Multi-trait analysis of genome-wide association summary statistics using MTAG
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms ( N eff = 354,862), neuroticism ( N = ...
Uloženo v:
| Vydáno v: | Nature genetics Ročník 50; číslo 2; s. 229 - 237 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Nature Publishing Group US
01.02.2018
Nature Publishing Group |
| Témata: | |
| ISSN: | 1061-4036, 1546-1718, 1546-1718 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (
N
eff
= 354,862), neuroticism (
N
= 168,105), and subjective well-being (
N
= 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
MTAG is a new method for joint analysis of summary statistics from genome-wide association studies of different traits. Applying MTAG to summary statistics for depressive symptoms, neuroticism and subjective well-being increased discovery of associated loci as compared to single-trait analyses. |
|---|---|
| AbstractList | We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of summary statistics from GWASs of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (Neff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). Compared to 32, 9, and 13 genome-wide significant loci in the single-trait GWASs (most of which are themselves novel), MTAG increases the number of loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase variance explained by polygenic scores by approximately 25%, matching theoretical expectations. We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N.sub.eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms ( N eff = 354,862), neuroticism ( N = 168,105), and subjective well-being ( N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. MTAG is a new method for joint analysis of summary statistics from genome-wide association studies of different traits. Applying MTAG to summary statistics for depressive symptoms, neuroticism and subjective well-being increased discovery of associated loci as compared to single-trait analyses. We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N.sub.eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. MTAG is a new method for joint analysis of summary statistics from genome-wide association studies of different traits. Applying MTAG to summary statistics for depressive symptoms, neuroticism and subjective well-being increased discovery of associated loci as compared to single-trait analyses. We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (Neff= 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N-eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations. |
| Audience | Academic |
| Author | Wedow, Robbee Walters, Raymond K. Visscher, Peter M. Neale, Benjamin M. Johannesson, Magnus Turley, Patrick Furlotte, Nicholas A. Maghzian, Omeed Cesarini, David Magnusson, Patrik Nguyen-Viet, Tuan Anh Laibson, David Oskarsson, Sven Benjamin, Daniel J. Lee, James J. Okbay, Aysu Fontana, Mark Alan Zacher, Meghan |
| AuthorAffiliation | 10 Department of Sociology, University of Colorado Boulder, Boulder, Colorado, United States 15 Institutionen för Medicinsk Epidemiologi och Biostatistik, Karolinska Institutet, Stockholm, Sweden 6 Hospital for Special Surgery, New York, New York, United States 17 Department of Economics, Stockholm School of Economics, Stockholm, Sweden 21 Department of Economics and Center for Experimental Social Science, New York University, New York, New York, United States 18 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia 19 Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia 7 Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States 16 Department of Government, Uppsala Universitet, Uppsala, Sweden 22 Institutet för Näringslivsforskning, Stockholm, Sweden 12 23andMe, Inc., Mountain View, California, United States 3 Department of Economics, Harvard University, Cambr |
| AuthorAffiliation_xml | – name: 19 Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia – name: 21 Department of Economics and Center for Experimental Social Science, New York University, New York, New York, United States – name: 22 Institutet för Näringslivsforskning, Stockholm, Sweden – name: 9 Institute of Behavioral Science, University of Colorado Boulder, Boulder, Colorado, United States – name: 15 Institutionen för Medicinsk Epidemiologi och Biostatistik, Karolinska Institutet, Stockholm, Sweden – name: 4 Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands – name: 20 National Bureau of Economic Research, Cambridge, Massachusetts, United States – name: 23 Department of Economics, University of Southern California, Los Angeles, California, United States – name: 7 Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States – name: 5 Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States – name: 17 Department of Economics, Stockholm School of Economics, Stockholm, Sweden – name: 3 Department of Economics, Harvard University, Cambridge, Massachusetts, United States – name: 12 23andMe, Inc., Mountain View, California, United States – name: 8 Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States – name: 1 Broad Institute, Cambridge, Massachusetts, United States – name: 10 Department of Sociology, University of Colorado Boulder, Boulder, Colorado, United States – name: 18 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia – name: 2 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Cambridge, Massachusetts, United States – name: 11 Department of Sociology, Harvard University, Cambridge, Massachusetts, United States – name: 6 Hospital for Special Surgery, New York, New York, United States – name: 16 Department of Government, Uppsala Universitet, Uppsala, Sweden |
| Author_xml | – sequence: 1 givenname: Patrick surname: Turley fullname: Turley, Patrick email: paturley@broadinstitute.org organization: Broad Institute, Analytic and Translational Genetics Unit, Massachusetts General Hospital – sequence: 2 givenname: Raymond K. orcidid: 0000-0001-8422-6530 surname: Walters fullname: Walters, Raymond K. organization: Broad Institute, Analytic and Translational Genetics Unit, Massachusetts General Hospital – sequence: 3 givenname: Omeed surname: Maghzian fullname: Maghzian, Omeed organization: Department of Economics, Harvard University – sequence: 4 givenname: Aysu surname: Okbay fullname: Okbay, Aysu organization: Department of Complex Trait Genetics, Vrije Universiteit Amsterdam – sequence: 5 givenname: James J. orcidid: 0000-0001-6547-5128 surname: Lee fullname: Lee, James J. organization: Department of Psychology, University of Minnesota – sequence: 6 givenname: Mark Alan surname: Fontana fullname: Fontana, Mark Alan organization: Hospital for Special Surgery – sequence: 7 givenname: Tuan Anh surname: Nguyen-Viet fullname: Nguyen-Viet, Tuan Anh organization: Center for Economic and Social Research, University of Southern California – sequence: 8 givenname: Robbee orcidid: 0000-0002-3108-7087 surname: Wedow fullname: Wedow, Robbee organization: Institute for Behavioral Genetics, University of Colorado Boulder, Institute of Behavioral Science, University of Colorado Boulder, Department of Sociology, University of Colorado Boulder – sequence: 9 givenname: Meghan surname: Zacher fullname: Zacher, Meghan organization: Department of Sociology, Harvard University – sequence: 10 givenname: Nicholas A. surname: Furlotte fullname: Furlotte, Nicholas A. organization: 23andMe, Inc – sequence: 13 givenname: Patrik orcidid: 0000-0002-7315-7899 surname: Magnusson fullname: Magnusson, Patrik organization: Institutionen för Medicinsk Epidemiologi och Biostatistik, Karolinska Institutet – sequence: 14 givenname: Sven surname: Oskarsson fullname: Oskarsson, Sven organization: Department of Government, Uppsala Universitet – sequence: 15 givenname: Magnus orcidid: 0000-0001-8759-6393 surname: Johannesson fullname: Johannesson, Magnus organization: Department of Economics, Stockholm School of Economics – sequence: 16 givenname: Peter M. orcidid: 0000-0002-2143-8760 surname: Visscher fullname: Visscher, Peter M. organization: Institute for Molecular Bioscience, University of Queensland, Queensland Brain Institute, University of Queensland – sequence: 17 givenname: David surname: Laibson fullname: Laibson, David organization: Department of Economics, Harvard University, National Bureau of Economic Research – sequence: 18 givenname: David surname: Cesarini fullname: Cesarini, David email: dac12@nyu.edu organization: National Bureau of Economic Research, Department of Economics and Center for Experimental Social Science, New York University, Institutet för Näringslivsforskning – sequence: 19 givenname: Benjamin M. surname: Neale fullname: Neale, Benjamin M. email: bneale@broadinstitute.org organization: Broad Institute, Analytic and Translational Genetics Unit, Massachusetts General Hospital – sequence: 20 givenname: Daniel J. orcidid: 0000-0002-2642-5416 surname: Benjamin fullname: Benjamin, Daniel J. email: daniel.benjamin@gmail.com organization: Center for Economic and Social Research, University of Southern California, National Bureau of Economic Research, Department of Economics, University of Southern California |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29292387$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347099$$DView record from Swedish Publication Index (Uppsala universitet) https://research.hhs.se/esploro/outputs/journalArticle/Multi-trait-analysis-of-genome-wide-association-summary/991001480485506056$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:137625690$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqNk01v1DAQhiNURD_gB3BBkbhQiZSZ2E7sC9KqhVKpq0pQerUcx8m6JHGJE0r_PU536bIVi5APceznHdvvzOxHO53rTBS9RDhCIPydp8g4TwDzBABEQp9Ee8holmCOfCfMIcOEAsl2o33vrwGQUuDPot1UhEF4vhfN52Mz2GTolR1i1anmzlsfuyquTedak9za0sTKe6etGqzrYj-2rervYj-Efz9Y7ePR266O55ez0-fR00o13rxYfQ-irx8_XB5_Ss4vTs-OZ-eJzjkfEoVKGVEAMhSMq5KmkDNBtRFlVSKwDGlGs4IygAJLRbXOGZqyKAgzSCsgB1GyjOtvzc1YyJveTpeSTlm5WvoWZkZSgSxjgcet_GLhJxKRMSDAaXAyC1cImrdbNSf2aiZdX8txlITmIETA3y_xwLam1KYLnjYbqs2dzi5k7X5IxoExQUKAN6sAvfs-Gj_I1nptmkZ1xo1eouCEM8ohDejrR-i1G_uQPC9TJITkKed0TdWqMdJ2lQvn6imonLE8PFWw-1hHf6HCKE1rdai3yob1DcHhhiAwg_k51Gr0Xp59-fz_7MXVJvvqTwMfnPtdq-sk6t5535vqAUGQUz_IZT_I0A9y6gc5eZA_0mg73BfyVPHNP5XpKv3hlK42_drj7aJfMy0apw |
| CitedBy_id | crossref_primary_10_1038_s41562_021_01110_y crossref_primary_10_1016_j_ymeth_2025_03_003 crossref_primary_10_1038_s41588_024_01975_5 crossref_primary_10_1016_j_ajhg_2025_03_008 crossref_primary_10_1038_s41380_025_03199_3 crossref_primary_10_1146_annurev_soc_121919_054756 crossref_primary_10_1038_s41573_018_0009_9 crossref_primary_10_1016_j_biopsych_2025_04_021 crossref_primary_10_1007_s00438_021_01826_6 crossref_primary_10_1038_s41467_022_30678_w crossref_primary_10_1016_j_ajhg_2021_03_002 crossref_primary_10_1016_j_ajhg_2022_05_013 crossref_primary_10_1016_j_csbj_2024_05_034 crossref_primary_10_1186_s12864_019_5605_5 crossref_primary_10_1038_s41467_024_49921_7 crossref_primary_10_1016_j_xhgg_2024_100319 crossref_primary_10_1016_j_tranon_2025_102533 crossref_primary_10_1136_bmjopen_2022_064695 crossref_primary_10_1093_hmg_ddae157 crossref_primary_10_1177_0706743720940547 crossref_primary_10_1038_s41467_023_36678_8 crossref_primary_10_1016_j_nbd_2020_104953 crossref_primary_10_1038_s41562_024_02076_3 crossref_primary_10_1093_sleep_zsac308 crossref_primary_10_1038_s43856_025_01003_5 crossref_primary_10_1111_biom_13871 crossref_primary_10_3389_fnut_2024_1391017 crossref_primary_10_1016_j_neubiorev_2020_01_016 crossref_primary_10_1038_s41380_019_0546_6 crossref_primary_10_1038_s41588_021_00824_z crossref_primary_10_1016_j_xgen_2025_100847 crossref_primary_10_1038_s41431_019_0495_1 crossref_primary_10_1146_annurev_biodatasci_030320_041026 crossref_primary_10_1038_s41588_023_01563_z crossref_primary_10_1016_j_biopsych_2018_12_015 crossref_primary_10_1038_s41467_022_34216_6 crossref_primary_10_1172_JCI172881 crossref_primary_10_1111_jgh_16355 crossref_primary_10_1038_s41588_024_01952_y crossref_primary_10_3390_jcm12113713 crossref_primary_10_1038_s41380_023_02187_9 crossref_primary_10_1038_s41398_025_03514_0 crossref_primary_10_1155_da_5250758 crossref_primary_10_1038_s41467_022_31080_2 crossref_primary_10_1186_s12711_018_0377_y crossref_primary_10_3389_fnmol_2019_00022 crossref_primary_10_3389_fnut_2023_1149317 crossref_primary_10_3390_pr9010107 crossref_primary_10_1016_j_ajhg_2019_06_012 crossref_primary_10_1001_jamanetworkopen_2022_38880 crossref_primary_10_3389_fgene_2023_1079198 crossref_primary_10_1016_j_dcn_2024_101443 crossref_primary_10_1093_hmg_ddy271 crossref_primary_10_1093_ntr_ntab105 crossref_primary_10_3390_ijms23126840 crossref_primary_10_1111_age_13282 crossref_primary_10_1097_PRS_0000000000010976 crossref_primary_10_1016_j_csbj_2024_05_012 crossref_primary_10_3389_fendo_2023_1274791 crossref_primary_10_1038_s41380_024_02804_1 crossref_primary_10_1038_s41588_022_01083_2 crossref_primary_10_1146_annurev_genom_121321_093606 crossref_primary_10_3389_fpubh_2024_1364735 crossref_primary_10_7554_eLife_75551 crossref_primary_10_1038_s41588_024_01963_9 crossref_primary_10_1038_s41588_024_01732_8 crossref_primary_10_1016_j_biopsych_2025_03_006 crossref_primary_10_1093_hmg_ddad043 crossref_primary_10_1038_s41588_019_0516_6 crossref_primary_10_1186_s12888_025_07100_y crossref_primary_10_1371_journal_pone_0294896 crossref_primary_10_1016_j_ophtha_2023_08_023 crossref_primary_10_1038_s41380_022_01793_3 crossref_primary_10_1038_s41467_021_27598_6 crossref_primary_10_1016_j_neubiorev_2022_104733 crossref_primary_10_1038_s41380_022_01695_4 crossref_primary_10_1038_s41408_025_01351_4 crossref_primary_10_1016_j_biopsych_2024_01_001 crossref_primary_10_1016_j_jacc_2023_01_044 crossref_primary_10_1038_s10038_020_0750_x crossref_primary_10_1038_s42003_019_0454_y crossref_primary_10_1038_s41588_024_01951_z crossref_primary_10_1007_s11657_025_01568_7 crossref_primary_10_1038_s41380_019_0457_6 crossref_primary_10_1038_s41437_024_00688_z crossref_primary_10_1016_j_socscimed_2024_116633 crossref_primary_10_1038_s41380_022_01469_y crossref_primary_10_1038_s41591_023_02374_9 crossref_primary_10_1146_annurev_biodatasci_111721_074830 crossref_primary_10_1002_gepi_70012 crossref_primary_10_1038_s41380_024_02446_3 crossref_primary_10_1186_s13059_021_02478_w crossref_primary_10_1038_s44220_023_00034_y crossref_primary_10_1177_1042258720936984 crossref_primary_10_1038_s41588_025_02094_5 crossref_primary_10_1038_s41591_022_02122_5 crossref_primary_10_1038_s41588_023_01323_z crossref_primary_10_1161_ATVBAHA_121_317007 crossref_primary_10_3390_brainsci11081042 crossref_primary_10_1038_s41582_021_00592_8 crossref_primary_10_1186_s12916_021_01972_z crossref_primary_10_1371_journal_pgen_1008725 crossref_primary_10_1038_s41467_023_36306_5 crossref_primary_10_1146_annurev_genom_121222_105817 crossref_primary_10_1126_science_abn8455 crossref_primary_10_1038_s41539_022_00148_5 crossref_primary_10_1111_psyp_13728 crossref_primary_10_3389_fgene_2021_665252 crossref_primary_10_1038_s41467_018_07863_x crossref_primary_10_1038_s41467_018_04558_1 crossref_primary_10_1007_s00438_025_02263_5 crossref_primary_10_1038_s41562_018_0494_1 crossref_primary_10_1016_j_pnpbp_2023_110906 crossref_primary_10_1038_s41398_021_01530_4 crossref_primary_10_1186_s12864_020_06833_2 crossref_primary_10_1038_s41380_022_01709_1 crossref_primary_10_3389_fcvm_2021_676030 crossref_primary_10_1093_bib_bbaa103 crossref_primary_10_1016_j_labeco_2024_102544 crossref_primary_10_1186_s12916_024_03681_9 crossref_primary_10_1016_j_ajhg_2021_02_016 crossref_primary_10_1038_s41598_022_14924_1 crossref_primary_10_1038_s41398_019_0481_y crossref_primary_10_1093_ibd_izad004 crossref_primary_10_1161_CIRCRESAHA_122_319950 crossref_primary_10_3233_JAD_201422 crossref_primary_10_1016_j_jpsychires_2021_11_040 crossref_primary_10_1016_j_pnpbp_2024_111183 crossref_primary_10_1038_s41562_023_01630_9 crossref_primary_10_1007_s00125_021_05491_7 crossref_primary_10_1017_S0033291724000771 crossref_primary_10_1186_s40169_020_00272_y crossref_primary_10_1016_j_crmeth_2025_101115 crossref_primary_10_1093_nargab_lqaa003 crossref_primary_10_3390_cells9102257 crossref_primary_10_1186_s13040_024_00385_x crossref_primary_10_1093_bib_bbad407 crossref_primary_10_1097_YPG_0000000000000234 crossref_primary_10_1161_CIRCEP_119_007549 crossref_primary_10_1016_j_jaac_2023_08_018 crossref_primary_10_1038_s41467_024_53687_3 crossref_primary_10_1177_17474930231155816 crossref_primary_10_1371_journal_pgen_1007739 crossref_primary_10_1093_hmg_ddab068 crossref_primary_10_1186_s12864_022_08898_7 crossref_primary_10_1080_19485565_2019_1681257 crossref_primary_10_2337_dc22_2373 crossref_primary_10_1038_s41431_019_0514_2 crossref_primary_10_1038_s42003_025_07481_6 crossref_primary_10_1038_s41467_025_59949_y crossref_primary_10_1017_S0033291724001880 crossref_primary_10_1016_j_psychres_2022_114586 crossref_primary_10_1038_s41467_024_51075_5 crossref_primary_10_1186_s12916_022_02404_2 crossref_primary_10_1002_sim_8445 crossref_primary_10_1007_s00439_023_02573_x crossref_primary_10_1038_s41598_025_91558_z crossref_primary_10_1001_jamaophthalmol_2022_0891 crossref_primary_10_1038_s41467_022_35345_8 crossref_primary_10_1016_j_cmet_2021_01_001 crossref_primary_10_1093_ije_dyz160 crossref_primary_10_1176_appi_ajp_20240095 crossref_primary_10_7554_eLife_99210 crossref_primary_10_1038_s41380_023_02374_8 crossref_primary_10_1038_s41431_023_01463_0 crossref_primary_10_1038_s41467_020_16487_z crossref_primary_10_3389_fendo_2025_1578944 crossref_primary_10_1073_pnas_1802909115 crossref_primary_10_1093_bib_bbaa442 crossref_primary_10_1002_ggn2_202200017 crossref_primary_10_1016_j_humimm_2025_111330 crossref_primary_10_1186_s40246_025_00789_8 crossref_primary_10_1007_s10519_025_10219_z crossref_primary_10_3389_fgene_2021_627989 crossref_primary_10_1186_s12864_024_10536_3 crossref_primary_10_1016_j_ajo_2025_03_011 crossref_primary_10_1097_YPG_0000000000000335 crossref_primary_10_1038_s41562_020_00936_2 crossref_primary_10_1016_j_jtha_2023_11_027 crossref_primary_10_1038_s41467_025_55919_6 crossref_primary_10_1093_biostatistics_kxad001 crossref_primary_10_3390_nu15071625 crossref_primary_10_1017_S0033291719002502 crossref_primary_10_1016_j_cell_2019_11_020 crossref_primary_10_1038_s41467_020_17368_1 crossref_primary_10_1038_s41398_020_01195_5 crossref_primary_10_1016_j_heliyon_2023_e23677 crossref_primary_10_1038_s41591_023_02365_w crossref_primary_10_1016_j_tig_2018_03_005 crossref_primary_10_3389_fendo_2020_00243 crossref_primary_10_3389_fcvm_2022_940696 crossref_primary_10_1080_20008066_2023_2178762 crossref_primary_10_3168_jds_2022_22694 crossref_primary_10_1007_s11427_020_1934_x crossref_primary_10_1177_23780231231186072 crossref_primary_10_1017_S0033291725000352 crossref_primary_10_1093_bib_bbac600 crossref_primary_10_1016_j_jaci_2020_07_004 crossref_primary_10_3389_fgene_2025_1635378 crossref_primary_10_1136_thorax_2021_217703 crossref_primary_10_1681_ASN_0000000710 crossref_primary_10_1016_j_heliyon_2023_e19268 crossref_primary_10_1016_j_xhgg_2025_100457 crossref_primary_10_1038_s41398_020_00902_6 crossref_primary_10_3389_fimmu_2024_1442693 crossref_primary_10_1038_s41431_021_00911_z crossref_primary_10_1177_17456916231178716 crossref_primary_10_1016_j_xhgg_2024_100290 crossref_primary_10_1038_s41380_020_0705_9 crossref_primary_10_3389_fgene_2022_906965 crossref_primary_10_1210_clinem_dgae169 crossref_primary_10_1016_j_biopsych_2023_11_025 crossref_primary_10_3389_fphar_2024_1418560 crossref_primary_10_1016_j_jad_2023_12_042 crossref_primary_10_1212_WNL_0000000000209666 crossref_primary_10_1038_s41467_019_10310_0 crossref_primary_10_1038_s41467_018_04930_1 crossref_primary_10_1007_s10067_025_07422_y crossref_primary_10_1007_s00122_018_3236_x crossref_primary_10_1038_s41588_018_0309_3 crossref_primary_10_1016_j_pnpbp_2024_110986 crossref_primary_10_1016_j_ajhg_2022_04_010 crossref_primary_10_1038_s41431_023_01389_7 crossref_primary_10_1038_s41588_020_0594_5 crossref_primary_10_1017_thg_2018_12 crossref_primary_10_3389_fnagi_2024_1358996 crossref_primary_10_1371_journal_pgen_1009025 crossref_primary_10_1016_j_biopsych_2022_05_029 crossref_primary_10_3389_fmed_2023_1152211 crossref_primary_10_1002_hbm_25712 crossref_primary_10_1167_iovs_63_1_25 crossref_primary_10_1038_s41386_022_01265_w crossref_primary_10_1186_s13075_023_03082_y crossref_primary_10_3390_genes14071355 crossref_primary_10_1093_biostatistics_kxae006 crossref_primary_10_1093_ije_dyab107 crossref_primary_10_1007_s11033_021_07050_0 crossref_primary_10_1016_j_jid_2021_08_440 crossref_primary_10_1016_j_ajhg_2022_04_003 crossref_primary_10_1038_s41380_023_02142_8 crossref_primary_10_1073_pnas_2202764119 crossref_primary_10_1038_s41588_025_02087_4 crossref_primary_10_1038_s10038_020_0814_y crossref_primary_10_1186_s10194_021_01284_w crossref_primary_10_3389_fimmu_2024_1425610 crossref_primary_10_1038_s41467_021_21286_1 crossref_primary_10_3389_fimmu_2023_1286491 crossref_primary_10_1093_g3journal_jkac261 crossref_primary_10_1134_S1022795419070111 crossref_primary_10_1007_s00438_025_02281_3 crossref_primary_10_1038_s41588_020_00762_2 crossref_primary_10_1016_S0140_6736_22_02609_5 crossref_primary_10_1038_s41467_024_55636_6 crossref_primary_10_1016_j_ajhg_2023_08_016 crossref_primary_10_1038_s41467_023_41271_0 crossref_primary_10_1186_s12870_021_03046_x crossref_primary_10_1016_j_molp_2020_03_003 crossref_primary_10_1017_S0033291723001241 crossref_primary_10_2337_db22_0954 crossref_primary_10_1001_jamanetworkopen_2024_51341 crossref_primary_10_1016_j_ajhg_2023_06_006 crossref_primary_10_1016_j_patter_2025_101321 crossref_primary_10_1038_s41588_023_01522_8 crossref_primary_10_1186_s41043_025_01059_y crossref_primary_10_3168_jds_2023_23252 crossref_primary_10_1007_s00403_024_03469_0 crossref_primary_10_3389_fimmu_2024_1409146 crossref_primary_10_1038_s41467_018_07524_z crossref_primary_10_1534_genetics_120_303242 crossref_primary_10_1016_j_bbr_2024_115400 crossref_primary_10_1038_s41467_022_33626_w crossref_primary_10_1038_s41598_018_37538_y crossref_primary_10_1038_s41562_020_00980_y crossref_primary_10_7554_eLife_99210_3 crossref_primary_10_1038_s41562_021_01119_3 crossref_primary_10_1186_s40246_024_00679_5 crossref_primary_10_1002_jbmr_3681 crossref_primary_10_1038_s41398_022_01874_5 crossref_primary_10_1038_s41398_021_01436_1 crossref_primary_10_1038_s41398_025_03243_4 crossref_primary_10_1093_ndt_gfae114 crossref_primary_10_1016_j_ajhg_2024_09_008 crossref_primary_10_1038_s41576_019_0137_z crossref_primary_10_3389_fnut_2022_956900 crossref_primary_10_1038_s41467_024_52452_w crossref_primary_10_1038_s41467_025_58248_w crossref_primary_10_1371_journal_pgen_1009089 crossref_primary_10_1038_s41467_019_13585_5 crossref_primary_10_1016_j_drugalcdep_2021_108556 crossref_primary_10_1016_j_fmre_2024_05_004 crossref_primary_10_1038_s41467_025_60439_4 crossref_primary_10_1111_jth_15698 crossref_primary_10_1177_1744806919882139 crossref_primary_10_1038_s41467_022_34688_6 crossref_primary_10_1038_s41467_023_40330_w crossref_primary_10_1093_brain_awz233 crossref_primary_10_1007_s10902_022_00548_9 crossref_primary_10_1007_s12072_023_10608_8 crossref_primary_10_1017_S095457942100081X crossref_primary_10_1038_s41398_021_01480_x crossref_primary_10_1016_j_jhepr_2024_101037 crossref_primary_10_1093_evolut_qpaf160 crossref_primary_10_1016_j_jhealeco_2022_102718 crossref_primary_10_1038_s42003_022_03554_y crossref_primary_10_1007_s43657_022_00078_7 crossref_primary_10_1038_s41588_018_0307_5 crossref_primary_10_1038_s41467_020_20885_8 crossref_primary_10_1038_s41588_025_02260_9 crossref_primary_10_1093_jas_skae036 crossref_primary_10_1002_gepi_22148 crossref_primary_10_1016_j_isci_2023_108005 crossref_primary_10_1080_01621459_2020_1764849 crossref_primary_10_1038_s41467_025_61761_7 crossref_primary_10_1007_s10238_024_01299_y crossref_primary_10_1038_s41380_021_01370_0 crossref_primary_10_1371_journal_pone_0260911 crossref_primary_10_1007_s10902_022_00538_x crossref_primary_10_1186_s12864_023_09661_2 crossref_primary_10_1146_annurev_clinpsy_050817_084847 crossref_primary_10_1038_s41467_023_41315_5 crossref_primary_10_1038_s41591_023_02268_w crossref_primary_10_3390_genes10050352 crossref_primary_10_1038_s41562_024_02080_7 crossref_primary_10_1111_jcpp_13611 crossref_primary_10_1038_s41588_021_00983_z crossref_primary_10_1038_s41398_022_02193_5 crossref_primary_10_1017_S0033291723003732 crossref_primary_10_1038_s41467_020_16591_0 crossref_primary_10_1002_alz_14115 crossref_primary_10_1016_j_jad_2025_120306 crossref_primary_10_1186_s13059_024_03400_w crossref_primary_10_1371_journal_pgen_1010447 crossref_primary_10_1093_brain_awab267 crossref_primary_10_1038_s41562_021_01182_w crossref_primary_10_1007_s11920_019_1125_x crossref_primary_10_1155_2024_5515448 crossref_primary_10_1146_annurev_vision_102122_103958 crossref_primary_10_1136_annrheumdis_2018_214877 crossref_primary_10_3324_haematol_2023_284579 crossref_primary_10_1016_j_ajhg_2022_01_009 crossref_primary_10_1017_S0033291723001423 crossref_primary_10_1002_ajmg_b_32652 crossref_primary_10_1093_hmg_ddaa115 crossref_primary_10_1038_s41467_023_36013_1 crossref_primary_10_1371_journal_pgen_1010557 crossref_primary_10_1038_s41586_022_05165_3 crossref_primary_10_1038_s41467_019_08535_0 crossref_primary_10_1126_science_aat7693 crossref_primary_10_1136_bmjmed_2021_000070 crossref_primary_10_1186_s12864_022_08555_z crossref_primary_10_1016_j_mrrev_2024_108518 crossref_primary_10_1038_s41588_022_01057_4 crossref_primary_10_1016_j_jaac_2018_01_003 crossref_primary_10_1038_s41380_024_02878_x crossref_primary_10_3390_app11156927 crossref_primary_10_3389_fgene_2019_00947 crossref_primary_10_1038_s41562_021_01094_9 crossref_primary_10_1093_eurjpc_zwad005 crossref_primary_10_1186_s13229_020_00407_5 crossref_primary_10_1371_journal_pgen_1011519 crossref_primary_10_1371_journal_pgen_1010786 crossref_primary_10_1038_s41467_025_60405_0 crossref_primary_10_1038_s41586_022_05275_y crossref_primary_10_1038_s41598_023_30415_3 crossref_primary_10_1001_jamaophthalmol_2024_4856 crossref_primary_10_1038_s41398_024_03184_4 crossref_primary_10_1038_s41562_024_01885_w crossref_primary_10_1186_s13059_021_02416_w crossref_primary_10_1038_s41467_024_51795_8 crossref_primary_10_1038_s42003_019_0634_9 crossref_primary_10_1002_ajmg_b_32879 crossref_primary_10_1038_s41467_017_02769_6 crossref_primary_10_3389_fgene_2025_1597005 crossref_primary_10_1038_s41588_018_0320_8 crossref_primary_10_1186_s12859_023_05505_8 crossref_primary_10_1038_s41467_023_44541_z crossref_primary_10_1016_j_csbj_2024_08_027 crossref_primary_10_1038_s41588_020_0613_6 crossref_primary_10_1146_annurev_med_042921_112629 crossref_primary_10_1002_ajmg_b_32874 crossref_primary_10_1016_j_ajhg_2019_10_001 crossref_primary_10_1038_s41467_021_22334_6 crossref_primary_10_1038_s41398_023_02367_9 crossref_primary_10_1038_s41588_024_01793_9 crossref_primary_10_1186_s10194_018_0956_x crossref_primary_10_1038_s41467_022_35328_9 crossref_primary_10_1038_s41588_018_0147_3 crossref_primary_10_2147_NDT_S527897 crossref_primary_10_1016_j_ssmmh_2021_100044 crossref_primary_10_1017_S0033291725000856 crossref_primary_10_1073_pnas_2119675119 crossref_primary_10_3389_fgene_2023_1191264 crossref_primary_10_1038_s41467_022_32219_x crossref_primary_10_1016_j_mayocp_2025_04_030 crossref_primary_10_1016_j_xcrm_2025_102119 crossref_primary_10_1186_s12864_024_10787_0 crossref_primary_10_1016_j_ajhg_2024_06_010 crossref_primary_10_1186_s12711_024_00920_8 crossref_primary_10_1093_nargab_lqaf118 crossref_primary_10_1161_CIRCGEN_121_003460 crossref_primary_10_1016_j_biopsycho_2023_108692 crossref_primary_10_1371_journal_pgen_1009021 crossref_primary_10_1038_s41588_022_01165_1 crossref_primary_10_1038_s41598_024_63566_y crossref_primary_10_1186_s40478_020_01072_8 crossref_primary_10_1155_2021_8812282 crossref_primary_10_1038_s41386_021_01023_4 crossref_primary_10_1002_gepi_22330 crossref_primary_10_1002_jmv_28780 crossref_primary_10_1002_oby_23669 crossref_primary_10_1016_j_jid_2024_02_019 crossref_primary_10_1002_gepi_22202 crossref_primary_10_1007_s11920_019_1002_7 crossref_primary_10_1186_s12876_025_04162_w crossref_primary_10_1093_bib_bbad181 crossref_primary_10_1016_j_ebiom_2023_104647 crossref_primary_10_3390_cells12020245 crossref_primary_10_1038_s41380_020_0777_6 crossref_primary_10_1162_nol_a_00162 crossref_primary_10_1002_gepi_22449 crossref_primary_10_1016_j_biopsycho_2022_108463 crossref_primary_10_1038_s41588_023_01428_5 crossref_primary_10_1093_bib_bbae272 crossref_primary_10_1371_journal_pgen_1009497 crossref_primary_10_1093_eurjpc_zwae347 crossref_primary_10_1371_journal_pgen_1011322 crossref_primary_10_1177_08902070221134878 crossref_primary_10_1038_s41398_023_02409_2 crossref_primary_10_1016_S1474_4422_21_00031_4 crossref_primary_10_1038_s41562_022_01343_5 crossref_primary_10_12688_f1000research_53962_1 crossref_primary_10_1016_j_isci_2025_113226 crossref_primary_10_1038_s41467_024_49031_4 crossref_primary_10_1038_s41588_024_01934_0 crossref_primary_10_1017_thg_2018_46 crossref_primary_10_1073_pnas_2114271119 crossref_primary_10_1371_journal_pgen_1009363 crossref_primary_10_3389_fgene_2020_00437 crossref_primary_10_1371_journal_pgen_1010587 crossref_primary_10_1038_s41588_022_01199_5 crossref_primary_10_3390_biomedicines12112562 crossref_primary_10_1186_s12916_022_02476_0 crossref_primary_10_1371_journal_pgen_1011553 crossref_primary_10_3389_fnut_2025_1468457 crossref_primary_10_1002_sim_10081 crossref_primary_10_1186_s40104_023_00864_x crossref_primary_10_3389_fgene_2025_1590652 crossref_primary_10_1016_j_ebiom_2023_104551 crossref_primary_10_1038_s41588_023_01559_9 crossref_primary_10_1038_s41588_025_02189_z crossref_primary_10_1038_s41588_019_0344_8 crossref_primary_10_1002_gepi_22424 crossref_primary_10_1038_s41380_024_02617_2 crossref_primary_10_1161_STROKEAHA_120_032619 crossref_primary_10_3389_fimmu_2024_1328297 crossref_primary_10_1017_thg_2018_55 crossref_primary_10_1038_s41596_020_0353_1 crossref_primary_10_1093_nargab_lqad065 crossref_primary_10_3389_fgene_2019_00733 crossref_primary_10_1038_s41467_023_44047_8 crossref_primary_10_3389_fgene_2020_608630 crossref_primary_10_1038_s41588_021_00787_1 crossref_primary_10_1007_s00439_021_02312_0 crossref_primary_10_1016_j_biopsych_2021_09_020 crossref_primary_10_3389_fgene_2020_00431 crossref_primary_10_1016_j_plantsci_2024_112110 crossref_primary_10_1038_s41467_024_54301_2 crossref_primary_10_1038_s42003_023_05413_w crossref_primary_10_1002_jmv_28570 crossref_primary_10_1007_s00223_024_01312_2 crossref_primary_10_1017_S0033291721000441 crossref_primary_10_1161_CIRCHEARTFAILURE_122_010438 crossref_primary_10_1038_s41380_021_01300_0 crossref_primary_10_1093_schbul_sbae145 crossref_primary_10_3390_genes15070939 crossref_primary_10_1038_s41598_019_41850_6 crossref_primary_10_1186_s12916_022_02279_3 crossref_primary_10_1177_0271678X251362977 crossref_primary_10_3389_fimmu_2022_889296 crossref_primary_10_1007_s40142_019_0158_0 crossref_primary_10_1038_s43588_025_00852_3 crossref_primary_10_2147_NSS_S459136 crossref_primary_10_1186_s40246_024_00627_3 crossref_primary_10_1002_ana_26332 crossref_primary_10_1017_thg_2024_23 crossref_primary_10_1038_s41431_021_00885_y crossref_primary_10_1001_jamaophthalmol_2019_4421 crossref_primary_10_1016_j_neubiorev_2023_105036 crossref_primary_10_1093_plcell_koab134 crossref_primary_10_3389_fimmu_2023_1184958 crossref_primary_10_1177_0963721418807729 crossref_primary_10_1093_hmg_ddy082 crossref_primary_10_1038_s41386_020_00795_5 crossref_primary_10_3389_fnagi_2024_1466799 crossref_primary_10_1016_j_survophthal_2019_06_002 crossref_primary_10_1126_science_aax3710 crossref_primary_10_1038_s41598_025_07100_8 crossref_primary_10_1016_j_ajhg_2020_11_017 crossref_primary_10_1038_s42003_024_05874_7 crossref_primary_10_3390_jcm12010109 crossref_primary_10_1016_j_ajo_2024_05_009 crossref_primary_10_1016_j_ibneur_2023_03_011 crossref_primary_10_1161_JAHA_123_030935 crossref_primary_10_1007_s00125_025_06403_9 crossref_primary_10_1007_s00439_019_02060_2 crossref_primary_10_1038_s41467_020_14451_5 crossref_primary_10_1186_s12967_024_05604_x crossref_primary_10_1111_add_16229 crossref_primary_10_1007_s11886_025_02239_2 crossref_primary_10_1186_s12859_021_03959_2 crossref_primary_10_3390_ijms241914449 crossref_primary_10_1007_s11096_025_01952_w crossref_primary_10_1016_j_jad_2025_119731 crossref_primary_10_1038_s41380_019_0394_4 crossref_primary_10_1093_bib_bbaf350 crossref_primary_10_1038_s10038_023_01151_3 crossref_primary_10_1111_bjd_18700 crossref_primary_10_1016_j_jad_2025_03_002 crossref_primary_10_1371_journal_pgen_1009713 crossref_primary_10_1016_j_neubiorev_2020_06_020 crossref_primary_10_1534_genetics_120_303096 crossref_primary_10_1038_s41467_024_53495_9 crossref_primary_10_1186_s12864_020_07341_z crossref_primary_10_1111_gbb_12694 crossref_primary_10_1161_CIRCRESAHA_119_316479 crossref_primary_10_3389_fendo_2022_1016373 crossref_primary_10_1093_bfgp_elaf013 crossref_primary_10_1111_ceo_14500 crossref_primary_10_1093_hmg_ddz187 crossref_primary_10_1016_j_jad_2024_01_106 crossref_primary_10_1093_hmg_ddz193 crossref_primary_10_3390_genes14020482 crossref_primary_10_1016_j_biopsych_2022_07_019 crossref_primary_10_1016_j_inffus_2024_102738 crossref_primary_10_1038_s41562_021_01135_3 crossref_primary_10_3390_genes13010106 crossref_primary_10_3390_genes13101694 crossref_primary_10_3390_genes13122255 crossref_primary_10_1016_j_heliyon_2023_e20754 crossref_primary_10_1093_bib_bbad470 crossref_primary_10_1186_s12916_025_04205_9 crossref_primary_10_1002_mds_29572 crossref_primary_10_1002_gepi_22612 crossref_primary_10_1016_j_ajhg_2020_12_006 crossref_primary_10_1016_j_heliyon_2024_e30718 crossref_primary_10_1038_s41398_021_01354_2 crossref_primary_10_1038_s41380_018_0313_0 crossref_primary_10_1038_s42003_019_0537_9 crossref_primary_10_1038_s41380_023_02104_0 crossref_primary_10_1186_s12859_022_05034_w crossref_primary_10_1186_s13058_022_01570_8 crossref_primary_10_1038_s41467_024_53452_6 crossref_primary_10_1053_j_gastro_2020_12_011 crossref_primary_10_1371_journal_pgen_1010762 crossref_primary_10_1186_s12864_018_5058_2 crossref_primary_10_1038_s41467_020_15932_3 crossref_primary_10_1093_humrep_deaf062 crossref_primary_10_1016_j_bbi_2023_08_003 crossref_primary_10_1038_s10038_021_00980_4 crossref_primary_10_1038_s41386_021_01044_z crossref_primary_10_1038_s41398_019_0497_3 crossref_primary_10_1038_s41593_020_0643_5 crossref_primary_10_1038_s41467_019_09718_5 crossref_primary_10_1038_s41588_019_0556_y crossref_primary_10_1016_j_isci_2023_107854 crossref_primary_10_1038_s41562_020_0862_5 crossref_primary_10_1093_hmg_ddab126 crossref_primary_10_1093_hmg_ddz121 crossref_primary_10_1038_s41562_019_0566_x crossref_primary_10_1038_s41588_018_0269_7 crossref_primary_10_1534_genetics_119_301859 crossref_primary_10_5534_wjmh_240062 crossref_primary_10_1017_thg_2019_90 crossref_primary_10_1096_fj_202402489R crossref_primary_10_1016_j_evolhumbehav_2021_08_001 crossref_primary_10_1016_j_envint_2023_108396 crossref_primary_10_3389_fgene_2022_838518 crossref_primary_10_1002_bies_202100109 crossref_primary_10_1038_s42003_023_04805_2 crossref_primary_10_1111_gbb_12644 crossref_primary_10_1186_s12888_024_06392_w crossref_primary_10_1038_s41467_021_25768_0 crossref_primary_10_1038_s41598_021_82781_5 crossref_primary_10_1038_s41380_024_02771_7 crossref_primary_10_1038_s41467_021_25723_z crossref_primary_10_1038_s41598_022_11341_2 crossref_primary_10_1176_appi_ajp_21111113 crossref_primary_10_1146_annurev_genom_120219_074937 crossref_primary_10_1161_CIRCRESAHA_119_315179 crossref_primary_10_1016_j_biopsych_2019_10_015 crossref_primary_10_1016_j_sleep_2021_08_025 crossref_primary_10_1038_s41398_020_00930_2 crossref_primary_10_1002_oby_24333 crossref_primary_10_1186_s12864_023_09295_4 crossref_primary_10_1007_s11357_024_01481_w crossref_primary_10_1136_jmedgenet_2018_105437 crossref_primary_10_1038_s42003_020_0823_6 crossref_primary_10_1038_s41598_023_45102_6 crossref_primary_10_1016_j_copsyc_2018_07_012 crossref_primary_10_1001_jamaophthalmol_2020_5404 crossref_primary_10_1016_j_csbj_2021_10_019 crossref_primary_10_1038_s41588_023_01485_w crossref_primary_10_1017_neu_2023_32 crossref_primary_10_1212_NXG_0000000000000653 crossref_primary_10_1038_s42003_025_07875_6 crossref_primary_10_1016_j_neurobiolaging_2023_09_017 crossref_primary_10_1038_s41380_021_01027_y crossref_primary_10_1016_j_ijcrp_2025_200514 crossref_primary_10_1016_j_ajhg_2021_08_004 crossref_primary_10_1038_s41386_021_01209_w crossref_primary_10_1016_j_ebiom_2024_105530 crossref_primary_10_1038_s41467_024_52129_4 crossref_primary_10_1093_bib_bbae327 crossref_primary_10_1002_wcs_1528 crossref_primary_10_1186_s12967_023_04107_5 crossref_primary_10_1016_j_ajhg_2024_04_009 crossref_primary_10_1038_s41598_025_90443_z crossref_primary_10_3389_fimmu_2024_1417899 |
| Cites_doi | 10.1371/journal.pone.0095923 10.1038/ng.3406 10.1371/journal.pgen.1004198 10.1038/srep38837 10.1038/nature20566 10.1016/j.ajhg.2015.09.001 10.1371/journal.pgen.1006836 10.1038/ncomms6890 10.1038/ng.3552 10.1124/pr.109.002451 10.1038/nrg3457 10.1038/srep42091 10.1371/journal.pone.0003395 10.1001/jamapsychiatry.2015.0554 10.1038/ejhg.2011.39 10.1038/ng.3623 10.1534/genetics.115.183269 10.1126/science.1136800 10.1016/j.ajhg.2014.11.011 10.1016/j.ajhg.2010.11.011 10.1038/nrg.2016.142 10.1038/ng.3211 10.1093/ije/dyu067 10.1016/j.ajhg.2014.12.006 10.1038/mp.2012.21 10.1016/j.neuron.2012.06.012 10.1038/mp.2016.49 10.1101/115915 10.1093/bioinformatics/btw613 10.1101/119164 |
| ContentType | Journal Article |
| Contributor | Shringarpure, Suyash Elson, Sarah L Hinds, David A Auton, Adam Bell, Robert K Shelton, Janie F Litterman, Nadia K Tian, Chao McIntyre, Matthew H Northover, Carrie A M Hromatka, Bethann S Bryc, Katarzyna Agee, Michelle Huber, Karen E Pitts, Steven J Kleinman, Aaron Alipanahi, Babak Wilson, Catherine H Vacic, Vladimir Furlotte, Nicholas A Mountain, Joanna L Sazonova, Olga V Tung, Joyce Y Sathirapongsasuti, J Fah Fontanillas, Pierre |
| Contributor_xml | – sequence: 1 givenname: Michelle surname: Agee fullname: Agee, Michelle – sequence: 2 givenname: Babak surname: Alipanahi fullname: Alipanahi, Babak – sequence: 3 givenname: Adam surname: Auton fullname: Auton, Adam – sequence: 4 givenname: Robert K surname: Bell fullname: Bell, Robert K – sequence: 5 givenname: Katarzyna surname: Bryc fullname: Bryc, Katarzyna – sequence: 6 givenname: Sarah L surname: Elson fullname: Elson, Sarah L – sequence: 7 givenname: Pierre surname: Fontanillas fullname: Fontanillas, Pierre – sequence: 8 givenname: Nicholas A surname: Furlotte fullname: Furlotte, Nicholas A – sequence: 9 givenname: David A surname: Hinds fullname: Hinds, David A – sequence: 10 givenname: Bethann S surname: Hromatka fullname: Hromatka, Bethann S – sequence: 11 givenname: Karen E surname: Huber fullname: Huber, Karen E – sequence: 12 givenname: Aaron surname: Kleinman fullname: Kleinman, Aaron – sequence: 13 givenname: Nadia K surname: Litterman fullname: Litterman, Nadia K – sequence: 14 givenname: Matthew H surname: McIntyre fullname: McIntyre, Matthew H – sequence: 15 givenname: Joanna L surname: Mountain fullname: Mountain, Joanna L – sequence: 16 givenname: Carrie A M surname: Northover fullname: Northover, Carrie A M – sequence: 17 givenname: J Fah surname: Sathirapongsasuti fullname: Sathirapongsasuti, J Fah – sequence: 18 givenname: Olga V surname: Sazonova fullname: Sazonova, Olga V – sequence: 19 givenname: Janie F surname: Shelton fullname: Shelton, Janie F – sequence: 20 givenname: Suyash surname: Shringarpure fullname: Shringarpure, Suyash – sequence: 21 givenname: Chao surname: Tian fullname: Tian, Chao – sequence: 22 givenname: Joyce Y surname: Tung fullname: Tung, Joyce Y – sequence: 23 givenname: Vladimir surname: Vacic fullname: Vacic, Vladimir – sequence: 24 givenname: Catherine H surname: Wilson fullname: Wilson, Catherine H – sequence: 25 givenname: Steven J surname: Pitts fullname: Pitts, Steven J |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Feb 2018 |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 2018 |
| CorporateAuthor | 23andMe Research Team Social Science Genetic Association Consortium |
| CorporateAuthor_xml | – name: 23andMe Research Team – name: Social Science Genetic Association Consortium |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTPV AOWAS DF2 |
| DOI | 10.1038/s41588-017-0009-4 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology Statistics |
| EISSN | 1546-1718 |
| EndPage | 237 |
| ExternalDocumentID | oai_swepub_ki_se_491565 oai_hhs_se_1155030840006056 oai_DiVA_org_uu_347099 PMC5805593 A573089502 29292387 10_1038_s41588_017_0009_4 |
| Genre | Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH101244 – fundername: NICHD NIH HHS grantid: R01 HD073342 – fundername: NIA NIH HHS grantid: P30 AG034532 – fundername: European Research Council grantid: 647648 – fundername: NIA NIH HHS grantid: T32 AG000186 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: NIA NIH HHS grantid: R01 AG042568 – fundername: Medical Research Council grantid: G1001799 – fundername: Medical Research Council grantid: MR/N01104X/2 – fundername: NIA NIH HHS grantid: P30 AG012810 |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX ACSTC AETEA AFANA AFFHD AGSTI AIEIU ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ABFSG AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c788t-a1aae9b0151958ad4207594ce9dfd105614646b4500b1da4cc751edbb35e14f03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 705 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424519200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-4036 1546-1718 |
| IngestDate | Tue Nov 25 03:32:01 EST 2025 Tue Nov 04 16:47:30 EST 2025 Tue Nov 04 17:02:07 EST 2025 Tue Nov 04 01:59:03 EST 2025 Thu Sep 04 16:03:09 EDT 2025 Fri Oct 03 11:01:45 EDT 2025 Sat Nov 29 13:30:44 EST 2025 Sat Nov 29 10:25:15 EST 2025 Wed Nov 26 10:40:21 EST 2025 Wed Nov 26 10:05:51 EST 2025 Mon Jul 21 06:05:32 EDT 2025 Sat Nov 29 03:07:09 EST 2025 Tue Nov 18 21:18:34 EST 2025 Fri Feb 21 02:39:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c788t-a1aae9b0151958ad4207594ce9dfd105614646b4500b1da4cc751edbb35e14f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 A list of members of the Social Science Genetic Association Consortium can be found in section 10 of Supplementary Note. A list of members of the 23andMe Research Team can be found at the end the paper. CONTRIBUTOR LIST FOR THE 23andMe RESEARCH TEAM: Michelle Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson, Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Bethann S. Hromatka, Karen E. Huber, Aaron Kleinman, Nadia K. Litterman, Matthew H. McIntyre, Joanna L. Mountain, Carrie A.M. Northover, J. Fah Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao Tian, Joyce Y. Tung, Vladimir Vacic, Catherine H. Wilson, and Steven J. Pitts. These authors contributed equally |
| ORCID | 0000-0002-7315-7899 0000-0001-8422-6530 0000-0002-2642-5416 0000-0002-3108-7087 0000-0001-8759-6393 0000-0002-2143-8760 0000-0001-6547-5128 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5805593 |
| PMID | 29292387 |
| PQID | 2133372884 |
| PQPubID | 33429 |
| PageCount | 9 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_491565 swepub_primary_oai_hhs_se_1155030840006056 swepub_primary_oai_DiVA_org_uu_347099 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805593 proquest_miscellaneous_1983854802 proquest_journals_2133372884 gale_infotracmisc_A573089502 gale_infotracacademiconefile_A573089502 gale_incontextgauss_ISR_A573089502 gale_incontextgauss_IOV_A573089502 pubmed_primary_29292387 crossref_primary_10_1038_s41588_017_0009_4 crossref_citationtrail_10_1038_s41588_017_0009_4 springer_journals_10_1038_s41588_017_0009_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature genetics |
| PublicationTitleAbbrev | Nat Genet |
| PublicationTitleAlternate | Nat Genet |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Yang, Lee, Goddard, Visscher (CR21) 2011; 88 Wray (CR29) 2013; 14 Bulik-Sullivan (CR6) 2015; 47 Galesloot, van Steen, Kiemeney, Janss, Vermeulen (CR1) 2014; 9 Porter, O’Reilly (CR2) 2017; 7 Wientjes, Bijma, Veerkamp, Calus (CR24) 2016; 202 Hu (CR4) 2017; 13 Traynelis (CR19) 2010; 62 Pasaniuc, Price (CR30) 2017; 18 Vilhjálmsson (CR22) 2015; 97 Bolormaa (CR12) 2014; 10 Pin, Bettler (CR18) 2016; 540 Okbay (CR11) 2016; 48 Zhu (CR13) 2015; 96 Lee, Weerasinghe, Wray, Goddard, van der Werf (CR26) 2017; 7 Smith (CR10) 2016; 21 Frey, Dueck (CR16) 2007; 315 CR5 Bulik-Sullivan (CR14) 2015; 47 Pers (CR15) 2015; 6 Maier (CR3) 2015; 96 Hyde (CR7) 2016; 48 CR25 de Moor (CR9) 2015; 72 Daetwyler, Villanueva, Woolliams (CR28) 2008; 3 Ripke (CR8) 2013; 18 Südhof (CR17) 2012; 75 Zheng (CR20) 2017; 33 Yang (CR23) 2011; 19 Sonnega (CR27) 2014; 43 HF Porter (9_CR2) 2017; 7 MHM Moor de (9_CR9) 2015; 72 S Ripke (9_CR8) 2013; 18 HD Daetwyler (9_CR28) 2008; 3 J Zheng (9_CR20) 2017; 33 DJ Smith (9_CR10) 2016; 21 CL Hyde (9_CR7) 2016; 48 BJ Frey (9_CR16) 2007; 315 J Yang (9_CR21) 2011; 88 NR Wray (9_CR29) 2013; 14 J Yang (9_CR23) 2011; 19 A Sonnega (9_CR27) 2014; 43 B Bulik-Sullivan (9_CR6) 2015; 47 TE Galesloot (9_CR1) 2014; 9 X Zhu (9_CR13) 2015; 96 SF Traynelis (9_CR19) 2010; 62 J-P Pin (9_CR18) 2016; 540 R Maier (9_CR3) 2015; 96 9_CR25 SH Lee (9_CR26) 2017; 7 TH Pers (9_CR15) 2015; 6 A Okbay (9_CR11) 2016; 48 Y Hu (9_CR4) 2017; 13 BJ Vilhjálmsson (9_CR22) 2015; 97 9_CR5 S Bolormaa (9_CR12) 2014; 10 B Pasaniuc (9_CR30) 2017; 18 YCJ Wientjes (9_CR24) 2016; 202 TC Südhof (9_CR17) 2012; 75 BK Bulik-Sullivan (9_CR14) 2015; 47 31147634 - Nat Genet. 2019 Jul;51(7):1190. doi: 10.1038/s41588-019-0444-5. 31239548 - Nat Genet. 2019 Aug;51(8):1295. doi: 10.1038/s41588-019-0469-9. |
| References_xml | – volume: 9 year: 2014 ident: CR1 article-title: A comparison of multivariate genome-wide association methods publication-title: PLoS One doi: 10.1371/journal.pone.0095923 – volume: 47 start-page: 1236 year: 2015 end-page: 1241 ident: CR6 article-title: An atlas of genetic correlations across human diseases and traits publication-title: Nat. Genet. doi: 10.1038/ng.3406 – volume: 10 year: 2014 ident: CR12 article-title: A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004198 – volume: 7 year: 2017 ident: CR2 article-title: Multivariate simulation framework reveals performance of multi-trait GWAS methods publication-title: Sci. Rep. doi: 10.1038/srep38837 – volume: 540 start-page: 60 year: 2016 end-page: 68 ident: CR18 article-title: Organization and functions of mGlu and GABA receptor complexes publication-title: Nature doi: 10.1038/nature20566 – volume: 97 start-page: 576 year: 2015 end-page: 592 ident: CR22 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.09.001 – volume: 13 year: 2017 ident: CR4 article-title: Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006836 – volume: 6 year: 2015 ident: CR15 article-title: Biological interpretation of genome-wide association studies using predicted gene functions publication-title: Nat. Commun. doi: 10.1038/ncomms6890 – volume: 48 start-page: 624 year: 2016 end-page: 633 ident: CR11 article-title: Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses publication-title: Nat. Genet. doi: 10.1038/ng.3552 – volume: 62 start-page: 405 year: 2010 end-page: 496 ident: CR19 article-title: Glutamate receptor ion channels: structure, regulation, and function publication-title: Pharmacol. Rev. doi: 10.1124/pr.109.002451 – volume: 33 start-page: 272 year: 2017 end-page: 279 ident: CR20 article-title: LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis publication-title: Bioinformatics – ident: CR25 – volume: 14 start-page: 507 year: 2013 end-page: 515 ident: CR29 article-title: Pitfalls of predicting complex traits from SNPs publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3457 – volume: 7 year: 2017 ident: CR26 article-title: Using information of relatives in genomic prediction to apply effective stratified medicine publication-title: Sci. Rep. doi: 10.1038/srep42091 – volume: 3 year: 2008 ident: CR28 article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach publication-title: PLoS One doi: 10.1371/journal.pone.0003395 – volume: 72 start-page: 642 year: 2015 end-page: 650 ident: CR9 article-title: Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.0554 – volume: 19 start-page: 807 year: 2011 end-page: 812 ident: CR23 article-title: Genomic inflation factors under polygenic inheritance publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2011.39 – volume: 48 start-page: 1031 year: 2016 end-page: 1036 ident: CR7 article-title: Identification of 15 genetic loci associated with risk of major depression in individuals of European descent publication-title: Nat. Genet. doi: 10.1038/ng.3623 – volume: 202 start-page: 799 year: 2016 end-page: 823 ident: CR24 article-title: An equation to predict the accuracy of genomic values by combining data from multiple traits, populations, or environments publication-title: Genetics doi: 10.1534/genetics.115.183269 – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: CR16 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 96 start-page: 21 year: 2015 end-page: 36 ident: CR13 article-title: Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.11.011 – volume: 88 start-page: 76 year: 2011 end-page: 82 ident: CR21 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 18 start-page: 117 year: 2017 end-page: 127 ident: CR30 article-title: Dissecting the genetics of complex traits using summary association statistics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.142 – volume: 47 start-page: 291 year: 2015 end-page: 295 ident: CR14 article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.3211 – volume: 43 start-page: 576 year: 2014 end-page: 585 ident: CR27 article-title: Cohort profile: the Health and Retirement Study (HRS) publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu067 – volume: 96 start-page: 283 year: 2015 end-page: 294 ident: CR3 article-title: Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.12.006 – ident: CR5 – volume: 18 start-page: 497 year: 2013 end-page: 511 ident: CR8 article-title: A mega-analysis of genome-wide association studies for major depressive disorder publication-title: Mol. Psychiatry doi: 10.1038/mp.2012.21 – volume: 75 start-page: 11 year: 2012 end-page: 25 ident: CR17 article-title: The presynaptic active zone publication-title: Neuron doi: 10.1016/j.neuron.2012.06.012 – volume: 21 start-page: 749 year: 2016 end-page: 757 ident: CR10 article-title: Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.49 – volume: 43 start-page: 576 year: 2014 ident: 9_CR27 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu067 – volume: 19 start-page: 807 year: 2011 ident: 9_CR23 publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2011.39 – volume: 202 start-page: 799 year: 2016 ident: 9_CR24 publication-title: Genetics doi: 10.1534/genetics.115.183269 – volume: 48 start-page: 1031 year: 2016 ident: 9_CR7 publication-title: Nat. Genet. doi: 10.1038/ng.3623 – volume: 3 year: 2008 ident: 9_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0003395 – ident: 9_CR5 doi: 10.1101/115915 – volume: 88 start-page: 76 year: 2011 ident: 9_CR21 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 13 year: 2017 ident: 9_CR4 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006836 – volume: 315 start-page: 972 year: 2007 ident: 9_CR16 publication-title: Science doi: 10.1126/science.1136800 – volume: 48 start-page: 624 year: 2016 ident: 9_CR11 publication-title: Nat. Genet. doi: 10.1038/ng.3552 – volume: 33 start-page: 272 year: 2017 ident: 9_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw613 – volume: 18 start-page: 117 year: 2017 ident: 9_CR30 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.142 – volume: 6 year: 2015 ident: 9_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms6890 – volume: 7 year: 2017 ident: 9_CR2 publication-title: Sci. Rep. doi: 10.1038/srep38837 – volume: 96 start-page: 283 year: 2015 ident: 9_CR3 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.12.006 – volume: 47 start-page: 1236 year: 2015 ident: 9_CR6 publication-title: Nat. Genet. doi: 10.1038/ng.3406 – volume: 75 start-page: 11 year: 2012 ident: 9_CR17 publication-title: Neuron doi: 10.1016/j.neuron.2012.06.012 – volume: 47 start-page: 291 year: 2015 ident: 9_CR14 publication-title: Nat. Genet. doi: 10.1038/ng.3211 – volume: 72 start-page: 642 year: 2015 ident: 9_CR9 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.0554 – volume: 18 start-page: 497 year: 2013 ident: 9_CR8 publication-title: Mol. Psychiatry doi: 10.1038/mp.2012.21 – ident: 9_CR25 doi: 10.1101/119164 – volume: 14 start-page: 507 year: 2013 ident: 9_CR29 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3457 – volume: 7 year: 2017 ident: 9_CR26 publication-title: Sci. Rep. doi: 10.1038/srep42091 – volume: 21 start-page: 749 year: 2016 ident: 9_CR10 publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.49 – volume: 540 start-page: 60 year: 2016 ident: 9_CR18 publication-title: Nature doi: 10.1038/nature20566 – volume: 10 year: 2014 ident: 9_CR12 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004198 – volume: 97 start-page: 576 year: 2015 ident: 9_CR22 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.09.001 – volume: 9 year: 2014 ident: 9_CR1 publication-title: PLoS One doi: 10.1371/journal.pone.0095923 – volume: 96 start-page: 21 year: 2015 ident: 9_CR13 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.11.011 – volume: 62 start-page: 405 year: 2010 ident: 9_CR19 publication-title: Pharmacol. Rev. doi: 10.1124/pr.109.002451 – reference: 31147634 - Nat Genet. 2019 Jul;51(7):1190. doi: 10.1038/s41588-019-0444-5. – reference: 31239548 - Nat Genet. 2019 Aug;51(8):1295. doi: 10.1038/s41588-019-0469-9. |
| SSID | ssj0014408 |
| Score | 2.6984117 |
| Snippet | We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different... We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of summary statistics from GWASs of different traits, possibly from overlapping... |
| SourceID | swepub pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 229 |
| SubjectTerms | 631/208/205/2138 631/208/212 631/378 Accuracy Agriculture Algorithms Animal Genetics and Genomics Bioinformatics Biomedical and Life Sciences Biomedicine Cancer Research Comparative analysis Computational biology Data Interpretation, Statistical Datasets as Topic - statistics & numerical data Depression - epidemiology Depression - genetics Diagnostic Self Evaluation Economic models Gene Function Genetic aspects Genetic Association Studies - methods Genetic Association Studies - statistics & numerical data Genome-wide association studies Genome-Wide Association Study - methods Genome-Wide Association Study - statistics & numerical data Genomes Genomics Health - statistics & numerical data Human Genetics Humans Loci Mental depression Meta-analysis Meta-Analysis as Topic Multifactorial Inheritance Neurosis Neuroticism Phenotype Polygenic inheritance Polymorphism, Single Nucleotide Psychological factors Quantitative Trait Loci - genetics Statistical analysis Statistical methods Statistics Well being |
| Title | Multi-trait analysis of genome-wide association summary statistics using MTAG |
| URI | https://link.springer.com/article/10.1038/s41588-017-0009-4 https://www.ncbi.nlm.nih.gov/pubmed/29292387 https://www.proquest.com/docview/2133372884 https://www.proquest.com/docview/1983854802 https://pubmed.ncbi.nlm.nih.gov/PMC5805593 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347099 https://research.hhs.se/esploro/outputs/journalArticle/Multi-trait-analysis-of-genome-wide-association-summary/991001480485506056 http://kipublications.ki.se/Default.aspx?queryparsed=id:137625690 |
| Volume | 50 |
| WOSCitedRecordID | wos000424519200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1546-1718 databaseCode: M7P dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1546-1718 databaseCode: 7X7 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1546-1718 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1546-1718 databaseCode: 8C1 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1546-1718 databaseCode: M2O dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBtJe-BhfgVEFxIcEipbETmI_oTI24KFdNcbUN8txkrYCktG0IP577hw3JdXYCy-RWp-T2Hc-3-XOvyPkucoSzeNEeYFizGO8CL1UUwGXUAR5FrM0ZabYRDIc8vFYjOwHt9qmVa50olHUWaXxG_lBCM4UTULO2duLHx5WjcLoqi2hsUV2ECWBmtS9URtFwGrKJtoZo59E41VUk_KDGjYujmlcCZ6rFh7r7Eub2vmv7WkzdbKNn25gjZr96fjW_47sNrlpLVO334jSHXItL_fIjaZW5e89sotmaYPqfJcMzLldD-tLLFxlcU3cqnAR8vV77v2aZbmr1px37Rk5t25v4mLG_cQdnPU_3CNfjo_ODj96tjCDp8FjXngqUCoXKVgSCFWjMhaC4SGYzkVWZIEBF41ZnLLI99MgU0zrJALGpymN8oAVPr1PtsuqzB8S1y90EWsmFKOapYg2x1WYCxZmoIXDMHWIv2KL1Ba1HAf3TZroOeWy4aQETmIgXUjmkNdtl4sGsuMq4mfIa4lQGCXm2kzUsq7lp5Nz2Y9A-3ER-eG_iD6fdoheWaKigjfUyp5vgHEixFaHcr9DCQtad5tXciKtQqnlWkgc8rRtxp6YJFfm1bKWgeCUI34f3OJBI6btBIRgBoN1ljgk6QhwS4Aw492WcjY1cOMR98HtpA55sxL19WtdMa8vmtXQecD72XlfVvOJXC4lZQl4J8CsS-im01rWOXin4D_DrDADGxTFDnl5CbH96-sMuzARgIvy6OopfEx2we7lTfL9PtlezJf5E3Jd_4QVMO-RrWScmCuHKz8MemTn3dFwdAq_BuFJz-iYP13ne0M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGALEXLuMWGBAQAwkULXGcxH5AqGKMVVvHBGXam3Ecp62AZjQt0_4Uv5FzciupRt_2wEsfmmPXds61Puc7hDxXSaR5GCnHU4w5jKfUibUv4IMKzyQhi2NWNJuIDg748bE4XCG_61oYTKusdWKhqJNM43_kWxSCKT-inLO3Jz8d7BqFt6t1C42SLfbM2SmEbPmb7ja8301Kd9733-06VVcBR0O4N3WUp5QRMZhBxFlRCaNgNQXTRiRp4hXImCELYxa4buwlimkdBbDqOPYD47HU9WHeS-QyuBGUF6mCh82tBXZvLm5XQ4zL_LC-RfX5Vg6GkmPaWIR13MJhLTu4aA3-MoeLqZrNfe0CtmlhD3du_G8neZNcrzxvu1OKyi2yYsbr5GrZi_Nsnayh212iVt8mvaIu2cH-GVNbVbgtdpbaCGn7wzino8TYas7ZdlUDaOfNJDZWFAzsXr_z4Q75ciEbu0tWx9nY3Ce2m-o01Ewo5msWI5oeV9QIRhOwMpTGFnFrNpC6QmXHzX2XRXaAz2XJORI4BxMFhGQWedUMOSkhSZYRP0Pekgj1McZcooGa5bnsfjySnQC0OxeBS_9F9PlTi-hlRZRmsEKtqvoN2CdCiLUoN1qUoLB0-3HNl7JSmLmcM6VFnjaPcSQmAY5NNsulJ7jPEZ8QprhXikVzABTcfPA-I4tELYFpCBBGvf1kPBoWcOoBdyGs9i3yuhat-bKWnOtmKX2tH9geHXVkNhnI2Uz6LILoC17WOXTDYS5zA9F3ECBeFCtgkYLQIi_OIa6--jbCIUx4EII9WH6ET8i13X5vX-53D_YekjXw8XlZaLBBVqeTmXlEruhfIA2Tx4X-ssnXixbzP_3I0nw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuGgvXMatMCAgBhIoauI4if2AULVSqMbKNMa0N-M4TlsBzWhapv01fh3n5FZSjb7tgZc81MdObJ-LT33Odwh5ruJQ8yBUtqsYsxlPqB1pT8CDCtfEAYsilhebCAcDfnws9tfI7yoXBsMqK52YK-o41fgfeZuCM-WFlHPWTsqwiP1u7-3JTxsrSOFNa1VOo2CRXXN2Cu5b9qbfhb3eprT37nDng11WGLA1uH4zW7lKGRGBSUTMFRUzChZUMG1EnMRujpIZsCBivuNEbqyY1qEPM4gizzcuSxwPxr1ELocecDFmqe_U4SV4Z1qk4QXoo3lBdaPq8XYGRpNjCFmIOd3CZg2buGwZ_jKNy2Gb9d3tEs5pbht7N_7nVb1JrpcncqtTiNAtsmYmm-RqUaPzbJNs4HG8QLO-TfbyfGUb62rMLFXiuVhpYiHU7Q9jn45jY6kFx1tlbqCV1YNYmGkwtPYOO-_vkC8XMrG7ZH2STsx9YjmJTgLNhGKeZhGi7HFFjWA0ButDadQiTsUSUpdo7Ti57zKPGvC4LLhIAhdhAIGQrEVe1V1OCqiSVcTPkM8kQoBMcNuHap5lsv_pSHZ80Ppc-A79F9HngwbRy5IoSeELtSrzOmCeCC3WoNxqUIIi083mikdlqUgzuWDQFnlaN2NPDA6cmHSeSVdwjyNuIQxxrxCRegEoHP_hVBq2SNgQnpoA4dWbLZPxKIdZ97kD7rbXIq8rMVt81op13S4ksfGC7vioI9PpUM7n0mMheGWwWefQjUaZzAx45b6POFIsh0vygxZ5cQ5x-dO3MXZhwgXX7MHqJXxCroF0y4_9we5DsgFHf17kH2yR9dl0bh6RK_oXCMP0ca7KLPL1oqX8D75z2vI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-trait+analysis+of+genome-wide+association+summary+statistics+using+MTAG&rft.jtitle=Nature+genetics&rft.au=Turley%2C+Patrick&rft.au=Walters%2C+Raymond+K.&rft.au=Maghzian%2C+Omeed&rft.au=Okbay%2C+Aysu&rft.date=2018-02-01&rft.issn=1546-1718&rft.volume=50&rft.issue=2&rft.spage=229&rft_id=info:doi/10.1038%2Fs41588-017-0009-4&rft.externalDocID=oai_DiVA_org_uu_347099 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |