Clustering Student Competencies Using the K-Means Algorithm
This study aims to evaluate the effectiveness of the K-Means algorithm in clustering student competencies. The subject of the study is students of the Informatics and Computer Engineering Education study program at a public university in Indonesia, with course score data representing various areas...
Uložené v:
| Vydané v: | Ultimatics : Jurnal Teknik Informatika Ročník 17; číslo 1; s. 99 - 106 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.07.2025
|
| ISSN: | 2085-4552, 2581-186X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study aims to evaluate the effectiveness of the K-Means algorithm in clustering student competencies. The subject of the study is students of the Informatics and Computer Engineering Education study program at a public university in Indonesia, with course score data representing various areas of competence as features. The K-Means algorithm is used to group student data into several clusters based on academic grade patterns. The results show that the K-Means algorithm is quite effective in identifying the initial pattern of student competence, with a Silhouette Score of 0.3489, which falls into the medium category. This study concludes that the use of the K-Means algorithm alone is sufficient to support the analysis of student areas of competence, with potential applications as a recommendation system for students in choosing elective courses and as an evaluation tool for study programs to identify areas of competence that need improvement. |
|---|---|
| AbstractList | This study aims to evaluate the effectiveness of the K-Means algorithm in clustering student competencies. The subject of the study is students of the Informatics and Computer Engineering Education study program at a public university in Indonesia, with course score data representing various areas of competence as features. The K-Means algorithm is used to group student data into several clusters based on academic grade patterns. The results show that the K-Means algorithm is quite effective in identifying the initial pattern of student competence, with a Silhouette Score of 0.3489, which falls into the medium category. This study concludes that the use of the K-Means algorithm alone is sufficient to support the analysis of student areas of competence, with potential applications as a recommendation system for students in choosing elective courses and as an evaluation tool for study programs to identify areas of competence that need improvement. |
| Author | Andini, Ratih Friska Dwi Liantoni, Febri Budianto, Aris |
| Author_xml | – sequence: 1 givenname: Ratih Friska Dwi surname: Andini fullname: Andini, Ratih Friska Dwi – sequence: 2 givenname: Febri surname: Liantoni fullname: Liantoni, Febri – sequence: 3 givenname: Aris surname: Budianto fullname: Budianto, Aris |
| BookMark | eNotj8tKAzEARYNUsNZuXc8PZEwmb1yVwRdWXFjBXchkkjYwkylJKvj3ttXVvXDhcM81mMUpOgBuMaoJVkTclVB_YxFwTZHAF2DeMIkhlvxrduxIMkgZa67AMufQIUoFJ5KIObhvh0MuLoW4rT7KoXexVO007l1x0QaXq898msrOVa_wzZmYq9WwnVIou_EGXHozZLf8zwXYPD5s2me4fn96aVdraIXCsLGoN4pTQaVVDaX8-FYZqrj0jHfeC0wwUxZ1zCvEcIeUsL0hhiPZkd4IsgD1H9amKefkvN6nMJr0ozHSZ3ldgj7L65M8-QUCJE6Y |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.31937/ti.v17i1.4071 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2581-186X |
| EndPage | 106 |
| ExternalDocumentID | 10_31937_ti_v17i1_4071 |
| GroupedDBID | AAYXX CITATION M~E |
| ID | FETCH-LOGICAL-c791-2c0da964748c924469379a4968f56bff713159c0b5f9051b097cda3a608b3da73 |
| ISSN | 2085-4552 |
| IngestDate | Sat Nov 29 07:44:02 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c791-2c0da964748c924469379a4968f56bff713159c0b5f9051b097cda3a608b3da73 |
| OpenAccessLink | https://ejournals.umn.ac.id/index.php/TI/article/download/4071/1766 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_31937_ti_v17i1_4071 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ultimatics : Jurnal Teknik Informatika |
| PublicationYear | 2025 |
| SSID | ssib044763837 |
| Score | 1.9133695 |
| Snippet | This study aims to evaluate the effectiveness of the K-Means algorithm in clustering student competencies. The subject of the study is students of the... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 99 |
| Title | Clustering Student Competencies Using the K-Means Algorithm |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2581-186X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044763837 issn: 2085-4552 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4MAFMQ0EG0w5TNqhcskPJ7bFqfulaWgTQkXaLbITh1ntsqlNy07wr-_5OU07xmEcuESVk1hJ3tfP7yXvfY-QPRWpQsdlRqVmGWUVxKxaMkkNExDHue-FVYjNJvjFhbi8lF97vd_LWpjFhNe1uLuTt__V1DAGxnals_9g7m5SGIDfYHTYgtlh-yTDH07mTvzAK22jcCX-6dE5hrC475MEnL_5hZ4bWKn6w8mPm6ltrq7XPdXvk8ainOsM3xqceb91ZMa1HffbIqbGjjtWH7ryGEwN-AbjV-AR29lY9Y9-2i7nx2LDYjzmBELxbsfBvMRdyFNT--BNRJx2WastYbl2n5SlXpF2YPxYKiIaCexWuGJc_ghZnj59r6R2IY5QiuARxwNnoExAYweLiNto4ELS1Wq2_IL_xyLXpR5C0IMz5I3N8fzcnf-MPI95Kh2zn_86XhISY8C-AnVXu3vzwp84xacHl7Dm2Kx5KKPX5FUbWgRDD4lN0jP1Fvm8gkPQwiFYh0OAcAgADkELh6CDwxsyOjkeHZ7StmEGLbiMaFyEpXKVxUwUEFazDK5RKiYzUaWZrioeJeC8FqFOK6fKpkPJi1IlKguFTkrFk7dko76pzTsSKC21SaQpYlFBSCtFKnUWGuecKiWy9D3ZX95sfutlUfK_P9ntJx-5Q16uUPWBbDTTuflIXhSLxs6mu2iYewp2WXM |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Student+Competencies+Using+the+K-Means+Algorithm&rft.jtitle=Ultimatics+%3A+Jurnal+Teknik+Informatika&rft.au=Andini%2C+Ratih+Friska+Dwi&rft.au=Liantoni%2C+Febri&rft.au=Budianto%2C+Aris&rft.date=2025-07-01&rft.issn=2085-4552&rft.eissn=2581-186X&rft.volume=17&rft.issue=1&rft.spage=99&rft.epage=106&rft_id=info:doi/10.31937%2Fti.v17i1.4071&rft.externalDBID=n%2Fa&rft.externalDocID=10_31937_ti_v17i1_4071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2085-4552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2085-4552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2085-4552&client=summon |