUaiWWJJKElwrJWGOAUJccAgyWGNYVKoSICuYqEukao4I4rkgtZS5AEXFc3SSPN_6boz1dKiGp7AsKwwqQFAk5ltCWLaiG6fXzN1SyzT9HbCuocwFzY2kBUeMFEgJICoMsSAwVyzjgOCScwVF9Ho7nNbVayl4rFZMemQ63mn1kjb2huIqAzArosGrwcDZ7530ga6159IY1krbxXtXIMekyEn5b7QsCchAAXv0xR30_kIMVMNirrpVNl6R96Z0hnOE8wwSEqnpPVQcQq41j79M6RgfCV6PBJEJ8mdoWOc9nS--_D97-W3Mvtxjl5KZsPTWdEHb1o_BZ_uP8uc1dt87AqdbgDvrvZOKch1Y7xNT04ZCQPte2hWN9r1Eh16KYnxHvPP_q-wXl18iNA |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_1109_TCAD_2021_3138347 crossref_primary_10_1016_j_apm_2022_10_055 crossref_primary_10_1145_3580514 crossref_primary_10_1007_s11042_019_7487_6 crossref_primary_10_1007_s00500_018_3576_0 crossref_primary_10_1007_s00521_020_05388_3 crossref_primary_10_1016_j_neucom_2018_11_014 crossref_primary_10_1007_s00521_025_11374_4 crossref_primary_10_1016_j_neucom_2019_10_104 crossref_primary_10_1088_1742_6596_2216_1_012078 |
| Cites_doi | 10.1088/0954-898X_8_2_003 10.1038/nrn2315 10.1162/NECO_a_00395 10.1162/08997660152002852 10.1371/journal.pone.0057453 10.1162/neco.1996.8.3.511 10.1142/S0129065712500128 10.1371/journal.pone.0078318 10.1016/S0925-2312(01)00658-0 10.1109/GlobalSIP.2013.6737023 10.55782/ane-2011-1862 10.1016/S0925-2312(02)00838-X 10.1162/NECO_a_00387 10.1162/NECO_a_00396 10.1111/j.1469-1809.1936.tb02137.x 10.1113/jphysiol.1962.sp006837 10.1162/neco.2009.11-08-901 10.1016/j.neunet.2009.04.003 10.1073/pnas.87.23.9193 10.1162/089976601300014321 10.1037/h0042519 10.1023/B:NACO.0000027755.02868.60 10.1007/BF02478259 10.1162/neco.2008.06-08-804 10.1016/j.neucom.2014.03.086 10.1371/journal.pone.0040233 10.1109/TNN.2010.2074212 10.1007/BF00961885 10.1038/nature00807 10.1162/NECO_a_00450 10.1146/annurev.neuro.23.1.315 10.1016/j.neunet.2013.02.003 10.1113/jphysiol.1968.sp008455 10.1016/j.neuron.2010.05.013 10.1038/nn1643 10.1109/TNNLS.2014.2345844 10.1016/j.tins.2004.10.010 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2016 Public Library of Science 2016 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2016 Xie et al 2016 Xie et al |
| Copyright_xml | – notice: COPYRIGHT 2016 Public Library of Science – notice: 2016 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2016 Xie et al 2016 Xie et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0150329 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | An Efficient Training Algorithm for Multilayer Spiking Neural Networks |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1778408093 oai_doaj_org_article_6c3a963fd0d8414d915fa2c0947ccf1d PMC4820126 4010064681 A453452199 27044001 10_1371_journal_pone_0150329 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China Germany |
| GeographicLocations_xml | – name: China – name: Germany |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c791t-f3be4e98e94bffe154033cdc1021b4168f8d026adb73fbc393c5d9bee5d068c53 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373592100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:14:13 EST 2021 Tue Oct 14 18:48:19 EDT 2025 Tue Nov 04 01:51:50 EST 2025 Tue Oct 07 09:52:25 EDT 2025 Sun Nov 09 09:47:35 EST 2025 Tue Oct 07 07:21:47 EDT 2025 Sat Nov 29 13:25:28 EST 2025 Sat Nov 29 10:18:01 EST 2025 Wed Nov 26 09:41:09 EST 2025 Wed Nov 26 10:12:35 EST 2025 Thu May 22 21:16:31 EDT 2025 Wed Feb 19 02:33:56 EST 2025 Tue Nov 18 20:40:16 EST 2025 Sat Nov 29 04:41:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c791t-f3be4e98e94bffe154033cdc1021b4168f8d026adb73fbc393c5d9bee5d068c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: XX HQ. Performed the experiments: XX MZ. Analyzed the data: XX GL. Contributed reagents/materials/analysis tools: XX MZ. Wrote the paper: XX JK. Competing Interests: The authors have declared that no competing interests exist. |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pone.0150329 |
| PMID | 27044001 |
| PQID | 1778408093 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_1778408093 doaj_primary_oai_doaj_org_article_6c3a963fd0d8414d915fa2c0947ccf1d pubmedcentral_primary_oai_pubmedcentral_nih_gov_4820126 proquest_miscellaneous_1805496597 proquest_miscellaneous_1779020617 proquest_journals_1778408093 gale_infotracmisc_A453452199 gale_infotracacademiconefile_A453452199 gale_incontextgauss_ISR_A453452199 gale_incontextgauss_IOV_A453452199 gale_healthsolutions_A453452199 pubmed_primary_27044001 crossref_citationtrail_10_1371_journal_pone_0150329 crossref_primary_10_1371_journal_pone_0150329 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-04 |
| PublicationDateYYYYMMDD | 2016-04-04 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2016 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | S McKennoch (ref29) 2006; 48 ref34 W Gerstner (ref37) 2002 F Rosenblatt (ref8) 1958; 65 ref33 J Hu (ref3) 2013; 25 F Ponulak (ref24) 2010; 71 DH Hubel (ref25) 1968; 195 T Masquelier (ref19) 2009; 21 Y Xu (ref21) 2013; 25 R Desimone (ref35) 1989; 2 MR Mehta (ref10) 2002; 417 ref39 S Schreiber (ref38) 2003; 52 DH Hubel (ref26) 1962; 160 RV Florian (ref15) 2012; 7 HP Snippe (ref41) 1996; 8 JJ Wade (ref22) 2010; 21 S Ghosh-Dastidara (ref30) 2009; 22 F Ponulak (ref20) 2010; 22 F Theunissen (ref1) 1995; 2 S.M Bohte (ref12) 2004; 3 Z Zhang (ref6) 2015; 151 R Gütig (ref14) 2006; 9 Y Xu (ref31) 2013; 43 W Song (ref27) 2013; 8 WH Wolberg (ref42) 1990; 87 RV Rullen (ref11) 2001; 13 MJ O’Brien (ref4) 2013; 25 SKALG Ungerleider (ref36) 2000; 23 F Naveros (ref5) 2015; 26 P Tiesinga (ref9) 2008; 9 SM Bohte (ref28) 2002; 48 K Benchenanel (ref13) 2010; 66 RA Fisher (ref40) 1936; 7 R V Rullen (ref2) 2005; 28 Q Yu (ref23) 2013; 8 A Mohemmed (ref16) 2012; 22 WS McCulloch (ref7) 1943; 5 JD Victor (ref17) 1997; 8 I Sporea (ref32) 2013; 25 MC van Rossum (ref18) 2001; 13 |
| References_xml | – volume: 8 start-page: 127 year: 1997 ident: ref17 article-title: Metric-space analysis of spike trains: theory, algorithms and application publication-title: Network: computation in neural systems doi: 10.1088/0954-898X_8_2_003 – volume: 9 start-page: 97 year: 2008 ident: ref9 article-title: Regulation of spike timing in visual cortical circuits publication-title: Nature reviews neuroscience doi: 10.1038/nrn2315 – ident: ref39 – volume: 25 start-page: 450 year: 2013 ident: ref3 article-title: A Spike-Timing-Based Integrated Model for Pattern Recognition publication-title: Neural Computation doi: 10.1162/NECO_a_00395 – volume: 13 start-page: 1255 year: 2001 ident: ref11 article-title: Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex publication-title: Neural Computation doi: 10.1162/08997660152002852 – volume: 8 start-page: e57453 issue: 3 year: 2013 ident: ref27 article-title: Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex publication-title: Plos one doi: 10.1371/journal.pone.0057453 – volume: 8 start-page: 511 year: 1996 ident: ref41 article-title: Parameter extraction from population codes: A critical assessment publication-title: Neural Computation doi: 10.1162/neco.1996.8.3.511 – volume: 22 start-page: 1250012 year: 2012 ident: ref16 article-title: Span: Spike pattern association neuron for learning spatio-temporal spike patterns publication-title: International Journal of Neural Systems doi: 10.1142/S0129065712500128 – volume: 8 start-page: e78318 year: 2013 ident: ref23 article-title: Precise-spike-driven synaptic plasticity: Learning hetero-association of spatiotemporal spike patterns publication-title: Plos one doi: 10.1371/journal.pone.0078318 – volume: 48 start-page: 17 year: 2002 ident: ref28 article-title: Error-backpropagation in temporally encoded networks of spiking neurons publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00658-0 – ident: ref34 doi: 10.1109/GlobalSIP.2013.6737023 – volume: 71 start-page: 409 year: 2010 ident: ref24 article-title: Introduction to spiking neural networks: Information processing, learning and applications publication-title: Acta neurobiologiae experimentalis doi: 10.55782/ane-2011-1862 – volume: 52 start-page: 925 year: 2003 ident: ref38 article-title: A new correlation-based measure of spike timing reliability publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00838-X – volume: 25 start-page: 123 year: 2013 ident: ref4 article-title: Spiking Neural Model for Stable Reinforcement of Synapses Based on Multiple Distal Rewards publication-title: Neural Computation doi: 10.1162/NECO_a_00387 – volume: 48 start-page: 3970 year: 2006 ident: ref29 article-title: Fast Modifications of the SpikeProp Algorithm publication-title: IEEE International Joint Conference on Neural Networks, IEEE – volume: 25 start-page: 473 year: 2013 ident: ref32 article-title: Supervised Learning in Multilayer Spiking Neural Networks publication-title: Neural Computation doi: 10.1162/NECO_a_00396 – volume: 7 start-page: 179 year: 1936 ident: ref40 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 160 start-page: 106 year: 1962 ident: ref26 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: The Journal of physiology doi: 10.1113/jphysiol.1962.sp006837 – volume: 22 start-page: 467 year: 2010 ident: ref20 article-title: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting publication-title: Neural Computation doi: 10.1162/neco.2009.11-08-901 – volume: 22 start-page: 1419 year: 2009 ident: ref30 article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection publication-title: Neural Networks doi: 10.1016/j.neunet.2009.04.003 – volume: 87 start-page: 9193 year: 1990 ident: ref42 article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology publication-title: Proceedings of the national academy of sciences doi: 10.1073/pnas.87.23.9193 – volume: 13 start-page: 751 year: 2001 ident: ref18 article-title: A novel spike distance publication-title: Neural Computation doi: 10.1162/089976601300014321 – volume: 65 start-page: 386 year: 1958 ident: ref8 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychological review doi: 10.1037/h0042519 – volume: 3 start-page: 195 year: 2004 ident: ref12 article-title: The Evidence for Neural Information Processing with Precise Spike-times: A Survey publication-title: Natural Computation doi: 10.1023/B:NACO.0000027755.02868.60 – volume: 5 start-page: 115 year: 1943 ident: ref7 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: The bulletin of mathematical biophysics doi: 10.1007/BF02478259 – volume: 21 start-page: 1259 year: 2009 ident: ref19 article-title: Competitive STDP-based spike pattern learning publication-title: Neural computation doi: 10.1162/neco.2008.06-08-804 – volume: 151 start-page: 985 year: 2015 ident: ref6 article-title: Wavelet transform and texture recognition based on spiking neural network for visual images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.086 – volume: 7 start-page: e40233 year: 2012 ident: ref15 article-title: The chronotron: a neuron that learns to fire temporally precise spike patterns publication-title: Plos one doi: 10.1371/journal.pone.0040233 – volume: 21 start-page: 1817 year: 2010 ident: ref22 article-title: SWAT: a spiking neural network training algorithm for classification problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2074212 – volume: 2 start-page: 149 year: 1995 ident: ref1 article-title: Temporal encoding in nervous systems: a rigorous definition publication-title: Journal of computational neuroscience doi: 10.1007/BF00961885 – volume: 417 start-page: 741 year: 2002 ident: ref10 article-title: Role of experience and oscillations in transforming a rate code into a temporal code publication-title: Nature doi: 10.1038/nature00807 – volume: 25 start-page: 1472 year: 2013 ident: ref21 article-title: A new supervised learning algorithm for spiking neurons publication-title: Neural computation doi: 10.1162/NECO_a_00450 – volume: 23 start-page: 315 year: 2000 ident: ref36 article-title: Mechanisms of visual attention in the human cortex publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.23.1.315 – volume: 43 start-page: 99 year: 2013 ident: ref31 article-title: A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2013.02.003 – volume: 195 start-page: 215 year: 1968 ident: ref25 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: The Journal of physiology doi: 10.1113/jphysiol.1968.sp008455 – volume: 66 start-page: 921 year: 2010 ident: ref13 article-title: Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning publication-title: Neuron doi: 10.1016/j.neuron.2010.05.013 – volume: 2 start-page: 267 year: 1989 ident: ref35 article-title: Neural mechanisms of visual processing in monkeys publication-title: Handbook of neuropsychology – volume: 9 start-page: 420 year: 2006 ident: ref14 article-title: The tempotron: a neuron that learns spike timing-based decisions publication-title: Nature neuroscience doi: 10.1038/nn1643 – volume: 26 start-page: 1567 year: 2015 ident: ref5 article-title: A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2345844 – year: 2002 ident: ref37 article-title: Spiking Nerual Models: Single Neurons, Populations, Plasticity – volume: 28 start-page: 1 year: 2005 ident: ref2 article-title: Spike times make sense publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2004.10.010 – ident: ref33 |
| SSID | ssj0053866 |
| Score | 2.3065336 |
| Snippet | The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0150329 |
| SubjectTerms | Algorithms Analysis Animals Artificial neural networks Back propagation Biology and Life Sciences Coding Cognition - physiology Cognitive ability Cognitive tasks Computation Computational neuroscience Computer and Information Sciences Data processing Efficiency Electric potential Feedforward Firing pattern Humans Information processing Machine Learning Medicine and Health Sciences Models, Neurological Nerve Net - physiology Neural networks Neurons Parameter sensitivity Parameters Pattern recognition Physical Sciences Physiological aspects Physiology Propagation Quadratic equations Research and Analysis Methods Sensitivity Spiking Structural hierarchy Teaching methods Training Vibration Voltage |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hiAMXRHk1pcCCkICDW9u79u4eA2oFl_BIQb1Z3lcbKThRnPD7mVlvTI0qyoFrdrxO5uVvnNlvCHmlvcuZ4RDfTKQJ14Il2uYsqXWeSyeFMbIbNiGmU3l-rj5fGfWFPWEdPXCnuOPSsBqcxNvUSp5xq7LC17mBqgT28ZnF7JsKtSumuhwMUVyW8aAcE9lxtMvRatm4I6zxWYCUvx9Ega-_z8qj1WLZXgc5_-ycvPIoOr1H7kYMSSfdd98jt1xzn-zFKG3pm0gl_fYB-TJp6EkgiYCd6Gy7wszQOkvP4mQIOllcLNfzzeUPCuiVhuO4ixpgOJ2t5vgWnSJ7B9xs2rWLtw_Jt9OTs_cfkjhEITFCZZvEM-24U9Iprr13gJhSxow1ONJbAxqTXlqow2oLZvLaMMVMYZV2rrBpKU3BHpFRA2rbJxSwhbSycErXlhsplM211bw2qS5zV_oxYTuNViYyjOOgi0UV_jYTUGl0CqrQDlW0w5gk_VWrjmHjBvl3aKxeFvmxwwfgNVX0muomrxmT52jqqjts2kd5NeEF44BoFNzmZZBAjowGm3Au6m3bVh8_ff8HodnXgdDrKOSXoA5Tx4MP8JuQe2sgeTiQhEg3g-V9dMydVtoqEwLqc5kqBlfunPX65Rf9Mm6KjXWNW26DjIKKAXDsX2Qk4HokngSZx53_99rPBc4sT7MxEYPIGJhnuNLMLwONOUfwmZcH_8OeT8gd2KwMLVX8kIw26617Sm6bn5t5u34WcsMvP21rag priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegcOACjK8VBhiEBByyJbETOydU0Ca4FFjHtFsUf6SrVJLQtPz9vOe4GUHTQOJa_1Infh_5Pef5PUJeqdLGTHOwbybCgCvBAmViFhQqjqWVQmvZNZsQ06k8O8u--A231qdVbn2ic9Sm1rhHfhAJAbGIhAD8XfMjwK5R-HXVt9C4Tm5EyI1Bn8Xx6dYTgy2nqT8ux0R04KWz39SV3cdInzliefE6clX7e988apZ1exnx_DN_8rcX0tGd_32Uu-S2p6J00unODrlmq3tkxxt7S9_4itRv75Ovk4oeuloTcCt0tmnQwbTW0BPfYIJOlnOYYX3-nQIJpu5U77IANk9nzQI34ykWAYHJpl3WefuAfDs6PPnwMfC9GAItsmgdlExZbjNpM67K0gLxChnTRmNncAWkTpbSQDhXGJB2qTTLmE5MpqxNTJhKnbCHZFTBuu8SChRFGpnYTBWGaykyEyujeKFDlcY2LceEbUWSa1-oHPtlLHP39U1AwNItUI6CzL0gxyTor2q6Qh1_wb9HafdYLLPtfqhX89xbbZ5qVoCHKk1oJI-4yaKkLGINITEocRmZMXmOupJ3Z1Z7Z5FPeMI4EKMMpnnpEFhqo8Jcnnmxadv80-fTfwDNjgeg1x5U1rAcuvDnJ-CZsITXALk3QILD0IPhXdTs7aq0-YU-wpVbjb18-EU_jH-K-XmVrTcOk0HgAXT4CoyE8ADrVwLmUWdA_erHAlufh9GYiIFpDcQzHKkW564aOkcOG6ePr771J-QWwFKXc8X3yGi92tin5Kb-uV60q2fObfwCylJ5Mg priority: 102 providerName: ProQuest |
| Title | An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27044001 https://www.proquest.com/docview/1778408093 https://www.proquest.com/docview/1779020617 https://www.proquest.com/docview/1805496597 https://pubmed.ncbi.nlm.nih.gov/PMC4820126 https://doaj.org/article/6c3a963fd0d8414d915fa2c0947ccf1d http://dx.doi.org/10.1371/journal.pone.0150329 |
| Volume | 11 |
| WOSCitedRecordID | wos000373592100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwENbQlAMXoLwaKMEwzAAHB9uSLemYdJKhUxpMUzqBi8d6uM1McDJxwu9nJSsBd1oelz1En2JrpV1_a0u7CL0WhY6wJGDfmAY-ERT7QkXYz0UUMc2olKwuNkFHIzaZ8PRXoHjlCz6m4Xun0-5iXuquic9xxHfQboSTxARbw_TjxvOC7SaJOx53U8_G48dm6d_64tZiNq-uI5pX90v-9gAa3vvfW7-P7jqq6fXqtbGHbunyAdpzxlx5b13G6XcP0ede6Q1sLgm4tDdeL4wDqbTyzlwBCa83u5gvp6vL7x6QXM-e2p3lwNa98WJqXrZ7JskHXGxU7yqvHqEvw8HZ4Qff1VrwJeXhyi-w0ERzpjkRRaGBWAUYSyVN5W8BpI0VTEG4liuYzUJIzLGMFRdaxypImIzxY9QqYZj7yAMKwhSLNRe5IpJRriKhBMllIJJIJ0Ub4c0UZNIlIjf1MGaZ_bpGISCpFZQZvWVOb23kb3st6kQcf8H3zexusSaNtv0BJihzVpklEufggQoVKEZCongYF3kkIeSFRVqEqo1emLWR1WdSt84g65EYEyA-HC7zyiJMKo3S7NW5yNdVlR19Ov8H0Pi0AXrjQMUc1CFzdz4CxmRSdDWQBw0kOATZaN43K3mjlSoLKYUwngUcQ8_N6r6--eW22fyp2X9X6vnaYjgEFkB3_4BhQP9NfkrAPKkNZqv9iJrS5kHYRrRhSo3pabaU00ub7ZwYjholT28e1TN0ByCJ3U9FDlBrtVzr5-i2_LGaVssO2qGn50ZOqJUMJDsMO2i3Pxilpx37FqZjHQnI434X5ElwbCRNrRyDTONv0CM9Okm__gSgb3Pe |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXoLy6UKhBIOCQNomdxDkgtECrrlqWwi6o4hLiR7YrLUnY7IL4U_xGZvIqQVXh0gPX9edNbM98nonHM4Q8kolxmeKg3yywLS4DZkntMiuWriuMCJQSVbGJYDgUR0fh4Qr52dyFwbDKhhNLotaZwm_k204QgC8iwAF_kX-1sGoUnq42JTQqsdg3P76Dy1Y8H7yG9X3surs741d7Vl1VwFJB6CyshEnDTShMyGWSGDAhbMaUVljjWoJ5IhKhwTGJNbx3IhULmfJ0KI3xtO0LhVUigPIvcO7aqEWH3qeG-YE7fL--nscCZ7uWhq08S80WfllgpSF7sv2VVQLavWA1n2XFaYbun_Gav22Au1f_t6m7Rq7UpjbtV7qxRlZMep2s1WRW0Kd1xu1nN8i7fkp3ylwaMHQ6WuZIoIXRdFwX0KD92QRGtDj-QsHIp-Wt5VkM3god5VM8bKCY5AQeNqyi6oub5MO5DO0WWU1hndcJBRNMaOGZUMaaKxGE2pVa8ljZ0neNn_QIa0QgUnUidqwHMovK08UAHLJqgiIUnKgWnB6x2l55lYjkL_iXKF0tFtOIlz9k80lUs1LkKxYDAyfa1oI7XIeOl8SuApcflDRxdI9somxG1Z3clgyjPvcYB8MvhMc8LBGYSiTFWKVJvCyKaPD24z-ARu87oCc1KMlgOlRc3w-BMWGKsg5yo4MEQlSd5nXUpGZWiuhE_qFnoyGnNz9om_FPMf4wNdmyxITgWIG5fwZGgPuD-TkBc7tS2Hb23QBLu9tOjwQdVe4sT7clnR6X2d452uiuf-fsV98kl_bGbw6ig8Fw_y65DF38Mr6Mb5DVxXxp7pGL6ttiWszvl5RFyefzVvRffJTYHQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VASEuQHk1UKhBIODgxvauvesDQoE2IioKgRRUcTHeh9NIwQlxAuKv8euYsdcpRlXh0gPX7KydnZ35dsY7D0IeycwEVDHQb8o9l0lOXakD6qYyCIQRXClRNZvgg4E4OoqHG-RnnQuDYZU1JpZArWcKv5F3fM7BFxHggHcyGxYx3Ou9mH91sYMU3rTW7TQqETkwP76D-1Y87-_BXj8Ogt7-4avXru0w4Coe-0s3o9IwEwsTM5llBswJj1KlFfa7lmCqiExocFJSDWvIpKIxVaGOpTGh9iKhsGMEwP8FDj4mhhMOw0_1KQA4EkU2VY9yv2MlY3c-y80ufmWgpVF7chSWHQPW50JrPp0Vpxm9f8Zu_nYY9q7-z2y8Rq5YE9zpVjqzSTZMfp1sWpArnKe2EvezG-RdN3f2yxobwAZntJojsBZGO4e2sYbTnY5hRcvjLw4Y_06ZzTxNwYtxRvMJXkI4WPwEXjaoou2Lm-TDuSztFmnlsOdbxAHTTGgRmlimminBYx1ILVmqPBkFJsrahNbikChboB37hEyT8taRg6NWMShBIUqsELWJu541rwqU_IX-JUramhbLi5c_zBbjxKJVEimaAjJn2tOC-UzHfpilgfJiBsqb-bpNdlBOkypXdw2SSZeFlIFBGMNrHpYUWGIkRykbp6uiSPpvP_4D0eh9g-iJJcpmwA6V2rwRWBOWLmtQbjcoAShVY3gLtarmSpGc6ALMrLXl9OEH62F8KMYl5ma2KmlicLjADTiDRoBbhHU7geZ2pbxr7gccW757fpvwhlo3tqc5kk-OyyrwDG33ILpz9l_fIZdAv5M3_cHBXXIZZkRl2BnbJq3lYmXukYvq23JSLO6X6OWQz-et578A6EPg5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Supervised+Training+Algorithm+for+Multilayer+Spiking+Neural+Networks&rft.jtitle=PloS+one&rft.au=Xie%2C+Xiurui&rft.au=Qu%2C+Hong&rft.au=Liu%2C+Guisong&rft.au=Zhang%2C+Malu&rft.date=2016-04-04&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0150329&rft_id=info%3Apmid%2F27044001&rft.externalDocID=PMC4820126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |