Multi-trait analysis of genome-wide association summary statistics using MTAG

We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms ( N eff  = 354,862), neuroticism ( N  = ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature genetics Ročník 50; číslo 2; s. 229 - 237
Hlavní autoři: Turley, Patrick, Walters, Raymond K., Maghzian, Omeed, Okbay, Aysu, Lee, James J., Fontana, Mark Alan, Nguyen-Viet, Tuan Anh, Wedow, Robbee, Zacher, Meghan, Furlotte, Nicholas A., Magnusson, Patrik, Oskarsson, Sven, Johannesson, Magnus, Visscher, Peter M., Laibson, David, Cesarini, David, Neale, Benjamin M., Benjamin, Daniel J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.02.2018
Nature Publishing Group
Témata:
ISSN:1061-4036, 1546-1718, 1546-1718
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms ( N eff  = 354,862), neuroticism ( N  = 168,105), and subjective well-being ( N  = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. MTAG is a new method for joint analysis of summary statistics from genome-wide association studies of different traits. Applying MTAG to summary statistics for depressive symptoms, neuroticism and subjective well-being increased discovery of associated loci as compared to single-trait analyses.
AbstractList We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of summary statistics from GWASs of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (Neff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). Compared to 32, 9, and 13 genome-wide significant loci in the single-trait GWASs (most of which are themselves novel), MTAG increases the number of loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N.sub.eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms ( N eff  = 354,862), neuroticism ( N  = 168,105), and subjective well-being ( N  = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. MTAG is a new method for joint analysis of summary statistics from genome-wide association studies of different traits. Applying MTAG to summary statistics for depressive symptoms, neuroticism and subjective well-being increased discovery of associated loci as compared to single-trait analyses.
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N.sub.eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. MTAG is a new method for joint analysis of summary statistics from genome-wide association studies of different traits. Applying MTAG to summary statistics for depressive symptoms, neuroticism and subjective well-being increased discovery of associated loci as compared to single-trait analyses.
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N  = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (Neff= 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N-eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
Audience Academic
Author Wedow, Robbee
Walters, Raymond K.
Visscher, Peter M.
Neale, Benjamin M.
Johannesson, Magnus
Turley, Patrick
Furlotte, Nicholas A.
Maghzian, Omeed
Cesarini, David
Magnusson, Patrik
Nguyen-Viet, Tuan Anh
Laibson, David
Oskarsson, Sven
Benjamin, Daniel J.
Lee, James J.
Okbay, Aysu
Fontana, Mark Alan
Zacher, Meghan
AuthorAffiliation 10 Department of Sociology, University of Colorado Boulder, Boulder, Colorado, United States
15 Institutionen för Medicinsk Epidemiologi och Biostatistik, Karolinska Institutet, Stockholm, Sweden
6 Hospital for Special Surgery, New York, New York, United States
17 Department of Economics, Stockholm School of Economics, Stockholm, Sweden
21 Department of Economics and Center for Experimental Social Science, New York University, New York, New York, United States
18 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
19 Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
7 Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States
16 Department of Government, Uppsala Universitet, Uppsala, Sweden
22 Institutet för Näringslivsforskning, Stockholm, Sweden
12 23andMe, Inc., Mountain View, California, United States
3 Department of Economics, Harvard University, Cambr
AuthorAffiliation_xml – name: 19 Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
– name: 21 Department of Economics and Center for Experimental Social Science, New York University, New York, New York, United States
– name: 22 Institutet för Näringslivsforskning, Stockholm, Sweden
– name: 9 Institute of Behavioral Science, University of Colorado Boulder, Boulder, Colorado, United States
– name: 15 Institutionen för Medicinsk Epidemiologi och Biostatistik, Karolinska Institutet, Stockholm, Sweden
– name: 4 Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
– name: 20 National Bureau of Economic Research, Cambridge, Massachusetts, United States
– name: 23 Department of Economics, University of Southern California, Los Angeles, California, United States
– name: 7 Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States
– name: 5 Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States
– name: 17 Department of Economics, Stockholm School of Economics, Stockholm, Sweden
– name: 3 Department of Economics, Harvard University, Cambridge, Massachusetts, United States
– name: 12 23andMe, Inc., Mountain View, California, United States
– name: 8 Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States
– name: 1 Broad Institute, Cambridge, Massachusetts, United States
– name: 10 Department of Sociology, University of Colorado Boulder, Boulder, Colorado, United States
– name: 18 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
– name: 2 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Cambridge, Massachusetts, United States
– name: 11 Department of Sociology, Harvard University, Cambridge, Massachusetts, United States
– name: 6 Hospital for Special Surgery, New York, New York, United States
– name: 16 Department of Government, Uppsala Universitet, Uppsala, Sweden
Author_xml – sequence: 1
  givenname: Patrick
  surname: Turley
  fullname: Turley, Patrick
  email: paturley@broadinstitute.org
  organization: Broad Institute, Analytic and Translational Genetics Unit, Massachusetts General Hospital
– sequence: 2
  givenname: Raymond K.
  orcidid: 0000-0001-8422-6530
  surname: Walters
  fullname: Walters, Raymond K.
  organization: Broad Institute, Analytic and Translational Genetics Unit, Massachusetts General Hospital
– sequence: 3
  givenname: Omeed
  surname: Maghzian
  fullname: Maghzian, Omeed
  organization: Department of Economics, Harvard University
– sequence: 4
  givenname: Aysu
  surname: Okbay
  fullname: Okbay, Aysu
  organization: Department of Complex Trait Genetics, Vrije Universiteit Amsterdam
– sequence: 5
  givenname: James J.
  orcidid: 0000-0001-6547-5128
  surname: Lee
  fullname: Lee, James J.
  organization: Department of Psychology, University of Minnesota
– sequence: 6
  givenname: Mark Alan
  surname: Fontana
  fullname: Fontana, Mark Alan
  organization: Hospital for Special Surgery
– sequence: 7
  givenname: Tuan Anh
  surname: Nguyen-Viet
  fullname: Nguyen-Viet, Tuan Anh
  organization: Center for Economic and Social Research, University of Southern California
– sequence: 8
  givenname: Robbee
  orcidid: 0000-0002-3108-7087
  surname: Wedow
  fullname: Wedow, Robbee
  organization: Institute for Behavioral Genetics, University of Colorado Boulder, Institute of Behavioral Science, University of Colorado Boulder, Department of Sociology, University of Colorado Boulder
– sequence: 9
  givenname: Meghan
  surname: Zacher
  fullname: Zacher, Meghan
  organization: Department of Sociology, Harvard University
– sequence: 10
  givenname: Nicholas A.
  surname: Furlotte
  fullname: Furlotte, Nicholas A.
  organization: 23andMe, Inc
– sequence: 13
  givenname: Patrik
  orcidid: 0000-0002-7315-7899
  surname: Magnusson
  fullname: Magnusson, Patrik
  organization: Institutionen för Medicinsk Epidemiologi och Biostatistik, Karolinska Institutet
– sequence: 14
  givenname: Sven
  surname: Oskarsson
  fullname: Oskarsson, Sven
  organization: Department of Government, Uppsala Universitet
– sequence: 15
  givenname: Magnus
  orcidid: 0000-0001-8759-6393
  surname: Johannesson
  fullname: Johannesson, Magnus
  organization: Department of Economics, Stockholm School of Economics
– sequence: 16
  givenname: Peter M.
  orcidid: 0000-0002-2143-8760
  surname: Visscher
  fullname: Visscher, Peter M.
  organization: Institute for Molecular Bioscience, University of Queensland, Queensland Brain Institute, University of Queensland
– sequence: 17
  givenname: David
  surname: Laibson
  fullname: Laibson, David
  organization: Department of Economics, Harvard University, National Bureau of Economic Research
– sequence: 18
  givenname: David
  surname: Cesarini
  fullname: Cesarini, David
  email: dac12@nyu.edu
  organization: National Bureau of Economic Research, Department of Economics and Center for Experimental Social Science, New York University, Institutet för Näringslivsforskning
– sequence: 19
  givenname: Benjamin M.
  surname: Neale
  fullname: Neale, Benjamin M.
  email: bneale@broadinstitute.org
  organization: Broad Institute, Analytic and Translational Genetics Unit, Massachusetts General Hospital
– sequence: 20
  givenname: Daniel J.
  orcidid: 0000-0002-2642-5416
  surname: Benjamin
  fullname: Benjamin, Daniel J.
  email: daniel.benjamin@gmail.com
  organization: Center for Economic and Social Research, University of Southern California, National Bureau of Economic Research, Department of Economics, University of Southern California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29292387$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347099$$DView record from Swedish Publication Index (Uppsala universitet)
https://research.hhs.se/esploro/outputs/journalArticle/Multi-trait-analysis-of-genome-wide-association-summary/991001480485506056$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:137625690$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqNk01v1DAQhiNURD_gB3BBkbhQiZSZ2E7sC9KqhVKpq0pQerUcx8m6JHGJE0r_PU536bIVi5APceznHdvvzOxHO53rTBS9RDhCIPydp8g4TwDzBABEQp9Ee8holmCOfCfMIcOEAsl2o33vrwGQUuDPot1UhEF4vhfN52Mz2GTolR1i1anmzlsfuyquTedak9za0sTKe6etGqzrYj-2rervYj-Efz9Y7ePR266O55ez0-fR00o13rxYfQ-irx8_XB5_Ss4vTs-OZ-eJzjkfEoVKGVEAMhSMq5KmkDNBtRFlVSKwDGlGs4IygAJLRbXOGZqyKAgzSCsgB1GyjOtvzc1YyJveTpeSTlm5WvoWZkZSgSxjgcet_GLhJxKRMSDAaXAyC1cImrdbNSf2aiZdX8txlITmIETA3y_xwLam1KYLnjYbqs2dzi5k7X5IxoExQUKAN6sAvfs-Gj_I1nptmkZ1xo1eouCEM8ohDejrR-i1G_uQPC9TJITkKed0TdWqMdJ2lQvn6imonLE8PFWw-1hHf6HCKE1rdai3yob1DcHhhiAwg_k51Gr0Xp59-fz_7MXVJvvqTwMfnPtdq-sk6t5535vqAUGQUz_IZT_I0A9y6gc5eZA_0mg73BfyVPHNP5XpKv3hlK42_drj7aJfMy0apw
CitedBy_id crossref_primary_10_1038_s41562_021_01110_y
crossref_primary_10_1016_j_ymeth_2025_03_003
crossref_primary_10_1038_s41588_024_01975_5
crossref_primary_10_1016_j_ajhg_2025_03_008
crossref_primary_10_1038_s41380_025_03199_3
crossref_primary_10_1146_annurev_soc_121919_054756
crossref_primary_10_1038_s41573_018_0009_9
crossref_primary_10_1016_j_biopsych_2025_04_021
crossref_primary_10_1007_s00438_021_01826_6
crossref_primary_10_1038_s41467_022_30678_w
crossref_primary_10_1016_j_ajhg_2021_03_002
crossref_primary_10_1016_j_ajhg_2022_05_013
crossref_primary_10_1016_j_csbj_2024_05_034
crossref_primary_10_1186_s12864_019_5605_5
crossref_primary_10_1038_s41467_024_49921_7
crossref_primary_10_1016_j_xhgg_2024_100319
crossref_primary_10_1016_j_tranon_2025_102533
crossref_primary_10_1136_bmjopen_2022_064695
crossref_primary_10_1093_hmg_ddae157
crossref_primary_10_1177_0706743720940547
crossref_primary_10_1038_s41467_023_36678_8
crossref_primary_10_1016_j_nbd_2020_104953
crossref_primary_10_1038_s41562_024_02076_3
crossref_primary_10_1093_sleep_zsac308
crossref_primary_10_1038_s43856_025_01003_5
crossref_primary_10_1111_biom_13871
crossref_primary_10_3389_fnut_2024_1391017
crossref_primary_10_1016_j_neubiorev_2020_01_016
crossref_primary_10_1038_s41380_019_0546_6
crossref_primary_10_1038_s41588_021_00824_z
crossref_primary_10_1016_j_xgen_2025_100847
crossref_primary_10_1038_s41431_019_0495_1
crossref_primary_10_1146_annurev_biodatasci_030320_041026
crossref_primary_10_1038_s41588_023_01563_z
crossref_primary_10_1016_j_biopsych_2018_12_015
crossref_primary_10_1038_s41467_022_34216_6
crossref_primary_10_1172_JCI172881
crossref_primary_10_1111_jgh_16355
crossref_primary_10_1038_s41588_024_01952_y
crossref_primary_10_3390_jcm12113713
crossref_primary_10_1038_s41380_023_02187_9
crossref_primary_10_1038_s41398_025_03514_0
crossref_primary_10_1155_da_5250758
crossref_primary_10_1038_s41467_022_31080_2
crossref_primary_10_1186_s12711_018_0377_y
crossref_primary_10_3389_fnmol_2019_00022
crossref_primary_10_3389_fnut_2023_1149317
crossref_primary_10_3390_pr9010107
crossref_primary_10_1016_j_ajhg_2019_06_012
crossref_primary_10_1001_jamanetworkopen_2022_38880
crossref_primary_10_3389_fgene_2023_1079198
crossref_primary_10_1016_j_dcn_2024_101443
crossref_primary_10_1093_hmg_ddy271
crossref_primary_10_1093_ntr_ntab105
crossref_primary_10_3390_ijms23126840
crossref_primary_10_1111_age_13282
crossref_primary_10_1097_PRS_0000000000010976
crossref_primary_10_1016_j_csbj_2024_05_012
crossref_primary_10_3389_fendo_2023_1274791
crossref_primary_10_1038_s41380_024_02804_1
crossref_primary_10_1038_s41588_022_01083_2
crossref_primary_10_1146_annurev_genom_121321_093606
crossref_primary_10_3389_fpubh_2024_1364735
crossref_primary_10_7554_eLife_75551
crossref_primary_10_1038_s41588_024_01963_9
crossref_primary_10_1038_s41588_024_01732_8
crossref_primary_10_1016_j_biopsych_2025_03_006
crossref_primary_10_1093_hmg_ddad043
crossref_primary_10_1038_s41588_019_0516_6
crossref_primary_10_1186_s12888_025_07100_y
crossref_primary_10_1371_journal_pone_0294896
crossref_primary_10_1016_j_ophtha_2023_08_023
crossref_primary_10_1038_s41380_022_01793_3
crossref_primary_10_1038_s41467_021_27598_6
crossref_primary_10_1016_j_neubiorev_2022_104733
crossref_primary_10_1038_s41380_022_01695_4
crossref_primary_10_1038_s41408_025_01351_4
crossref_primary_10_1016_j_biopsych_2024_01_001
crossref_primary_10_1016_j_jacc_2023_01_044
crossref_primary_10_1038_s10038_020_0750_x
crossref_primary_10_1038_s42003_019_0454_y
crossref_primary_10_1038_s41588_024_01951_z
crossref_primary_10_1007_s11657_025_01568_7
crossref_primary_10_1038_s41380_019_0457_6
crossref_primary_10_1038_s41437_024_00688_z
crossref_primary_10_1016_j_socscimed_2024_116633
crossref_primary_10_1038_s41380_022_01469_y
crossref_primary_10_1038_s41591_023_02374_9
crossref_primary_10_1146_annurev_biodatasci_111721_074830
crossref_primary_10_1002_gepi_70012
crossref_primary_10_1038_s41380_024_02446_3
crossref_primary_10_1186_s13059_021_02478_w
crossref_primary_10_1038_s44220_023_00034_y
crossref_primary_10_1177_1042258720936984
crossref_primary_10_1038_s41588_025_02094_5
crossref_primary_10_1038_s41591_022_02122_5
crossref_primary_10_1038_s41588_023_01323_z
crossref_primary_10_1161_ATVBAHA_121_317007
crossref_primary_10_3390_brainsci11081042
crossref_primary_10_1038_s41582_021_00592_8
crossref_primary_10_1186_s12916_021_01972_z
crossref_primary_10_1371_journal_pgen_1008725
crossref_primary_10_1038_s41467_023_36306_5
crossref_primary_10_1146_annurev_genom_121222_105817
crossref_primary_10_1126_science_abn8455
crossref_primary_10_1038_s41539_022_00148_5
crossref_primary_10_1111_psyp_13728
crossref_primary_10_3389_fgene_2021_665252
crossref_primary_10_1038_s41467_018_07863_x
crossref_primary_10_1038_s41467_018_04558_1
crossref_primary_10_1007_s00438_025_02263_5
crossref_primary_10_1038_s41562_018_0494_1
crossref_primary_10_1016_j_pnpbp_2023_110906
crossref_primary_10_1038_s41398_021_01530_4
crossref_primary_10_1186_s12864_020_06833_2
crossref_primary_10_1038_s41380_022_01709_1
crossref_primary_10_3389_fcvm_2021_676030
crossref_primary_10_1093_bib_bbaa103
crossref_primary_10_1016_j_labeco_2024_102544
crossref_primary_10_1186_s12916_024_03681_9
crossref_primary_10_1016_j_ajhg_2021_02_016
crossref_primary_10_1038_s41598_022_14924_1
crossref_primary_10_1038_s41398_019_0481_y
crossref_primary_10_1093_ibd_izad004
crossref_primary_10_1161_CIRCRESAHA_122_319950
crossref_primary_10_3233_JAD_201422
crossref_primary_10_1016_j_jpsychires_2021_11_040
crossref_primary_10_1016_j_pnpbp_2024_111183
crossref_primary_10_1038_s41562_023_01630_9
crossref_primary_10_1007_s00125_021_05491_7
crossref_primary_10_1017_S0033291724000771
crossref_primary_10_1186_s40169_020_00272_y
crossref_primary_10_1016_j_crmeth_2025_101115
crossref_primary_10_1093_nargab_lqaa003
crossref_primary_10_3390_cells9102257
crossref_primary_10_1186_s13040_024_00385_x
crossref_primary_10_1093_bib_bbad407
crossref_primary_10_1097_YPG_0000000000000234
crossref_primary_10_1161_CIRCEP_119_007549
crossref_primary_10_1016_j_jaac_2023_08_018
crossref_primary_10_1038_s41467_024_53687_3
crossref_primary_10_1177_17474930231155816
crossref_primary_10_1371_journal_pgen_1007739
crossref_primary_10_1093_hmg_ddab068
crossref_primary_10_1186_s12864_022_08898_7
crossref_primary_10_1080_19485565_2019_1681257
crossref_primary_10_2337_dc22_2373
crossref_primary_10_1038_s41431_019_0514_2
crossref_primary_10_1038_s42003_025_07481_6
crossref_primary_10_1038_s41467_025_59949_y
crossref_primary_10_1017_S0033291724001880
crossref_primary_10_1016_j_psychres_2022_114586
crossref_primary_10_1038_s41467_024_51075_5
crossref_primary_10_1186_s12916_022_02404_2
crossref_primary_10_1002_sim_8445
crossref_primary_10_1007_s00439_023_02573_x
crossref_primary_10_1038_s41598_025_91558_z
crossref_primary_10_1001_jamaophthalmol_2022_0891
crossref_primary_10_1038_s41467_022_35345_8
crossref_primary_10_1016_j_cmet_2021_01_001
crossref_primary_10_1093_ije_dyz160
crossref_primary_10_1176_appi_ajp_20240095
crossref_primary_10_7554_eLife_99210
crossref_primary_10_1038_s41380_023_02374_8
crossref_primary_10_1038_s41431_023_01463_0
crossref_primary_10_1038_s41467_020_16487_z
crossref_primary_10_3389_fendo_2025_1578944
crossref_primary_10_1073_pnas_1802909115
crossref_primary_10_1093_bib_bbaa442
crossref_primary_10_1002_ggn2_202200017
crossref_primary_10_1016_j_humimm_2025_111330
crossref_primary_10_1186_s40246_025_00789_8
crossref_primary_10_1007_s10519_025_10219_z
crossref_primary_10_3389_fgene_2021_627989
crossref_primary_10_1186_s12864_024_10536_3
crossref_primary_10_1016_j_ajo_2025_03_011
crossref_primary_10_1097_YPG_0000000000000335
crossref_primary_10_1038_s41562_020_00936_2
crossref_primary_10_1016_j_jtha_2023_11_027
crossref_primary_10_1038_s41467_025_55919_6
crossref_primary_10_1093_biostatistics_kxad001
crossref_primary_10_3390_nu15071625
crossref_primary_10_1017_S0033291719002502
crossref_primary_10_1016_j_cell_2019_11_020
crossref_primary_10_1038_s41467_020_17368_1
crossref_primary_10_1038_s41398_020_01195_5
crossref_primary_10_1016_j_heliyon_2023_e23677
crossref_primary_10_1038_s41591_023_02365_w
crossref_primary_10_1016_j_tig_2018_03_005
crossref_primary_10_3389_fendo_2020_00243
crossref_primary_10_3389_fcvm_2022_940696
crossref_primary_10_1080_20008066_2023_2178762
crossref_primary_10_3168_jds_2022_22694
crossref_primary_10_1007_s11427_020_1934_x
crossref_primary_10_1177_23780231231186072
crossref_primary_10_1017_S0033291725000352
crossref_primary_10_1093_bib_bbac600
crossref_primary_10_1016_j_jaci_2020_07_004
crossref_primary_10_3389_fgene_2025_1635378
crossref_primary_10_1136_thorax_2021_217703
crossref_primary_10_1681_ASN_0000000710
crossref_primary_10_1016_j_heliyon_2023_e19268
crossref_primary_10_1016_j_xhgg_2025_100457
crossref_primary_10_1038_s41398_020_00902_6
crossref_primary_10_3389_fimmu_2024_1442693
crossref_primary_10_1038_s41431_021_00911_z
crossref_primary_10_1177_17456916231178716
crossref_primary_10_1016_j_xhgg_2024_100290
crossref_primary_10_1038_s41380_020_0705_9
crossref_primary_10_3389_fgene_2022_906965
crossref_primary_10_1210_clinem_dgae169
crossref_primary_10_1016_j_biopsych_2023_11_025
crossref_primary_10_3389_fphar_2024_1418560
crossref_primary_10_1016_j_jad_2023_12_042
crossref_primary_10_1212_WNL_0000000000209666
crossref_primary_10_1038_s41467_019_10310_0
crossref_primary_10_1038_s41467_018_04930_1
crossref_primary_10_1007_s10067_025_07422_y
crossref_primary_10_1007_s00122_018_3236_x
crossref_primary_10_1038_s41588_018_0309_3
crossref_primary_10_1016_j_pnpbp_2024_110986
crossref_primary_10_1016_j_ajhg_2022_04_010
crossref_primary_10_1038_s41431_023_01389_7
crossref_primary_10_1038_s41588_020_0594_5
crossref_primary_10_1017_thg_2018_12
crossref_primary_10_3389_fnagi_2024_1358996
crossref_primary_10_1371_journal_pgen_1009025
crossref_primary_10_1016_j_biopsych_2022_05_029
crossref_primary_10_3389_fmed_2023_1152211
crossref_primary_10_1002_hbm_25712
crossref_primary_10_1167_iovs_63_1_25
crossref_primary_10_1038_s41386_022_01265_w
crossref_primary_10_1186_s13075_023_03082_y
crossref_primary_10_3390_genes14071355
crossref_primary_10_1093_biostatistics_kxae006
crossref_primary_10_1093_ije_dyab107
crossref_primary_10_1007_s11033_021_07050_0
crossref_primary_10_1016_j_jid_2021_08_440
crossref_primary_10_1016_j_ajhg_2022_04_003
crossref_primary_10_1038_s41380_023_02142_8
crossref_primary_10_1073_pnas_2202764119
crossref_primary_10_1038_s41588_025_02087_4
crossref_primary_10_1038_s10038_020_0814_y
crossref_primary_10_1186_s10194_021_01284_w
crossref_primary_10_3389_fimmu_2024_1425610
crossref_primary_10_1038_s41467_021_21286_1
crossref_primary_10_3389_fimmu_2023_1286491
crossref_primary_10_1093_g3journal_jkac261
crossref_primary_10_1134_S1022795419070111
crossref_primary_10_1007_s00438_025_02281_3
crossref_primary_10_1038_s41588_020_00762_2
crossref_primary_10_1016_S0140_6736_22_02609_5
crossref_primary_10_1038_s41467_024_55636_6
crossref_primary_10_1016_j_ajhg_2023_08_016
crossref_primary_10_1038_s41467_023_41271_0
crossref_primary_10_1186_s12870_021_03046_x
crossref_primary_10_1016_j_molp_2020_03_003
crossref_primary_10_1017_S0033291723001241
crossref_primary_10_2337_db22_0954
crossref_primary_10_1001_jamanetworkopen_2024_51341
crossref_primary_10_1016_j_ajhg_2023_06_006
crossref_primary_10_1016_j_patter_2025_101321
crossref_primary_10_1038_s41588_023_01522_8
crossref_primary_10_1186_s41043_025_01059_y
crossref_primary_10_3168_jds_2023_23252
crossref_primary_10_1007_s00403_024_03469_0
crossref_primary_10_3389_fimmu_2024_1409146
crossref_primary_10_1038_s41467_018_07524_z
crossref_primary_10_1534_genetics_120_303242
crossref_primary_10_1016_j_bbr_2024_115400
crossref_primary_10_1038_s41467_022_33626_w
crossref_primary_10_1038_s41598_018_37538_y
crossref_primary_10_1038_s41562_020_00980_y
crossref_primary_10_7554_eLife_99210_3
crossref_primary_10_1038_s41562_021_01119_3
crossref_primary_10_1186_s40246_024_00679_5
crossref_primary_10_1002_jbmr_3681
crossref_primary_10_1038_s41398_022_01874_5
crossref_primary_10_1038_s41398_021_01436_1
crossref_primary_10_1038_s41398_025_03243_4
crossref_primary_10_1093_ndt_gfae114
crossref_primary_10_1016_j_ajhg_2024_09_008
crossref_primary_10_1038_s41576_019_0137_z
crossref_primary_10_3389_fnut_2022_956900
crossref_primary_10_1038_s41467_024_52452_w
crossref_primary_10_1038_s41467_025_58248_w
crossref_primary_10_1371_journal_pgen_1009089
crossref_primary_10_1038_s41467_019_13585_5
crossref_primary_10_1016_j_drugalcdep_2021_108556
crossref_primary_10_1016_j_fmre_2024_05_004
crossref_primary_10_1038_s41467_025_60439_4
crossref_primary_10_1111_jth_15698
crossref_primary_10_1177_1744806919882139
crossref_primary_10_1038_s41467_022_34688_6
crossref_primary_10_1038_s41467_023_40330_w
crossref_primary_10_1093_brain_awz233
crossref_primary_10_1007_s10902_022_00548_9
crossref_primary_10_1007_s12072_023_10608_8
crossref_primary_10_1017_S095457942100081X
crossref_primary_10_1038_s41398_021_01480_x
crossref_primary_10_1016_j_jhepr_2024_101037
crossref_primary_10_1093_evolut_qpaf160
crossref_primary_10_1016_j_jhealeco_2022_102718
crossref_primary_10_1038_s42003_022_03554_y
crossref_primary_10_1007_s43657_022_00078_7
crossref_primary_10_1038_s41588_018_0307_5
crossref_primary_10_1038_s41467_020_20885_8
crossref_primary_10_1038_s41588_025_02260_9
crossref_primary_10_1093_jas_skae036
crossref_primary_10_1002_gepi_22148
crossref_primary_10_1016_j_isci_2023_108005
crossref_primary_10_1080_01621459_2020_1764849
crossref_primary_10_1038_s41467_025_61761_7
crossref_primary_10_1007_s10238_024_01299_y
crossref_primary_10_1038_s41380_021_01370_0
crossref_primary_10_1371_journal_pone_0260911
crossref_primary_10_1007_s10902_022_00538_x
crossref_primary_10_1186_s12864_023_09661_2
crossref_primary_10_1146_annurev_clinpsy_050817_084847
crossref_primary_10_1038_s41467_023_41315_5
crossref_primary_10_1038_s41591_023_02268_w
crossref_primary_10_3390_genes10050352
crossref_primary_10_1038_s41562_024_02080_7
crossref_primary_10_1111_jcpp_13611
crossref_primary_10_1038_s41588_021_00983_z
crossref_primary_10_1038_s41398_022_02193_5
crossref_primary_10_1017_S0033291723003732
crossref_primary_10_1038_s41467_020_16591_0
crossref_primary_10_1002_alz_14115
crossref_primary_10_1016_j_jad_2025_120306
crossref_primary_10_1186_s13059_024_03400_w
crossref_primary_10_1371_journal_pgen_1010447
crossref_primary_10_1093_brain_awab267
crossref_primary_10_1038_s41562_021_01182_w
crossref_primary_10_1007_s11920_019_1125_x
crossref_primary_10_1155_2024_5515448
crossref_primary_10_1146_annurev_vision_102122_103958
crossref_primary_10_1136_annrheumdis_2018_214877
crossref_primary_10_3324_haematol_2023_284579
crossref_primary_10_1016_j_ajhg_2022_01_009
crossref_primary_10_1017_S0033291723001423
crossref_primary_10_1002_ajmg_b_32652
crossref_primary_10_1093_hmg_ddaa115
crossref_primary_10_1038_s41467_023_36013_1
crossref_primary_10_1371_journal_pgen_1010557
crossref_primary_10_1038_s41586_022_05165_3
crossref_primary_10_1038_s41467_019_08535_0
crossref_primary_10_1126_science_aat7693
crossref_primary_10_1136_bmjmed_2021_000070
crossref_primary_10_1186_s12864_022_08555_z
crossref_primary_10_1016_j_mrrev_2024_108518
crossref_primary_10_1038_s41588_022_01057_4
crossref_primary_10_1016_j_jaac_2018_01_003
crossref_primary_10_1038_s41380_024_02878_x
crossref_primary_10_3390_app11156927
crossref_primary_10_3389_fgene_2019_00947
crossref_primary_10_1038_s41562_021_01094_9
crossref_primary_10_1093_eurjpc_zwad005
crossref_primary_10_1186_s13229_020_00407_5
crossref_primary_10_1371_journal_pgen_1011519
crossref_primary_10_1371_journal_pgen_1010786
crossref_primary_10_1038_s41467_025_60405_0
crossref_primary_10_1038_s41586_022_05275_y
crossref_primary_10_1038_s41598_023_30415_3
crossref_primary_10_1001_jamaophthalmol_2024_4856
crossref_primary_10_1038_s41398_024_03184_4
crossref_primary_10_1038_s41562_024_01885_w
crossref_primary_10_1186_s13059_021_02416_w
crossref_primary_10_1038_s41467_024_51795_8
crossref_primary_10_1038_s42003_019_0634_9
crossref_primary_10_1002_ajmg_b_32879
crossref_primary_10_1038_s41467_017_02769_6
crossref_primary_10_3389_fgene_2025_1597005
crossref_primary_10_1038_s41588_018_0320_8
crossref_primary_10_1186_s12859_023_05505_8
crossref_primary_10_1038_s41467_023_44541_z
crossref_primary_10_1016_j_csbj_2024_08_027
crossref_primary_10_1038_s41588_020_0613_6
crossref_primary_10_1146_annurev_med_042921_112629
crossref_primary_10_1002_ajmg_b_32874
crossref_primary_10_1016_j_ajhg_2019_10_001
crossref_primary_10_1038_s41467_021_22334_6
crossref_primary_10_1038_s41398_023_02367_9
crossref_primary_10_1038_s41588_024_01793_9
crossref_primary_10_1186_s10194_018_0956_x
crossref_primary_10_1038_s41467_022_35328_9
crossref_primary_10_1038_s41588_018_0147_3
crossref_primary_10_2147_NDT_S527897
crossref_primary_10_1016_j_ssmmh_2021_100044
crossref_primary_10_1017_S0033291725000856
crossref_primary_10_1073_pnas_2119675119
crossref_primary_10_3389_fgene_2023_1191264
crossref_primary_10_1038_s41467_022_32219_x
crossref_primary_10_1016_j_mayocp_2025_04_030
crossref_primary_10_1016_j_xcrm_2025_102119
crossref_primary_10_1186_s12864_024_10787_0
crossref_primary_10_1016_j_ajhg_2024_06_010
crossref_primary_10_1186_s12711_024_00920_8
crossref_primary_10_1093_nargab_lqaf118
crossref_primary_10_1161_CIRCGEN_121_003460
crossref_primary_10_1016_j_biopsycho_2023_108692
crossref_primary_10_1371_journal_pgen_1009021
crossref_primary_10_1038_s41588_022_01165_1
crossref_primary_10_1038_s41598_024_63566_y
crossref_primary_10_1186_s40478_020_01072_8
crossref_primary_10_1155_2021_8812282
crossref_primary_10_1038_s41386_021_01023_4
crossref_primary_10_1002_gepi_22330
crossref_primary_10_1002_jmv_28780
crossref_primary_10_1002_oby_23669
crossref_primary_10_1016_j_jid_2024_02_019
crossref_primary_10_1002_gepi_22202
crossref_primary_10_1007_s11920_019_1002_7
crossref_primary_10_1186_s12876_025_04162_w
crossref_primary_10_1093_bib_bbad181
crossref_primary_10_1016_j_ebiom_2023_104647
crossref_primary_10_3390_cells12020245
crossref_primary_10_1038_s41380_020_0777_6
crossref_primary_10_1162_nol_a_00162
crossref_primary_10_1002_gepi_22449
crossref_primary_10_1016_j_biopsycho_2022_108463
crossref_primary_10_1038_s41588_023_01428_5
crossref_primary_10_1093_bib_bbae272
crossref_primary_10_1371_journal_pgen_1009497
crossref_primary_10_1093_eurjpc_zwae347
crossref_primary_10_1371_journal_pgen_1011322
crossref_primary_10_1177_08902070221134878
crossref_primary_10_1038_s41398_023_02409_2
crossref_primary_10_1016_S1474_4422_21_00031_4
crossref_primary_10_1038_s41562_022_01343_5
crossref_primary_10_12688_f1000research_53962_1
crossref_primary_10_1016_j_isci_2025_113226
crossref_primary_10_1038_s41467_024_49031_4
crossref_primary_10_1038_s41588_024_01934_0
crossref_primary_10_1017_thg_2018_46
crossref_primary_10_1073_pnas_2114271119
crossref_primary_10_1371_journal_pgen_1009363
crossref_primary_10_3389_fgene_2020_00437
crossref_primary_10_1371_journal_pgen_1010587
crossref_primary_10_1038_s41588_022_01199_5
crossref_primary_10_3390_biomedicines12112562
crossref_primary_10_1186_s12916_022_02476_0
crossref_primary_10_1371_journal_pgen_1011553
crossref_primary_10_3389_fnut_2025_1468457
crossref_primary_10_1002_sim_10081
crossref_primary_10_1186_s40104_023_00864_x
crossref_primary_10_3389_fgene_2025_1590652
crossref_primary_10_1016_j_ebiom_2023_104551
crossref_primary_10_1038_s41588_023_01559_9
crossref_primary_10_1038_s41588_025_02189_z
crossref_primary_10_1038_s41588_019_0344_8
crossref_primary_10_1002_gepi_22424
crossref_primary_10_1038_s41380_024_02617_2
crossref_primary_10_1161_STROKEAHA_120_032619
crossref_primary_10_3389_fimmu_2024_1328297
crossref_primary_10_1017_thg_2018_55
crossref_primary_10_1038_s41596_020_0353_1
crossref_primary_10_1093_nargab_lqad065
crossref_primary_10_3389_fgene_2019_00733
crossref_primary_10_1038_s41467_023_44047_8
crossref_primary_10_3389_fgene_2020_608630
crossref_primary_10_1038_s41588_021_00787_1
crossref_primary_10_1007_s00439_021_02312_0
crossref_primary_10_1016_j_biopsych_2021_09_020
crossref_primary_10_3389_fgene_2020_00431
crossref_primary_10_1016_j_plantsci_2024_112110
crossref_primary_10_1038_s41467_024_54301_2
crossref_primary_10_1038_s42003_023_05413_w
crossref_primary_10_1002_jmv_28570
crossref_primary_10_1007_s00223_024_01312_2
crossref_primary_10_1017_S0033291721000441
crossref_primary_10_1161_CIRCHEARTFAILURE_122_010438
crossref_primary_10_1038_s41380_021_01300_0
crossref_primary_10_1093_schbul_sbae145
crossref_primary_10_3390_genes15070939
crossref_primary_10_1038_s41598_019_41850_6
crossref_primary_10_1186_s12916_022_02279_3
crossref_primary_10_1177_0271678X251362977
crossref_primary_10_3389_fimmu_2022_889296
crossref_primary_10_1007_s40142_019_0158_0
crossref_primary_10_1038_s43588_025_00852_3
crossref_primary_10_2147_NSS_S459136
crossref_primary_10_1186_s40246_024_00627_3
crossref_primary_10_1002_ana_26332
crossref_primary_10_1017_thg_2024_23
crossref_primary_10_1038_s41431_021_00885_y
crossref_primary_10_1001_jamaophthalmol_2019_4421
crossref_primary_10_1016_j_neubiorev_2023_105036
crossref_primary_10_1093_plcell_koab134
crossref_primary_10_3389_fimmu_2023_1184958
crossref_primary_10_1177_0963721418807729
crossref_primary_10_1093_hmg_ddy082
crossref_primary_10_1038_s41386_020_00795_5
crossref_primary_10_3389_fnagi_2024_1466799
crossref_primary_10_1016_j_survophthal_2019_06_002
crossref_primary_10_1126_science_aax3710
crossref_primary_10_1038_s41598_025_07100_8
crossref_primary_10_1016_j_ajhg_2020_11_017
crossref_primary_10_1038_s42003_024_05874_7
crossref_primary_10_3390_jcm12010109
crossref_primary_10_1016_j_ajo_2024_05_009
crossref_primary_10_1016_j_ibneur_2023_03_011
crossref_primary_10_1161_JAHA_123_030935
crossref_primary_10_1007_s00125_025_06403_9
crossref_primary_10_1007_s00439_019_02060_2
crossref_primary_10_1038_s41467_020_14451_5
crossref_primary_10_1186_s12967_024_05604_x
crossref_primary_10_1111_add_16229
crossref_primary_10_1007_s11886_025_02239_2
crossref_primary_10_1186_s12859_021_03959_2
crossref_primary_10_3390_ijms241914449
crossref_primary_10_1007_s11096_025_01952_w
crossref_primary_10_1016_j_jad_2025_119731
crossref_primary_10_1038_s41380_019_0394_4
crossref_primary_10_1093_bib_bbaf350
crossref_primary_10_1038_s10038_023_01151_3
crossref_primary_10_1111_bjd_18700
crossref_primary_10_1016_j_jad_2025_03_002
crossref_primary_10_1371_journal_pgen_1009713
crossref_primary_10_1016_j_neubiorev_2020_06_020
crossref_primary_10_1534_genetics_120_303096
crossref_primary_10_1038_s41467_024_53495_9
crossref_primary_10_1186_s12864_020_07341_z
crossref_primary_10_1111_gbb_12694
crossref_primary_10_1161_CIRCRESAHA_119_316479
crossref_primary_10_3389_fendo_2022_1016373
crossref_primary_10_1093_bfgp_elaf013
crossref_primary_10_1111_ceo_14500
crossref_primary_10_1093_hmg_ddz187
crossref_primary_10_1016_j_jad_2024_01_106
crossref_primary_10_1093_hmg_ddz193
crossref_primary_10_3390_genes14020482
crossref_primary_10_1016_j_biopsych_2022_07_019
crossref_primary_10_1016_j_inffus_2024_102738
crossref_primary_10_1038_s41562_021_01135_3
crossref_primary_10_3390_genes13010106
crossref_primary_10_3390_genes13101694
crossref_primary_10_3390_genes13122255
crossref_primary_10_1016_j_heliyon_2023_e20754
crossref_primary_10_1093_bib_bbad470
crossref_primary_10_1186_s12916_025_04205_9
crossref_primary_10_1002_mds_29572
crossref_primary_10_1002_gepi_22612
crossref_primary_10_1016_j_ajhg_2020_12_006
crossref_primary_10_1016_j_heliyon_2024_e30718
crossref_primary_10_1038_s41398_021_01354_2
crossref_primary_10_1038_s41380_018_0313_0
crossref_primary_10_1038_s42003_019_0537_9
crossref_primary_10_1038_s41380_023_02104_0
crossref_primary_10_1186_s12859_022_05034_w
crossref_primary_10_1186_s13058_022_01570_8
crossref_primary_10_1038_s41467_024_53452_6
crossref_primary_10_1053_j_gastro_2020_12_011
crossref_primary_10_1371_journal_pgen_1010762
crossref_primary_10_1186_s12864_018_5058_2
crossref_primary_10_1038_s41467_020_15932_3
crossref_primary_10_1093_humrep_deaf062
crossref_primary_10_1016_j_bbi_2023_08_003
crossref_primary_10_1038_s10038_021_00980_4
crossref_primary_10_1038_s41386_021_01044_z
crossref_primary_10_1038_s41398_019_0497_3
crossref_primary_10_1038_s41593_020_0643_5
crossref_primary_10_1038_s41467_019_09718_5
crossref_primary_10_1038_s41588_019_0556_y
crossref_primary_10_1016_j_isci_2023_107854
crossref_primary_10_1038_s41562_020_0862_5
crossref_primary_10_1093_hmg_ddab126
crossref_primary_10_1093_hmg_ddz121
crossref_primary_10_1038_s41562_019_0566_x
crossref_primary_10_1038_s41588_018_0269_7
crossref_primary_10_1534_genetics_119_301859
crossref_primary_10_5534_wjmh_240062
crossref_primary_10_1017_thg_2019_90
crossref_primary_10_1096_fj_202402489R
crossref_primary_10_1016_j_evolhumbehav_2021_08_001
crossref_primary_10_1016_j_envint_2023_108396
crossref_primary_10_3389_fgene_2022_838518
crossref_primary_10_1002_bies_202100109
crossref_primary_10_1038_s42003_023_04805_2
crossref_primary_10_1111_gbb_12644
crossref_primary_10_1186_s12888_024_06392_w
crossref_primary_10_1038_s41467_021_25768_0
crossref_primary_10_1038_s41598_021_82781_5
crossref_primary_10_1038_s41380_024_02771_7
crossref_primary_10_1038_s41467_021_25723_z
crossref_primary_10_1038_s41598_022_11341_2
crossref_primary_10_1176_appi_ajp_21111113
crossref_primary_10_1146_annurev_genom_120219_074937
crossref_primary_10_1161_CIRCRESAHA_119_315179
crossref_primary_10_1016_j_biopsych_2019_10_015
crossref_primary_10_1016_j_sleep_2021_08_025
crossref_primary_10_1038_s41398_020_00930_2
crossref_primary_10_1002_oby_24333
crossref_primary_10_1186_s12864_023_09295_4
crossref_primary_10_1007_s11357_024_01481_w
crossref_primary_10_1136_jmedgenet_2018_105437
crossref_primary_10_1038_s42003_020_0823_6
crossref_primary_10_1038_s41598_023_45102_6
crossref_primary_10_1016_j_copsyc_2018_07_012
crossref_primary_10_1001_jamaophthalmol_2020_5404
crossref_primary_10_1016_j_csbj_2021_10_019
crossref_primary_10_1038_s41588_023_01485_w
crossref_primary_10_1017_neu_2023_32
crossref_primary_10_1212_NXG_0000000000000653
crossref_primary_10_1038_s42003_025_07875_6
crossref_primary_10_1016_j_neurobiolaging_2023_09_017
crossref_primary_10_1038_s41380_021_01027_y
crossref_primary_10_1016_j_ijcrp_2025_200514
crossref_primary_10_1016_j_ajhg_2021_08_004
crossref_primary_10_1038_s41386_021_01209_w
crossref_primary_10_1016_j_ebiom_2024_105530
crossref_primary_10_1038_s41467_024_52129_4
crossref_primary_10_1093_bib_bbae327
crossref_primary_10_1002_wcs_1528
crossref_primary_10_1186_s12967_023_04107_5
crossref_primary_10_1016_j_ajhg_2024_04_009
crossref_primary_10_1038_s41598_025_90443_z
crossref_primary_10_3389_fimmu_2024_1417899
Cites_doi 10.1371/journal.pone.0095923
10.1038/ng.3406
10.1371/journal.pgen.1004198
10.1038/srep38837
10.1038/nature20566
10.1016/j.ajhg.2015.09.001
10.1371/journal.pgen.1006836
10.1038/ncomms6890
10.1038/ng.3552
10.1124/pr.109.002451
10.1038/nrg3457
10.1038/srep42091
10.1371/journal.pone.0003395
10.1001/jamapsychiatry.2015.0554
10.1038/ejhg.2011.39
10.1038/ng.3623
10.1534/genetics.115.183269
10.1126/science.1136800
10.1016/j.ajhg.2014.11.011
10.1016/j.ajhg.2010.11.011
10.1038/nrg.2016.142
10.1038/ng.3211
10.1093/ije/dyu067
10.1016/j.ajhg.2014.12.006
10.1038/mp.2012.21
10.1016/j.neuron.2012.06.012
10.1038/mp.2016.49
10.1101/115915
10.1093/bioinformatics/btw613
10.1101/119164
ContentType Journal Article
Contributor Shringarpure, Suyash
Elson, Sarah L
Hinds, David A
Auton, Adam
Bell, Robert K
Shelton, Janie F
Litterman, Nadia K
Tian, Chao
McIntyre, Matthew H
Northover, Carrie A M
Hromatka, Bethann S
Bryc, Katarzyna
Agee, Michelle
Huber, Karen E
Pitts, Steven J
Kleinman, Aaron
Alipanahi, Babak
Wilson, Catherine H
Vacic, Vladimir
Furlotte, Nicholas A
Mountain, Joanna L
Sazonova, Olga V
Tung, Joyce Y
Sathirapongsasuti, J Fah
Fontanillas, Pierre
Contributor_xml – sequence: 1
  givenname: Michelle
  surname: Agee
  fullname: Agee, Michelle
– sequence: 2
  givenname: Babak
  surname: Alipanahi
  fullname: Alipanahi, Babak
– sequence: 3
  givenname: Adam
  surname: Auton
  fullname: Auton, Adam
– sequence: 4
  givenname: Robert K
  surname: Bell
  fullname: Bell, Robert K
– sequence: 5
  givenname: Katarzyna
  surname: Bryc
  fullname: Bryc, Katarzyna
– sequence: 6
  givenname: Sarah L
  surname: Elson
  fullname: Elson, Sarah L
– sequence: 7
  givenname: Pierre
  surname: Fontanillas
  fullname: Fontanillas, Pierre
– sequence: 8
  givenname: Nicholas A
  surname: Furlotte
  fullname: Furlotte, Nicholas A
– sequence: 9
  givenname: David A
  surname: Hinds
  fullname: Hinds, David A
– sequence: 10
  givenname: Bethann S
  surname: Hromatka
  fullname: Hromatka, Bethann S
– sequence: 11
  givenname: Karen E
  surname: Huber
  fullname: Huber, Karen E
– sequence: 12
  givenname: Aaron
  surname: Kleinman
  fullname: Kleinman, Aaron
– sequence: 13
  givenname: Nadia K
  surname: Litterman
  fullname: Litterman, Nadia K
– sequence: 14
  givenname: Matthew H
  surname: McIntyre
  fullname: McIntyre, Matthew H
– sequence: 15
  givenname: Joanna L
  surname: Mountain
  fullname: Mountain, Joanna L
– sequence: 16
  givenname: Carrie A M
  surname: Northover
  fullname: Northover, Carrie A M
– sequence: 17
  givenname: J Fah
  surname: Sathirapongsasuti
  fullname: Sathirapongsasuti, J Fah
– sequence: 18
  givenname: Olga V
  surname: Sazonova
  fullname: Sazonova, Olga V
– sequence: 19
  givenname: Janie F
  surname: Shelton
  fullname: Shelton, Janie F
– sequence: 20
  givenname: Suyash
  surname: Shringarpure
  fullname: Shringarpure, Suyash
– sequence: 21
  givenname: Chao
  surname: Tian
  fullname: Tian, Chao
– sequence: 22
  givenname: Joyce Y
  surname: Tung
  fullname: Tung, Joyce Y
– sequence: 23
  givenname: Vladimir
  surname: Vacic
  fullname: Vacic, Vladimir
– sequence: 24
  givenname: Catherine H
  surname: Wilson
  fullname: Wilson, Catherine H
– sequence: 25
  givenname: Steven J
  surname: Pitts
  fullname: Pitts, Steven J
Copyright The Author(s) 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Feb 2018
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 2018
CorporateAuthor 23andMe Research Team
Social Science Genetic Association Consortium
CorporateAuthor_xml – name: 23andMe Research Team
– name: Social Science Genetic Association Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTPV
AOWAS
DF2
DOI 10.1038/s41588-017-0009-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList




MEDLINE
MEDLINE - Academic

Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Statistics
EISSN 1546-1718
EndPage 237
ExternalDocumentID oai_swepub_ki_se_491565
oai_hhs_se_1155030840006056
oai_DiVA_org_uu_347099
PMC5805593
A573089502
29292387
10_1038_s41588_017_0009_4
Genre Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH101244
– fundername: NICHD NIH HHS
  grantid: R01 HD073342
– fundername: NIA NIH HHS
  grantid: P30 AG034532
– fundername: European Research Council
  grantid: 647648
– fundername: NIA NIH HHS
  grantid: T32 AG000186
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: NIA NIH HHS
  grantid: R01 AG042568
– fundername: Medical Research Council
  grantid: G1001799
– fundername: Medical Research Council
  grantid: MR/N01104X/2
– fundername: NIA NIH HHS
  grantid: P30 AG012810
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ACSTC
AETEA
AFANA
AFFHD
AGSTI
AIEIU
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c788t-a1aae9b0151958ad4207594ce9dfd105614646b4500b1da4cc751edbb35e14f03
IEDL.DBID M7P
ISICitedReferencesCount 705
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424519200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-4036
1546-1718
IngestDate Tue Nov 25 03:32:01 EST 2025
Tue Nov 04 16:47:30 EST 2025
Tue Nov 04 17:02:07 EST 2025
Tue Nov 04 01:59:03 EST 2025
Thu Sep 04 16:03:09 EDT 2025
Fri Oct 03 11:01:45 EDT 2025
Sat Nov 29 13:30:44 EST 2025
Sat Nov 29 10:25:15 EST 2025
Wed Nov 26 10:40:21 EST 2025
Wed Nov 26 10:05:51 EST 2025
Mon Jul 21 06:05:32 EDT 2025
Sat Nov 29 03:07:09 EST 2025
Tue Nov 18 21:18:34 EST 2025
Fri Feb 21 02:39:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c788t-a1aae9b0151958ad4207594ce9dfd105614646b4500b1da4cc751edbb35e14f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
A list of members of the Social Science Genetic Association Consortium can be found in section 10 of Supplementary Note.
A list of members of the 23andMe Research Team can be found at the end the paper.
CONTRIBUTOR LIST FOR THE 23andMe RESEARCH TEAM: Michelle Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson, Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Bethann S. Hromatka, Karen E. Huber, Aaron Kleinman, Nadia K. Litterman, Matthew H. McIntyre, Joanna L. Mountain, Carrie A.M. Northover, J. Fah Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao Tian, Joyce Y. Tung, Vladimir Vacic, Catherine H. Wilson, and Steven J. Pitts.
These authors contributed equally
ORCID 0000-0002-7315-7899
0000-0001-8422-6530
0000-0002-2642-5416
0000-0002-3108-7087
0000-0001-8759-6393
0000-0002-2143-8760
0000-0001-6547-5128
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5805593
PMID 29292387
PQID 2133372884
PQPubID 33429
PageCount 9
ParticipantIDs swepub_primary_oai_swepub_ki_se_491565
swepub_primary_oai_hhs_se_1155030840006056
swepub_primary_oai_DiVA_org_uu_347099
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805593
proquest_miscellaneous_1983854802
proquest_journals_2133372884
gale_infotracmisc_A573089502
gale_infotracacademiconefile_A573089502
gale_incontextgauss_ISR_A573089502
gale_incontextgauss_IOV_A573089502
pubmed_primary_29292387
crossref_primary_10_1038_s41588_017_0009_4
crossref_citationtrail_10_1038_s41588_017_0009_4
springer_journals_10_1038_s41588_017_0009_4
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2018
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Yang, Lee, Goddard, Visscher (CR21) 2011; 88
Wray (CR29) 2013; 14
Bulik-Sullivan (CR6) 2015; 47
Galesloot, van Steen, Kiemeney, Janss, Vermeulen (CR1) 2014; 9
Porter, O’Reilly (CR2) 2017; 7
Wientjes, Bijma, Veerkamp, Calus (CR24) 2016; 202
Hu (CR4) 2017; 13
Traynelis (CR19) 2010; 62
Pasaniuc, Price (CR30) 2017; 18
Vilhjálmsson (CR22) 2015; 97
Bolormaa (CR12) 2014; 10
Pin, Bettler (CR18) 2016; 540
Okbay (CR11) 2016; 48
Zhu (CR13) 2015; 96
Lee, Weerasinghe, Wray, Goddard, van der Werf (CR26) 2017; 7
Smith (CR10) 2016; 21
Frey, Dueck (CR16) 2007; 315
CR5
Bulik-Sullivan (CR14) 2015; 47
Pers (CR15) 2015; 6
Maier (CR3) 2015; 96
Hyde (CR7) 2016; 48
CR25
de Moor (CR9) 2015; 72
Daetwyler, Villanueva, Woolliams (CR28) 2008; 3
Ripke (CR8) 2013; 18
Südhof (CR17) 2012; 75
Zheng (CR20) 2017; 33
Yang (CR23) 2011; 19
Sonnega (CR27) 2014; 43
HF Porter (9_CR2) 2017; 7
MHM Moor de (9_CR9) 2015; 72
S Ripke (9_CR8) 2013; 18
HD Daetwyler (9_CR28) 2008; 3
J Zheng (9_CR20) 2017; 33
DJ Smith (9_CR10) 2016; 21
CL Hyde (9_CR7) 2016; 48
BJ Frey (9_CR16) 2007; 315
J Yang (9_CR21) 2011; 88
NR Wray (9_CR29) 2013; 14
J Yang (9_CR23) 2011; 19
A Sonnega (9_CR27) 2014; 43
B Bulik-Sullivan (9_CR6) 2015; 47
TE Galesloot (9_CR1) 2014; 9
X Zhu (9_CR13) 2015; 96
SF Traynelis (9_CR19) 2010; 62
J-P Pin (9_CR18) 2016; 540
R Maier (9_CR3) 2015; 96
9_CR25
SH Lee (9_CR26) 2017; 7
TH Pers (9_CR15) 2015; 6
A Okbay (9_CR11) 2016; 48
Y Hu (9_CR4) 2017; 13
BJ Vilhjálmsson (9_CR22) 2015; 97
9_CR5
S Bolormaa (9_CR12) 2014; 10
B Pasaniuc (9_CR30) 2017; 18
YCJ Wientjes (9_CR24) 2016; 202
TC Südhof (9_CR17) 2012; 75
BK Bulik-Sullivan (9_CR14) 2015; 47
31147634 - Nat Genet. 2019 Jul;51(7):1190. doi: 10.1038/s41588-019-0444-5.
31239548 - Nat Genet. 2019 Aug;51(8):1295. doi: 10.1038/s41588-019-0469-9.
References_xml – volume: 9
  year: 2014
  ident: CR1
  article-title: A comparison of multivariate genome-wide association methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0095923
– volume: 47
  start-page: 1236
  year: 2015
  end-page: 1241
  ident: CR6
  article-title: An atlas of genetic correlations across human diseases and traits
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– volume: 10
  year: 2014
  ident: CR12
  article-title: A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004198
– volume: 7
  year: 2017
  ident: CR2
  article-title: Multivariate simulation framework reveals performance of multi-trait GWAS methods
  publication-title: Sci. Rep.
  doi: 10.1038/srep38837
– volume: 540
  start-page: 60
  year: 2016
  end-page: 68
  ident: CR18
  article-title: Organization and functions of mGlu and GABA receptor complexes
  publication-title: Nature
  doi: 10.1038/nature20566
– volume: 97
  start-page: 576
  year: 2015
  end-page: 592
  ident: CR22
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.09.001
– volume: 13
  year: 2017
  ident: CR4
  article-title: Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006836
– volume: 6
  year: 2015
  ident: CR15
  article-title: Biological interpretation of genome-wide association studies using predicted gene functions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6890
– volume: 48
  start-page: 624
  year: 2016
  end-page: 633
  ident: CR11
  article-title: Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3552
– volume: 62
  start-page: 405
  year: 2010
  end-page: 496
  ident: CR19
  article-title: Glutamate receptor ion channels: structure, regulation, and function
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.109.002451
– volume: 33
  start-page: 272
  year: 2017
  end-page: 279
  ident: CR20
  article-title: LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
  publication-title: Bioinformatics
– ident: CR25
– volume: 14
  start-page: 507
  year: 2013
  end-page: 515
  ident: CR29
  article-title: Pitfalls of predicting complex traits from SNPs
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3457
– volume: 7
  year: 2017
  ident: CR26
  article-title: Using information of relatives in genomic prediction to apply effective stratified medicine
  publication-title: Sci. Rep.
  doi: 10.1038/srep42091
– volume: 3
  year: 2008
  ident: CR28
  article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003395
– volume: 72
  start-page: 642
  year: 2015
  end-page: 650
  ident: CR9
  article-title: Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0554
– volume: 19
  start-page: 807
  year: 2011
  end-page: 812
  ident: CR23
  article-title: Genomic inflation factors under polygenic inheritance
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2011.39
– volume: 48
  start-page: 1031
  year: 2016
  end-page: 1036
  ident: CR7
  article-title: Identification of 15 genetic loci associated with risk of major depression in individuals of European descent
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3623
– volume: 202
  start-page: 799
  year: 2016
  end-page: 823
  ident: CR24
  article-title: An equation to predict the accuracy of genomic values by combining data from multiple traits, populations, or environments
  publication-title: Genetics
  doi: 10.1534/genetics.115.183269
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: CR16
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 96
  start-page: 21
  year: 2015
  end-page: 36
  ident: CR13
  article-title: Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.11.011
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: CR21
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 18
  start-page: 117
  year: 2017
  end-page: 127
  ident: CR30
  article-title: Dissecting the genetics of complex traits using summary association statistics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.142
– volume: 47
  start-page: 291
  year: 2015
  end-page: 295
  ident: CR14
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 43
  start-page: 576
  year: 2014
  end-page: 585
  ident: CR27
  article-title: Cohort profile: the Health and Retirement Study (HRS)
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyu067
– volume: 96
  start-page: 283
  year: 2015
  end-page: 294
  ident: CR3
  article-title: Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.12.006
– ident: CR5
– volume: 18
  start-page: 497
  year: 2013
  end-page: 511
  ident: CR8
  article-title: A mega-analysis of genome-wide association studies for major depressive disorder
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.21
– volume: 75
  start-page: 11
  year: 2012
  end-page: 25
  ident: CR17
  article-title: The presynaptic active zone
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.012
– volume: 21
  start-page: 749
  year: 2016
  end-page: 757
  ident: CR10
  article-title: Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.49
– volume: 43
  start-page: 576
  year: 2014
  ident: 9_CR27
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyu067
– volume: 19
  start-page: 807
  year: 2011
  ident: 9_CR23
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2011.39
– volume: 202
  start-page: 799
  year: 2016
  ident: 9_CR24
  publication-title: Genetics
  doi: 10.1534/genetics.115.183269
– volume: 48
  start-page: 1031
  year: 2016
  ident: 9_CR7
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3623
– volume: 3
  year: 2008
  ident: 9_CR28
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003395
– ident: 9_CR5
  doi: 10.1101/115915
– volume: 88
  start-page: 76
  year: 2011
  ident: 9_CR21
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 13
  year: 2017
  ident: 9_CR4
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006836
– volume: 315
  start-page: 972
  year: 2007
  ident: 9_CR16
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 48
  start-page: 624
  year: 2016
  ident: 9_CR11
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3552
– volume: 33
  start-page: 272
  year: 2017
  ident: 9_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw613
– volume: 18
  start-page: 117
  year: 2017
  ident: 9_CR30
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.142
– volume: 6
  year: 2015
  ident: 9_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6890
– volume: 7
  year: 2017
  ident: 9_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/srep38837
– volume: 96
  start-page: 283
  year: 2015
  ident: 9_CR3
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.12.006
– volume: 47
  start-page: 1236
  year: 2015
  ident: 9_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– volume: 75
  start-page: 11
  year: 2012
  ident: 9_CR17
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.012
– volume: 47
  start-page: 291
  year: 2015
  ident: 9_CR14
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 72
  start-page: 642
  year: 2015
  ident: 9_CR9
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0554
– volume: 18
  start-page: 497
  year: 2013
  ident: 9_CR8
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.21
– ident: 9_CR25
  doi: 10.1101/119164
– volume: 14
  start-page: 507
  year: 2013
  ident: 9_CR29
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3457
– volume: 7
  year: 2017
  ident: 9_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/srep42091
– volume: 21
  start-page: 749
  year: 2016
  ident: 9_CR10
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.49
– volume: 540
  start-page: 60
  year: 2016
  ident: 9_CR18
  publication-title: Nature
  doi: 10.1038/nature20566
– volume: 10
  year: 2014
  ident: 9_CR12
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004198
– volume: 97
  start-page: 576
  year: 2015
  ident: 9_CR22
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.09.001
– volume: 9
  year: 2014
  ident: 9_CR1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0095923
– volume: 96
  start-page: 21
  year: 2015
  ident: 9_CR13
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.11.011
– volume: 62
  start-page: 405
  year: 2010
  ident: 9_CR19
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.109.002451
– reference: 31147634 - Nat Genet. 2019 Jul;51(7):1190. doi: 10.1038/s41588-019-0444-5.
– reference: 31239548 - Nat Genet. 2019 Aug;51(8):1295. doi: 10.1038/s41588-019-0469-9.
SSID ssj0014408
Score 2.6984117
Snippet We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different...
We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of summary statistics from GWASs of different traits, possibly from overlapping...
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 229
SubjectTerms 631/208/205/2138
631/208/212
631/378
Accuracy
Agriculture
Algorithms
Animal Genetics and Genomics
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Comparative analysis
Computational biology
Data Interpretation, Statistical
Datasets as Topic - statistics & numerical data
Depression - epidemiology
Depression - genetics
Diagnostic Self Evaluation
Economic models
Gene Function
Genetic aspects
Genetic Association Studies - methods
Genetic Association Studies - statistics & numerical data
Genome-wide association studies
Genome-Wide Association Study - methods
Genome-Wide Association Study - statistics & numerical data
Genomes
Genomics
Health - statistics & numerical data
Human Genetics
Humans
Loci
Mental depression
Meta-analysis
Meta-Analysis as Topic
Multifactorial Inheritance
Neurosis
Neuroticism
Phenotype
Polygenic inheritance
Polymorphism, Single Nucleotide
Psychological factors
Quantitative Trait Loci - genetics
Statistical analysis
Statistical methods
Statistics
Well being
Title Multi-trait analysis of genome-wide association summary statistics using MTAG
URI https://link.springer.com/article/10.1038/s41588-017-0009-4
https://www.ncbi.nlm.nih.gov/pubmed/29292387
https://www.proquest.com/docview/2133372884
https://www.proquest.com/docview/1983854802
https://pubmed.ncbi.nlm.nih.gov/PMC5805593
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347099
https://research.hhs.se/esploro/outputs/journalArticle/Multi-trait-analysis-of-genome-wide-association-summary/991001480485506056
http://kipublications.ki.se/Default.aspx?queryparsed=id:137625690
Volume 50
WOSCitedRecordID wos000424519200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: M7P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: 8C1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1546-1718
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBtJe-BhfgVEFxIcEipbETmI_oTI24KFdNcbUN8txkrYCktG0IP577hw3JdXYCy-RWp-T2Hc-3-XOvyPkucoSzeNEeYFizGO8CL1UUwGXUAR5FrM0ZabYRDIc8vFYjOwHt9qmVa50olHUWaXxG_lBCM4UTULO2duLHx5WjcLoqi2hsUV2ECWBmtS9URtFwGrKJtoZo59E41VUk_KDGjYujmlcCZ6rFh7r7Eub2vmv7WkzdbKNn25gjZr96fjW_47sNrlpLVO334jSHXItL_fIjaZW5e89sotmaYPqfJcMzLldD-tLLFxlcU3cqnAR8vV77v2aZbmr1px37Rk5t25v4mLG_cQdnPU_3CNfjo_ODj96tjCDp8FjXngqUCoXKVgSCFWjMhaC4SGYzkVWZIEBF41ZnLLI99MgU0zrJALGpymN8oAVPr1PtsuqzB8S1y90EWsmFKOapYg2x1WYCxZmoIXDMHWIv2KL1Ba1HAf3TZroOeWy4aQETmIgXUjmkNdtl4sGsuMq4mfIa4lQGCXm2kzUsq7lp5Nz2Y9A-3ER-eG_iD6fdoheWaKigjfUyp5vgHEixFaHcr9DCQtad5tXciKtQqnlWkgc8rRtxp6YJFfm1bKWgeCUI34f3OJBI6btBIRgBoN1ljgk6QhwS4Aw492WcjY1cOMR98HtpA55sxL19WtdMa8vmtXQecD72XlfVvOJXC4lZQl4J8CsS-im01rWOXin4D_DrDADGxTFDnl5CbH96-sMuzARgIvy6OopfEx2we7lTfL9PtlezJf5E3Jd_4QVMO-RrWScmCuHKz8MemTn3dFwdAq_BuFJz-iYP13ne0M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGALEXLuMWGBAQAwkULXGcxH5AqGKMVVvHBGXam3Ecp62AZjQt0_4Uv5FzciupRt_2wEsfmmPXds61Puc7hDxXSaR5GCnHU4w5jKfUibUv4IMKzyQhi2NWNJuIDg748bE4XCG_61oYTKusdWKhqJNM43_kWxSCKT-inLO3Jz8d7BqFt6t1C42SLfbM2SmEbPmb7ja8301Kd9733-06VVcBR0O4N3WUp5QRMZhBxFlRCaNgNQXTRiRp4hXImCELYxa4buwlimkdBbDqOPYD47HU9WHeS-QyuBGUF6mCh82tBXZvLm5XQ4zL_LC-RfX5Vg6GkmPaWIR13MJhLTu4aA3-MoeLqZrNfe0CtmlhD3du_G8neZNcrzxvu1OKyi2yYsbr5GrZi_Nsnayh212iVt8mvaIu2cH-GVNbVbgtdpbaCGn7wzino8TYas7ZdlUDaOfNJDZWFAzsXr_z4Q75ciEbu0tWx9nY3Ce2m-o01Ewo5msWI5oeV9QIRhOwMpTGFnFrNpC6QmXHzX2XRXaAz2XJORI4BxMFhGQWedUMOSkhSZYRP0Pekgj1McZcooGa5bnsfjySnQC0OxeBS_9F9PlTi-hlRZRmsEKtqvoN2CdCiLUoN1qUoLB0-3HNl7JSmLmcM6VFnjaPcSQmAY5NNsulJ7jPEZ8QprhXikVzABTcfPA-I4tELYFpCBBGvf1kPBoWcOoBdyGs9i3yuhat-bKWnOtmKX2tH9geHXVkNhnI2Uz6LILoC17WOXTDYS5zA9F3ECBeFCtgkYLQIi_OIa6--jbCIUx4EII9WH6ET8i13X5vX-53D_YekjXw8XlZaLBBVqeTmXlEruhfIA2Tx4X-ssnXixbzP_3I0nw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuGgvXMatMCAgBhIoauI4if2AULVSqMbKNMa0N-M4TlsBzWhapv01fh3n5FZSjb7tgZc81MdObJ-LT33Odwh5ruJQ8yBUtqsYsxlPqB1pT8CDCtfEAYsilhebCAcDfnws9tfI7yoXBsMqK52YK-o41fgfeZuCM-WFlHPWTsqwiP1u7-3JTxsrSOFNa1VOo2CRXXN2Cu5b9qbfhb3eprT37nDng11WGLA1uH4zW7lKGRGBSUTMFRUzChZUMG1EnMRujpIZsCBivuNEbqyY1qEPM4gizzcuSxwPxr1ELocecDFmqe_U4SV4Z1qk4QXoo3lBdaPq8XYGRpNjCFmIOd3CZg2buGwZ_jKNy2Gb9d3tEs5pbht7N_7nVb1JrpcncqtTiNAtsmYmm-RqUaPzbJNs4HG8QLO-TfbyfGUb62rMLFXiuVhpYiHU7Q9jn45jY6kFx1tlbqCV1YNYmGkwtPYOO-_vkC8XMrG7ZH2STsx9YjmJTgLNhGKeZhGi7HFFjWA0ButDadQiTsUSUpdo7Ti57zKPGvC4LLhIAhdhAIGQrEVe1V1OCqiSVcTPkM8kQoBMcNuHap5lsv_pSHZ80Ppc-A79F9HngwbRy5IoSeELtSrzOmCeCC3WoNxqUIIi083mikdlqUgzuWDQFnlaN2NPDA6cmHSeSVdwjyNuIQxxrxCRegEoHP_hVBq2SNgQnpoA4dWbLZPxKIdZ97kD7rbXIq8rMVt81op13S4ksfGC7vioI9PpUM7n0mMheGWwWefQjUaZzAx45b6POFIsh0vygxZ5cQ5x-dO3MXZhwgXX7MHqJXxCroF0y4_9we5DsgFHf17kH2yR9dl0bh6RK_oXCMP0ca7KLPL1oqX8D75z2vI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-trait+analysis+of+genome-wide+association+summary+statistics+using+MTAG&rft.jtitle=Nature+genetics&rft.au=Turley%2C+Patrick&rft.au=Walters%2C+Raymond+K.&rft.au=Maghzian%2C+Omeed&rft.au=Okbay%2C+Aysu&rft.date=2018-02-01&rft.issn=1546-1718&rft.volume=50&rft.issue=2&rft.spage=229&rft_id=info:doi/10.1038%2Fs41588-017-0009-4&rft.externalDocID=oai_DiVA_org_uu_347099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon