Generating and evaluating a propensity model using textual features from electronic medical records

Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLOS ONE Ročník 14; číslo 3; s. e0212999
Hlavní autoři: Afzal, Zubair, Masclee, Gwen M. C., Sturkenboom, Miriam C. J. M., Kors, Jan A., Schuemie, Martijn J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science (PLoS) 04.03.2019
Public Library of Science
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding. In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users. The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after adjustment for age and sex. PS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.
AbstractList Background Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding. Methods In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users. Results The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after adjustment for age and sex. Conclusions PS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.
Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding. In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users. The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after adjustment for age and sex. PS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.
Background Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding. Methods In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users. Results The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18–1.36). Matching only on age resulted in an HR of 0.36 (0.11–1.16), and of 0.35 (0.11–1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13–1.38), which reduced to 0.35 (0.96–1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13–1.39), which dropped to 0.31 (0.09–1.08) after adjustment for age and sex. Conclusions PS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.
Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding. In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users. The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after adjustment for age and sex. PS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.
Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding.BACKGROUNDPropensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much unstructured data that could be used as proxies for potential confounding factors. The goal of this study was to assess whether the unstructured information can also be used to construct PS models that would allow to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal bleeding.In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users.METHODSIn a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch Integrated Primary Care Information (IPCI) database, we identified all patients who experienced an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two PS models using all structured and unstructured information in the EHR. We calculated hazard ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor users compared to nonselective NSAID (nsNSAID) users.The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after adjustment for age and sex.RESULTSThe crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after adjustment for age and sex.PS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.CONCLUSIONSPS models can be created using unstructured information in EHRs. An incremental benefit was observed by matching on PS over traditional matching and adjustment for covariates.
Audience Academic
Author Jan A. Kors
Martijn J. Schuemie
Gwen M. C. Masclee
Zubair Afzal
Miriam C. J. M. Sturkenboom
AuthorAffiliation University of Oxford, UNITED KINGDOM
2 Janssen Research and Development LLC, Titusville, NJ, United States of America
1 Department of Medical Informatics, Erasmus University Medical Center, CA Rotterdam, Netherlands
AuthorAffiliation_xml – name: University of Oxford, UNITED KINGDOM
– name: 2 Janssen Research and Development LLC, Titusville, NJ, United States of America
– name: 1 Department of Medical Informatics, Erasmus University Medical Center, CA Rotterdam, Netherlands
Author_xml – sequence: 1
  givenname: Zubair
  orcidid: 0000-0002-3289-7217
  surname: Afzal
  fullname: Afzal, Zubair
– sequence: 2
  givenname: Gwen M. C.
  surname: Masclee
  fullname: Masclee, Gwen M. C.
– sequence: 3
  givenname: Miriam C. J. M.
  surname: Sturkenboom
  fullname: Sturkenboom, Miriam C. J. M.
– sequence: 4
  givenname: Jan A.
  surname: Kors
  fullname: Kors, Jan A.
– sequence: 5
  givenname: Martijn J.
  surname: Schuemie
  fullname: Schuemie, Martijn J.
BackLink https://cir.nii.ac.jp/crid/1871991017542719872$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/30830923$$D View this record in MEDLINE/PubMed
BookMark eNqNk21rFDEQxxep2Fr7DUQXFNEXdyab3U3iC6EUrQeFgk9vQzY7uabkkjPJFvvtzfb25K4UlIXdZPKb_2RmZ54WB847KIrnGM0xofj9tR-Ck3a-zuY5qnDFOX9UHGFOqllbIXKwsz4sTmI0Haobgilq0JPikCBGEK_IUaHOwUGQybhlKV1fwo20w7Qt18GvwUWTbsuV78GWQxwPEvxOg7SlBpmGALHUwa9KsKBS8M6ocgW9URkIoHzo47PisZY2wsn0PS5-fP70_ezL7OLyfHF2ejFTlNE000S2PcM1QphXgGvJoGct1pXGGrVc0apDPacIIcmprrHSsu9IzRFQJXmHyHHxcqO7tj6KqURRVJhRTghmPBOLDdF7eS3WwaxkuBVeGnFn8GEpZEhGWRANbeqqgY5y1taqVpJUspNa173OF-wga32cog1dTliBS0HaPdH9E2euxNLfiJZwljWzwNtJIPhfA8QkViYqsFY68MPdvVmFGoLajL66hz6c3UQtZU7AOO1zXDWKitOGtrxmlOFMzR-g8tPDyqjcT9pk-57Duz2HzIwdsJRDjGLx7ev_s5c_99k3O-wVSJuuordDMt7FffDFbqX_lnjbxRn4sAFU8DEG0EKZJEednJqxAiMxTs22aGKcGjFNTXau7zlv9f_h9nrj5ozJ4cZ3_hOYc4zw2Dp5yWhF_gCIqCaG
CitedBy_id crossref_primary_10_1002_pds_5500
crossref_primary_10_1016_j_hlpt_2024_100844
crossref_primary_10_1080_00031305_2024_2368794
crossref_primary_10_1093_ije_dyac026
crossref_primary_10_1002_cpt_2826
crossref_primary_10_1016_j_jbi_2025_104882
Cites_doi 10.1002/art.22096
10.1097/PHH.0b013e31821f2d73
10.1093/aje/kwj149
10.1016/j.jclinepi.2004.10.012
10.1007/s00228-012-1334-2
10.1093/aje/kwu253
10.1136/gut.2011.239848
10.1186/1472-6947-13-30
10.1093/oxfordjournals.aje.a009758
10.1055/s-0038-1634402
10.1093/aje/kwv108
10.7326/0003-4819-127-8_Part_2-199710151-00064
10.1097/EDE.0b013e3181a663cc
10.1093/aje/kwr364
10.1038/ncprheum0652
10.1185/030079907X210561
10.1186/ar1488
10.1002/pds.2328
10.1097/01.ede.0000135174.63482.43
10.1016/S0140-6736(13)60900-9
10.1038/clpt.1989.156
10.1097/MLR.0b013e3181dbebe3
10.1080/00273171.2011.568786
10.1186/1471-2288-13-142
10.1002/pds.2152
10.1093/biomet/70.1.41
10.1198/004017007000000245
10.1002/pds.2027
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Afzal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Afzal et al 2019 Afzal et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Afzal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Afzal et al 2019 Afzal et al
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0212999
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList




Agricultural Science Database


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
DocumentTitleAlternate Generating a propensity model using textual features
EISSN 1932-6203
ExternalDocumentID 2187933189
oai_doaj_org_article_575425eb79864c4ca32abaff4df001be
PMC6398864
A576948781
30830923
10_1371_journal_pone_0212999
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations Netherlands
United States--US
GeographicLocations_xml – name: Netherlands
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: 91896632
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RYH
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAYXX
CITATION
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c787t-f3a6d81400192e14a8ed861f2f1f069c72b0d97000a97f41cfadb3490e7ca9b03
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460371700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:07 EDT 2023
Fri Oct 03 12:34:40 EDT 2025
Tue Nov 04 01:50:52 EST 2025
Thu Oct 02 10:46:02 EDT 2025
Tue Oct 07 07:45:39 EDT 2025
Sat Nov 29 13:09:03 EST 2025
Sat Nov 29 10:07:33 EST 2025
Wed Nov 26 10:24:51 EST 2025
Wed Nov 26 10:12:20 EST 2025
Thu May 22 21:21:06 EDT 2025
Wed Feb 19 02:31:06 EST 2025
Sat Nov 29 02:58:20 EST 2025
Tue Nov 18 21:39:37 EST 2025
Mon Nov 10 09:18:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c787t-f3a6d81400192e14a8ed861f2f1f069c72b0d97000a97f41cfadb3490e7ca9b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Competing Interests: This study was supported by the VICI project 91896632 of the Netherlands Organization for Health Research and Development ZonMw. Janssen Research and Development provided support in the form of salaries for author M.J.S. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0001-7812-2399
0000-0002-3289-7217
OpenAccessLink https://doaj.org/article/575425eb79864c4ca32abaff4df001be
PMID 30830923
PQID 2187933189
PQPubID 1436336
PageCount e0212999
ParticipantIDs plos_journals_2187933189
doaj_primary_oai_doaj_org_article_575425eb79864c4ca32abaff4df001be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6398864
proquest_miscellaneous_2188205306
proquest_journals_2187933189
gale_infotracmisc_A576948781
gale_infotracacademiconefile_A576948781
gale_incontextgauss_ISR_A576948781
gale_incontextgauss_IOV_A576948781
gale_healthsolutions_A576948781
pubmed_primary_30830923
crossref_citationtrail_10_1371_journal_pone_0212999
crossref_primary_10_1371_journal_pone_0212999
nii_cinii_1871991017542719872
PublicationCentury 2000
PublicationDate 2019-03-04
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLOS ONE
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science (PLoS)
Public Library of Science
Publisher_xml – name: Public Library of Science (PLoS)
– name: Public Library of Science
References JA Rassen (ref22) 2013
MA Brookhart (ref32) 2010; 48
PC Austin (ref16) 2011; 46
DB Rubin (ref17) 1997; 127
E Garbe (ref21) 2013; 69
V Le H (ref35) 2013; 13
J a Myers (ref31) 2011; 174
MA Hernan (ref36) 2004; 15
A Genkin (ref27) 2007; 49
R Pirracchio (ref30) 2015; 181
S Suissa (ref5) 2007; 3
Z Afzal (ref26) 2013; 13
M Salas (ref6) 1999; 149
SX Sun (ref38) 2007; 23
GM Masclee (ref9) 2014
P Yadav (ref14) 2016; 1
JA Rassen (ref33) 2012; 21
N Bhala (ref11) 2013; 382
G Mosis (ref8) 2006; 55
JM Franklin (ref34) 2015; 182
ref24
H Lamberts (ref25) 1987
S Schneeweiss (ref4) 2005; 58
E Ford (ref13) 2016
A Vlug (ref23) 1999; 38
EM van Soest (ref12) 2011; 60
MA Brookhart (ref18) 2006; 163
P Rosenbaum (ref15) 1983; 70
Y Moride (ref10) 2005; 7
J Allen-Dicker (ref3) 2012; 18
JA Rassen (ref29) 2012; 21
ref7
S Toh (ref19) 2011; 20
F Mosteller (ref28) 1968
C Bombardier (ref37) 2000
B Strom (ref1) 1989; 46
JA Linder (ref2) 2010; 19
S Schneeweiss (ref20) 2009; 20
References_xml – volume: 55
  start-page: 537
  year: 2006
  ident: ref8
  article-title: Channeling and prevalence of cardiovascular contraindications in users of cyclooxygenase 2 selective nonsteroidal antiinflammatory drugs
  publication-title: Arthritis Rheum
  doi: 10.1002/art.22096
– year: 2016
  ident: ref13
  article-title: Extracting information from the text of electronic medical records to improve case detection: a systematic review
  publication-title: J Am Med Informatics Assoc
– volume: 18
  start-page: 209
  year: 2012
  ident: ref3
  article-title: Comparison of electronic laboratory reports, administrative claims, and electronic health record data for acute viral hepatitis surveillance
  publication-title: J Public Health Manag Pract
  doi: 10.1097/PHH.0b013e31821f2d73
– volume: 163
  start-page: 1149
  year: 2006
  ident: ref18
  article-title: Variable selection for propensity score models
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj149
– ident: ref7
– volume: 58
  start-page: 323
  year: 2005
  ident: ref4
  article-title: A review of uses of health care utilization databases for epidemiologic research on therapeutics
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2004.10.012
– volume: 69
  start-page: 549
  year: 2013
  ident: ref21
  article-title: High-dimensional versus conventional propensity scores in a comparative effectiveness study of coxibs and reduced upper gastrointestinal complications
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-012-1334-2
– volume: 181
  start-page: 108
  year: 2015
  ident: ref30
  article-title: Improving Propensity Score Estimators’ Robustness to Model Misspecification Using Super Learner
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwu253
– year: 2000
  ident: ref37
  article-title: Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis
  publication-title: The New England journal of medicine
– year: 2014
  ident: ref9
  article-title: Risk for Upper Gastrointestinal Bleeding from Different Drug Combinations
  publication-title: Gastroenterology
– volume: 21
  start-page: 69
  year: 2012
  ident: ref29
  article-title: One-to-many propensity score matching in cohort studies
– volume: 60
  start-page: 1650
  year: 2011
  ident: ref12
  article-title: Suboptimal gastroprotective coverage of NSAID use and the risk of upper gastrointestinal bleeding and ulcers: an observational study using three European databases
  publication-title: Gut
  doi: 10.1136/gut.2011.239848
– ident: ref24
– volume: 13
  start-page: 30
  year: 2013
  ident: ref26
  article-title: Sturkenboom MCJM, Kors J a. Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-13-30
– volume: 149
  start-page: 981
  year: 1999
  ident: ref6
  article-title: Confounding by Indication: An Example of Variation in the Use of Epidemiologic Terminology
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a009758
– volume: 38
  start-page: 339
  year: 1999
  ident: ref23
  article-title: Postmarketing surveillance based on electronic patient records: the IPCI project
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634402
– start-page: 80
  year: 1968
  ident: ref28
  article-title: The handbook of social psychology: Vol 2 Research methods
– volume: 182
  start-page: 651
  year: 2015
  ident: ref34
  article-title: Regularized Regression Versus the High-Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwv108
– volume: 127
  start-page: 757
  year: 1997
  ident: ref17
  article-title: Estimating causal effects from large data sets using propensity scores
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-127-8_Part_2-199710151-00064
– volume: 20
  start-page: 512
  year: 2009
  ident: ref20
  article-title: High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181a663cc
– volume: 174
  start-page: 1213
  year: 2011
  ident: ref31
  article-title: Effects of adjusting for instrumental variables on bias and precision of effect estimates
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwr364
– volume: 3
  start-page: 725
  year: 2007
  ident: ref5
  article-title: Primer: administrative health databases in observational studies of drug effects—advantages and disadvantages
  publication-title: Nat Clin Pract Rheumatol
  doi: 10.1038/ncprheum0652
– volume: 23
  start-page: 1859
  year: 2007
  ident: ref38
  article-title: Withdrawal of COX-2 selective inhibitors rofecoxib and valdecoxib: impact on NSAID and gastroprotective drug prescribing and utilization
  publication-title: Curr Med Res Opin
  doi: 10.1185/030079907X210561
– volume: 7
  start-page: R333
  year: 2005
  ident: ref10
  article-title: Prescription channeling of COX-2 inhibitors and traditional nonselective nonsteroidal anti-inflammatory drugs: a population-based case-control study
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar1488
– volume: 21
  start-page: 41
  year: 2012
  ident: ref33
  article-title: Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2328
– volume: 15
  start-page: 615
  year: 2004
  ident: ref36
  article-title: A structural approach to selection bias
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000135174.63482.43
– volume: 1
  start-page: 1
  year: 2016
  ident: ref14
  article-title: Mining Electronic Health Records: A Survey
  publication-title: ACM Comput Surv
– start-page: 376
  year: 2013
  ident: ref22
  article-title: PHARMACOEPIDEMIOLOGY AND DRUG SAFETY
– volume: 382
  start-page: 769
  year: 2013
  ident: ref11
  article-title: Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60900-9
– volume: 46
  start-page: 390
  year: 1989
  ident: ref1
  article-title: Automated databases used for pharmacoepidemiology research
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1989.156
– volume: 48
  start-page: S114
  year: 2010
  ident: ref32
  article-title: Confounding control in healthcare database research: challenges and potential approaches
  publication-title: Med Care
  doi: 10.1097/MLR.0b013e3181dbebe3
– volume: 46
  start-page: 399
  year: 2011
  ident: ref16
  article-title: An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
  publication-title: Multivariate Behav Res
  doi: 10.1080/00273171.2011.568786
– volume: 13
  start-page: 142
  year: 2013
  ident: ref35
  article-title: Effects of aggregation of drug and diagnostic codes on the performance of the high-dimensional propensity score algorithm: an empirical example
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-13-142
– volume: 20
  start-page: 849
  year: 2011
  ident: ref19
  article-title: Confounding adjustment via a semi‐automated high‐dimensional propensity score algorithm: an application to electronic medical records
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2152
– volume: 70
  start-page: 41
  year: 1983
  ident: ref15
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 49
  start-page: 291
  year: 2007
  ident: ref27
  article-title: Large-Scale Bayesian Logistic Regression for Text Categorization
  publication-title: Technometrics
  doi: 10.1198/004017007000000245
– start-page: 204
  year: 1987
  ident: ref25
  article-title: ICPC: International Classification of Primary Care
  publication-title: Scand J Prim Health Care
– volume: 19
  start-page: 1211
  year: 2010
  ident: ref2
  article-title: Secondary use of electronic health record data: spontaneous triggered adverse drug event reporting
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2027
SSID ssib045317050
ssib045318062
ssib045324867
ssib045316197
ssib045319074
ssib045319085
ssib045319086
ssib045316121
ssib045318733
ssib045316049
ssib045317797
ssib045315901
ssib045318737
ssib045317988
ssj0053866
Score 2.320702
Snippet Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs) contain much...
Background Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs)...
BACKGROUND:Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs)...
Background Propensity score (PS) methods are commonly used to control for confounding in comparative effectiveness studies. Electronic health records (EHRs)...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e0212999
SubjectTerms Adult
Age
Aged
Aged, 80 and over
Algorithms
Anti-inflammatory agents
Automation
Bleeding
Channeling
Chi-square test
Classification
Clinical trials
Cohort Studies
Comparative studies
Confidence intervals
Confounding Factors, Epidemiologic
COX-2 inhibitors
Cyclooxygenase 2 Inhibitors
Cyclooxygenase 2 Inhibitors - adverse effects
Cyclooxygenase-2
Data Interpretation, Statistical
Dosage and administration
Drug therapy
Electronic Health Records
Electronic Health Records - statistics & numerical data
Electronic medical records
Electronic records
EMC NIHES-03-77-01
Family medical history
Female
Gastrointestinal Hemorrhage
Gastrointestinal Hemorrhage - chemically induced
Gastrointestinal Hemorrhage - epidemiology
Health
Health care
Health informatics
Health services
Humans
Inflammation
Inhibitors
Intestine
Male
Matching
Medical records
Medicine
Medicine and health sciences
Methods
Middle Aged
Netherlands
Netherlands - epidemiology
Nonsteroidal anti-inflammatory drugs
Oxygenase
Patients
Physical Sciences
Primary care
Product safety
Propensity Score
Proportional Hazards Models
Prostaglandin endoperoxide synthase
Proxy
Q
R
R&D
Regression analysis
Research & development
Research and Analysis Methods
Research Article
Risk
Risk Assessment
Risk Assessment - methods
Risk factors
Science
Sex
Statistical analysis
Studies
Surveillance
Technology application
Unstructured data
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfY4IEXYHxsgQ0MQgIesiWxE8dPaCAmeBkTX9qb5Th2qTSS0rT8_dw5TkrQBEi8VG19TWrfR-7O598R8jTPrK2SPIl5XeeYutFxxXMIVaQFBxVRn7jzzSbE6Wl5fi7PQsKtC2WVg030hrpuDebIjzJsi81AAuXLxfcYu0bh7mpoobFFriJKAvOle2eDJQZdLopwXI6J9Chw53DRNvYQoc2lR3zdPI48av9om7ea-RwhTy_a7jL38_cqyl8eSyc3_3dCt8iN4JDS416CdsgV29wmO0HlO_o84FK_uENM_xbrpKluajoAheNHusCkfoMFHtQ316FYUD-jWFeyhss76wFEO4rHWeim9w791m8U0T5Z1N0ln0_efHr9Ng49GmIDqr6KHdNFjahZ6CralOvS1mWRusylLimkEVmV1FKA4dVSOJ4ap-uKcZlYYbSsEnaPbDfAjz1CUwEEJpGmtIxXXJaFM2khUnAhXCIdiwgbWKVMADDHPhoXyu_KCQhk-iVTyGAVGByRePzVogfw-Av9K5SCkRbht_0X7XKmgjarHPsG57YSCG5vuNEs05V2jtcOFqKyEXmEMqT6s6yjEVHHEN1JCBHLNCJPPAVCcDTIi5led5169_7LPxB9_DAhehaIXAvLYXQ4VwFzQmivCeX-hBIMiZkMH4DEw9LiKwgnFsWBvYaZCsxMZRHZQ10YVq1TGwmGKw8yfvnw43EYb4p1fY1t154GXNAczEJEdnt1GleeQXSQQPwRETFRtAlrpiPN_KtHSAe3uwTO3P_z33pAroP7K31FId8n26vl2h6Qa-bHat4tH3pT8hODdXxW
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY4IGXwfjYAh0YhAQ8ZMSxE8ePA1GBhMbEl_ZmOY49Km1ptbT8_dw5bkamTcBL1NSXtL7zne_s8-8IeVHkztVZkaWiaQpcujFpLQoIVZQDBxVRn4QPxSbk4WF1fKyOLgLFSzv4XLI3kaf7i3nr9hGQHFyaDXIz52WJKVzTo09rywu6W5bxeNx1T46mn4DSP9jijXY2Q4jT03l3lbt5OWvyj2loeud_O3CXbEWHkx70I2Sb3HDtPbIdVbqjryLu9Ov7xPYfMQ-amrahayBwvKULXLRvMYGDhuI5FBPmTyjmjazg9d4FgNCO4nEVelFbh571G0G0XwzqHpDv0_ff3n1IYw2G1IIqL1PPTdkgKha6go4JU7mmKpnPPfNZqazM66xREgyrUdILZr1pai5U5qQ1qs74Q7LZQsd3CWUSCGymbOW4qIWqSm9ZKRm4CD5TnieEr0WjbQQoxzoZpzrsukkIVHqWaeSkjpxMSDo8tegBOv5C_xalPtAivHb4AkSmo7bqAusCF66WCF5vhTU8N7XxXjQeGFG7hDzFMaP7s6qDkdAHEL0pCAErlpDngQIhNlqUxYlZdZ3--PnHPxB9_TIiehmJ_BzYYU08NwF9QuiuEeVkRAmGwo6a92CEA2vxyiBQhtAA7DH0VOLKU56QXRz7a651OsdK9ByMPjBtstaHq5ufDc34o5i317r5KtCAi1mA2idkp1efgfMcvP8M4ouEyJFijUQzbmlnPwMCOrjVFUjm0fX_-DG5Da6tCtmCYkI2l-crt0du2V_LWXf-JJiN31_QaqQ
  priority: 102
  providerName: Public Library of Science
Title Generating and evaluating a propensity model using textual features from electronic medical records
URI https://cir.nii.ac.jp/crid/1871991017542719872
https://www.ncbi.nlm.nih.gov/pubmed/30830923
https://www.proquest.com/docview/2187933189
https://www.proquest.com/docview/2188205306
https://pubmed.ncbi.nlm.nih.gov/PMC6398864
https://doaj.org/article/575425eb79864c4ca32abaff4df001be
http://dx.doi.org/10.1371/journal.pone.0212999
Volume 14
WOSCitedRecordID wos000460371700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF7RwoELorxqSMOCkICDg9ev9R6bqhFVabBSqEIv1nq9WyIVJ6oTfj8z60drVKkcuIyS7CSR5-WZ9ew3hLyLfK1zL_LcsCgi3LqRbh5GUKoIDQkqoj6Fxg6b4NNpMp-L9MaoL-wJq-GBa8FBwR6BWemcI464CpUMfJlLY8LCQITNNUZfyHraYqqOweDFcdwclAs4-9ToZbRalnqEoObCYr1e34gsXn8XlbfKxQLBTi-X1W2J59_9kzduSJPH5FGTSdL9-gp2yD1dPiE7ja9W9EMDKP3xKVH1S2xwprIsaIvwjW_pCnfjS-zMoHYqDsVO-AuKDSEb-HmjLfJnRfEcCr0emkN_1U94aL3LUz0j3yeH3w4-u81wBVeBj65dE8i4QLgrzPE0C2WiiyRmxjfMeLFQ3M-9QnCImFJwEzJlZJEHofA0V1LkXvCcbJcgzl1CGQcG5QmV6CDMQ1CUUSzmDO79xhMmcEjQSjpTDfI4DsC4zOzjNA4VSC2yDPWTNfpxiNt9a1Ujb9zBP0YldryIm20_AGvKGmvK7rImh7xGE8jqQ6id92f7UJYJqO0S5pC3lgOxM0rUxYXcVFV29PXsH5hOZz2m9w2TWYI4lGwORMA1ISZXj3PQ44QIoHrLe2CwIFqkDCpgyPkh0MKVctxS8h2yi6bcSq3KfBwxH0A0B6ENWvO-fflNt4x_ig15pV5uLA_kjhH4s0Ne1N7QST6AtN6DwsEhvOcnPdX0V8rFTwttDvlyApp5-T90-Yo8hOxW2IbBcEC211cbvUceqN_rRXU1JFt8doZ0zi1NgCYHbEjujw-n6Wxo4wnQSfoF6PF4BPTEO0bKU0tPgabROXwjPTpJf_wBKvZ7iQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbaggQXoLy60FKDQMBh2317fUCoPKpGLQGVUvVmvF47RCq7IZuA-FP8Rma8j7CoAi49cImSeOKNxzPjGXv8DSEP40DrzIs9N8rzGLdupJtFMYQqXIODiqhPkbHFJthwmJ6c8HdL5Ed7FwbTKlubaA11XircI98OsCx2CBLIn0--uFg1Ck9X2xIatVjs6-_fIGSrng1ewfw-CoLd10cv99ymqoCrQDhnrgllkiPOEzo32o9kqvM08U1gfOMlXLEg83LOwFRIzkzkKyPzLIy4p5mSPPNC6HeZXAA77mMKGTs8bi0_2I4kaa7nhczfbqRha1IWeguh1LlFmF0sf7ZKQLcWLBfjMUKsnpbVWe7u71mbvyyDu1f_NwZeI1cah5vu1BqySpZ0cZ2sNiatok8a3O2nN4iq32IeOJVFTlsgdPxIJ3hoUWACC7XFgyheGBhRzJuZQ_dGW4DUiuJ1HbqoLUQ_1wdhtN4Mq26SD-cy2FtkpYD5XyPUZ0CgPK5SHUZZxNPEKD9hPrhIxuMmdEjYioZQDUA71gk5FfbUkUGgVrNMoECJRqAc4na_mtQAJX-hf4FS19EivLj9opyORGOtRIx1kWOdMQTvV5GSYSAzaUyUG2BEph2yiTIr6ru6nZEUOxC9cgiBU98hDywFQowUOBcjOa8qMXh7_A9E7w97RI8bIlMCO5Rs7o3AmBC6rEe53qMEQ6l6zRugYcBafAVlwKQ_WI9gpAx33gKHrKHutVyrxEJjoOdWp85uvt8140Mxb7HQ5dzSgIsdg9lzyO1afTvOhxD9eBBfOYT1FLs3Nf2WYvzJIsBDWJHCzNz589_aJJf2jt4ciIPBcP8uuQyuPrfZk9E6WZlN53qDXFRfZ-Nqes-aMUo-nrfa_wS019j_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELe2gRAvwPhaYGMGgYCHrPl2_IDQ2JiohsoEA-0tOI5dKo2kNC2If42_jjvHSQmagJc98FK19dWpz3dnn333O0IexoFSuRd7blQUMR7dCDePYnBVuIINKqI-RdoUm2CjUXpywo9WyI82FwbDKlubaAx1UUk8Ix8EWBY7BAnkA23DIo72D55Pv7hYQQpvWttyGo2IHKrv38B9q58N92GuHwXBwcvjvVeurTDgShDUuatDkRSI-YQbHeVHIlVFmvg60L72Ei5ZkHsFZ2A2BGc68qUWRR5G3FNMCp57IfS7Si6wEKQYs9T3uvASsCNJYlP1QuYPrGTsTKtS7SCsOjdos8ul0FQM6NaF1XIyQbjV06o-a-v7ewTnL0viwdX_mZnXyBW7Eae7jeaskxVVXifr1tTV9InF4356g8jmLcaHU1EWtAVIx490ipcZJQa2UFNUiGIiwZjiWBfQvVYGOLWmmMZDlzWH6Ofmgow2h2T1TfL-XAZ7i6yVIAsbhPoMCKTHZarCKI94mmjpJ8yHrZP2uA4dErZikkkL3I71Q04zcxvJwIFrWJahcGVWuBzidr-aNsAlf6F_gRLY0SLsuPmimo0za8WyGOslxypnCOovIynCQORC66jQwIhcOWQb5Tdrcng745ntglfLwTVOfYc8MBQIPVLiXIzFoq6z4ZsP_0D07m2P6LEl0hWwQwqbTwJjQkizHuVmjxIMqOw1b4G2AWvxFRQDgwFhnYKRMjyRCxyygXrYcq3OltoDPbf6dXbz_a4ZH4rxjKWqFoYGtt4xmEOH3G5UueN8CF6RB36XQ1hPyXtT028pJ58MMjy4GynMzJ0__61tcgm0PXs9HB3eJZfBA-AmqDLaJGvz2UJtkYvy63xSz-4Zi0bJx_PW-p9oBeFa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+and+evaluating+a+propensity+model+using+textual+features+from+electronic+medical+records&rft.jtitle=PloS+one&rft.au=Zubair+Afzal&rft.au=Gwen+M+C+Masclee&rft.au=Miriam+C+J+M+Sturkenboom&rft.au=Jan+A+Kors&rft.date=2019-03-04&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0212999&rft_id=info:doi/10.1371%2Fjournal.pone.0212999&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_575425eb79864c4ca32abaff4df001be
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon