Topological quantum chemistry

Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent succes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 547; číslo 7663; s. 298 - 305
Hlavní autoři: Bradlyn, Barry, Elcoro, L., Cano, Jennifer, Vergniory, M. G., Wang, Zhijun, Felser, C., Aroyo, M. I., Bernevig, B. Andrei
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 20.07.2017
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more. A complete electronic band theory is presented that describes the global properties of all possible band structures and materials, and can be used to predict new topological insulators and semimetals. A quantum chemistry theory of electron bands Chemists and physicists have traditionally fostered very different perspectives on energy band theory. Barry Bradlyn et al . have developed a new and complete theory to calculate electronic band structure with the unique feature that it can be used to determine for any material whether it is topologically trivial or not. The theory consists of several parts, joining up the conventional band structure approach, which considers electron properties in non-local, momentum space, with a local viewpoint of chemical bonding and interactions. The authors classify the band structures for all 230 symmetry groups and show how this can be used to search for previously undiscovered materials with interesting topological properties.
AbstractList Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.
Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.
Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more. A complete electronic band theory is presented that describes the global properties of all possible band structures and materials, and can be used to predict new topological insulators and semimetals. A quantum chemistry theory of electron bands Chemists and physicists have traditionally fostered very different perspectives on energy band theory. Barry Bradlyn et al . have developed a new and complete theory to calculate electronic band structure with the unique feature that it can be used to determine for any material whether it is topologically trivial or not. The theory consists of several parts, joining up the conventional band structure approach, which considers electron properties in non-local, momentum space, with a local viewpoint of chemical bonding and interactions. The authors classify the band structures for all 230 symmetry groups and show how this can be used to search for previously undiscovered materials with interesting topological properties.
Not provided.
Audience Academic
Author Cano, Jennifer
Vergniory, M. G.
Bradlyn, Barry
Felser, C.
Bernevig, B. Andrei
Wang, Zhijun
Aroyo, M. I.
Elcoro, L.
Author_xml – sequence: 1
  givenname: Barry
  surname: Bradlyn
  fullname: Bradlyn, Barry
  organization: Princeton Center for Theoretical Science, Princeton University
– sequence: 2
  givenname: L.
  surname: Elcoro
  fullname: Elcoro, L.
  organization: Department of Condensed Matter Physics, University of the Basque Country UPV/EHU
– sequence: 3
  givenname: Jennifer
  surname: Cano
  fullname: Cano, Jennifer
  organization: Princeton Center for Theoretical Science, Princeton University
– sequence: 4
  givenname: M. G.
  surname: Vergniory
  fullname: Vergniory, M. G.
  organization: Donostia International Physics Center, Department of Applied Physics II, University of the Basque Country UPV/EHU, Max Planck Institute for Solid State Research
– sequence: 5
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
  organization: Department of Physics, Princeton University
– sequence: 6
  givenname: C.
  surname: Felser
  fullname: Felser, C.
  organization: Max Planck Institute for Chemical Physics of Solids
– sequence: 7
  givenname: M. I.
  surname: Aroyo
  fullname: Aroyo, M. I.
  organization: Department of Condensed Matter Physics, University of the Basque Country UPV/EHU
– sequence: 8
  givenname: B. Andrei
  surname: Bernevig
  fullname: Bernevig, B. Andrei
  email: bernevig@princeton.edu
  organization: Donostia International Physics Center, Department of Physics, Princeton University, Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, Sorbonne Universités, UPMC Université Paris 06
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28726818$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1535042$$D View this record in Osti.gov
BookMark eNqF09FrEzEcB_AgE9dNn3xWxnyZ6M38ktwl91jK1MFQ0IqPIU1zXcY1aZMcbP-9KZ3uOq6Oewgcn983v_BLjtCB884g9BrwOWAqPjmVumAIJZV4hkbAeFWwSvADNMKYiAILWh2ioxhvMMYlcPYCHRLBswYxQm-mfuVbv7BatSfrTrnULU_0tVnamMLdS_S8UW00r-7XY_Tr88V08rW4-v7lcjK-KjTndSpmJYAwUGKhSKl0CQa0apiuOeUNns01VUbUhGlNKAUGGpeNpiVuag6qJhU9RqfbXB-TlVHbZPS19s4ZnSSUmTKS0dkWrYJfdyYmmZvUpm2VM76LEmoCQGnFeabvHtEb3wWXj7BRRNQcc_qgFqo10rrGp6D0JlSOK8I4Lglh_1WsFqIGCpvmigG1MM4E1eZ5NTb_3vGnA16v7Fr2t96L-knnAyh_8zxEPbj1-52CbJK5TQvVxSgvf_7YPfxTtp_7Yb8dT39Pvu0mP6372W_vB9rNlmYuV8EuVbiTfy_yQ5wOPsZgmn8EsNw8E9l7JlnDI52vnEo29xCUbffUfNzWxJzsFib07tQA_wOTkBjE
CitedBy_id crossref_primary_10_1016_j_apmt_2024_102360
crossref_primary_10_1103_PhysRevApplied_17_064008
crossref_primary_10_1038_s41567_020_01093_z
crossref_primary_10_1073_pnas_2007384117
crossref_primary_10_1088_2515_7639_ac363d
crossref_primary_10_1038_s41563_018_0050_4
crossref_primary_10_1038_s41467_024_44762_w
crossref_primary_10_1002_adma_202201328
crossref_primary_10_1002_pssr_202000351
crossref_primary_10_1007_s11467_021_1075_8
crossref_primary_10_3390_nano13030476
crossref_primary_10_1016_j_physc_2021_1353928
crossref_primary_10_1088_1361_6463_ad2569
crossref_primary_10_1088_1361_648X_ab7adb
crossref_primary_10_1038_s41567_021_01340_x
crossref_primary_10_1103_k2t5_wcq1
crossref_primary_10_1038_s41377_021_00614_6
crossref_primary_10_1103_4k6g_hy6y
crossref_primary_10_1103_PhysRevB_108_115146
crossref_primary_10_1103_PhysRevResearch_1_033074
crossref_primary_10_1103_PhysRevResearch_6_033235
crossref_primary_10_1038_s41586_019_0954_4
crossref_primary_10_1103_1sw2_qkpw
crossref_primary_10_1103_PhysRevB_105_094518
crossref_primary_10_1088_2053_1583_ab1607
crossref_primary_10_1016_j_commatsci_2024_113491
crossref_primary_10_1103_PhysRevResearch_2_033236
crossref_primary_10_1103_qcr8_jxvn
crossref_primary_10_1103_PhysRevB_105_125115
crossref_primary_10_1107_S1600576717011712
crossref_primary_10_1103_PhysRevX_8_031070
crossref_primary_10_1002_adfm_201706504
crossref_primary_10_1002_adfm_202316079
crossref_primary_10_1038_s41567_020_01104_z
crossref_primary_10_1038_s41467_023_44547_7
crossref_primary_10_1063_5_0115300
crossref_primary_10_1103_PhysRevX_14_021053
crossref_primary_10_1103_PhysRevResearch_6_043273
crossref_primary_10_1063_1_5124314
crossref_primary_10_1103_PhysRevResearch_5_023142
crossref_primary_10_1007_s11128_021_03022_2
crossref_primary_10_1021_acs_chemmater_5c00908
crossref_primary_10_1088_1361_6668_ad4a32
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1063_5_0287784
crossref_primary_10_1103_xnqg_3bgh
crossref_primary_10_1103_PhysRevResearch_6_L022016
crossref_primary_10_1103_PhysRevX_8_031089
crossref_primary_10_1103_PhysRevA_105_053521
crossref_primary_10_1103_PhysRevX_9_041015
crossref_primary_10_1088_1361_6668_abe4b7
crossref_primary_10_1103_PhysRevB_106_235159
crossref_primary_10_1103_PhysRevB_111_165205
crossref_primary_10_1016_j_jnoncrysol_2022_121651
crossref_primary_10_1103_PhysRevB_103_245107
crossref_primary_10_1002_adma_202005698
crossref_primary_10_1002_advs_202507469
crossref_primary_10_1103_PhysRevB_105_184105
crossref_primary_10_1002_adma_202006301
crossref_primary_10_1088_1674_1056_ab8201
crossref_primary_10_1002_qua_26367
crossref_primary_10_1103_PhysRevB_107_245108
crossref_primary_10_1103_PhysRevLett_134_023801
crossref_primary_10_1126_science_abk3333
crossref_primary_10_1038_s41524_025_01624_3
crossref_primary_10_1038_s41535_022_00441_x
crossref_primary_10_1134_S1054661820020157
crossref_primary_10_1088_1361_648X_acb89c
crossref_primary_10_1103_PhysRevB_105_195129
crossref_primary_10_1038_s41598_019_45028_y
crossref_primary_10_1146_annurev_conmatphys_041720_124134
crossref_primary_10_1103_PhysRevApplied_20_054002
crossref_primary_10_1016_j_jpcs_2018_01_023
crossref_primary_10_1103_PhysRevX_12_041013
crossref_primary_10_3389_fchem_2021_789522
crossref_primary_10_1038_s41535_024_00699_3
crossref_primary_10_1038_s41563_023_01587_0
crossref_primary_10_1103_PhysRevResearch_4_013169
crossref_primary_10_1016_j_jallcom_2020_157098
crossref_primary_10_3390_condmat10010003
crossref_primary_10_1103_37kh_kc81
crossref_primary_10_1063_5_0181131
crossref_primary_10_1088_1361_648X_ac37d9
crossref_primary_10_1016_j_cpc_2025_109510
crossref_primary_10_1016_j_physe_2025_116279
crossref_primary_10_1103_PhysRevResearch_6_L022031
crossref_primary_10_1103_PhysRevB_111_064519
crossref_primary_10_1103_PhysRevMaterials_6_094201
crossref_primary_10_1016_j_mtcomm_2023_106728
crossref_primary_10_1021_acsami_5c01170
crossref_primary_10_1016_j_materresbull_2019_110534
crossref_primary_10_1002_adma_202407437
crossref_primary_10_1103_PhysRevResearch_2_033345
crossref_primary_10_1021_acscatal_4c06952
crossref_primary_10_1063_5_0206667
crossref_primary_10_1103_PhysRevB_104_L121108
crossref_primary_10_1103_PhysRevMaterials_7_044203
crossref_primary_10_1038_s41535_021_00325_6
crossref_primary_10_3389_fphy_2018_00086
crossref_primary_10_3390_molecules26102965
crossref_primary_10_1002_nadc_20184074778
crossref_primary_10_3390_sym17060807
crossref_primary_10_1103_PhysRevB_103_224504
crossref_primary_10_1016_j_scib_2018_09_018
crossref_primary_10_1038_s41563_021_01013_3
crossref_primary_10_1002_pssb_202000090
crossref_primary_10_1038_s41535_019_0186_8
crossref_primary_10_1038_s41567_018_0224_7
crossref_primary_10_1103_PhysRevResearch_2_042038
crossref_primary_10_3390_nano11020286
crossref_primary_10_1016_j_jmps_2023_105325
crossref_primary_10_1038_s41524_020_00419_y
crossref_primary_10_1038_s41586_020_03117_3
crossref_primary_10_1103_PhysRevX_14_011057
crossref_primary_10_1002_adfm_202110263
crossref_primary_10_1016_j_comptc_2022_113930
crossref_primary_10_1103_jcrl_9dz6
crossref_primary_10_1088_1361_648X_ac5651
crossref_primary_10_1038_s41535_022_00498_8
crossref_primary_10_1088_1361_648X_ac28c3
crossref_primary_10_1103_RevModPhys_96_045008
crossref_primary_10_1016_j_commatsci_2025_113679
crossref_primary_10_1103_PhysRevB_111_075433
crossref_primary_10_1093_nsr_nwz024
crossref_primary_10_1103_PhysRevB_104_L201114
crossref_primary_10_1103_PhysRevResearch_2_043112
crossref_primary_10_1016_j_jallcom_2023_171903
crossref_primary_10_1103_PhysRevResearch_3_L032035
crossref_primary_10_1002_adma_201908302
crossref_primary_10_1103_PhysRevResearch_6_023249
crossref_primary_10_1103_PhysRevB_111_085102
crossref_primary_10_1103_Physics_18_118
crossref_primary_10_1016_j_carbon_2023_01_052
crossref_primary_10_1016_j_tsf_2023_140150
crossref_primary_10_1088_1361_6633_acb8c9
crossref_primary_10_1103_PhysRevB_110_L241302
crossref_primary_10_1016_j_physe_2024_116070
crossref_primary_10_1038_s41535_024_00685_9
crossref_primary_10_1038_s41586_024_07203_8
crossref_primary_10_1093_nsr_nwad104
crossref_primary_10_1103_PhysRevResearch_6_L032018
crossref_primary_10_1038_s41467_025_59257_5
crossref_primary_10_1002_advs_202303222
crossref_primary_10_1038_s41524_023_01106_4
crossref_primary_10_1038_s41524_023_01018_3
crossref_primary_10_1103_PhysRevResearch_7_L022061
crossref_primary_10_1103_PhysRevLett_134_226601
crossref_primary_10_1103_PhysRevResearch_2_042010
crossref_primary_10_1038_s41467_023_36767_8
crossref_primary_10_1038_s41567_019_0457_0
crossref_primary_10_1103_PhysRevResearch_1_022003
crossref_primary_10_1209_0295_5075_ad6bbc
crossref_primary_10_1103_PhysRevB_111_195138
crossref_primary_10_1103_PhysRevX_15_011004
crossref_primary_10_1039_D4TC04581E
crossref_primary_10_1038_d41586_018_05913_4
crossref_primary_10_1103_PhysRevB_105_035135
crossref_primary_10_1103_PhysRevB_111_064312
crossref_primary_10_1002_cssc_202002009
crossref_primary_10_1103_PhysRevB_111_085133
crossref_primary_10_1038_s44310_024_00021_w
crossref_primary_10_1073_pnas_2506787122
crossref_primary_10_1103_PhysRevB_108_085116
crossref_primary_10_1038_s41524_020_0319_4
crossref_primary_10_1103_PhysRevB_111_035113
crossref_primary_10_1088_1367_2630_ab358c
crossref_primary_10_1002_adfm_202209853
crossref_primary_10_1103_PhysRevB_103_155131
crossref_primary_10_1021_jacs_2c04183
crossref_primary_10_1103_PhysRevB_103_075435
crossref_primary_10_1103_PhysRevLett_124_036401
crossref_primary_10_1038_s41467_022_28046_9
crossref_primary_10_1038_s41467_023_40492_7
crossref_primary_10_1103_mp2c_zzkt
crossref_primary_10_1038_s41467_025_56593_4
crossref_primary_10_1103_PhysRevB_111_085116
crossref_primary_10_1038_s41567_018_0213_x
crossref_primary_10_1103_PhysRevResearch_6_033268
crossref_primary_10_1038_s41524_022_00838_z
crossref_primary_10_1063_5_0202383
crossref_primary_10_1103_PhysRevX_8_031067
crossref_primary_10_1103_PhysRevX_9_031003
crossref_primary_10_1103_PhysRevB_108_L180302
crossref_primary_10_1103_PhysRevX_8_031069
crossref_primary_10_1002_ece2_82
crossref_primary_10_1557_s43577_022_00384_5
crossref_primary_10_1088_1674_1056_28_8_087102
crossref_primary_10_1103_PhysRevB_105_195154
crossref_primary_10_1103_PhysRevResearch_2_033302
crossref_primary_10_1002_adma_202310944
crossref_primary_10_1103_PhysRevB_104_165107
crossref_primary_10_1093_ptep_ptad086
crossref_primary_10_1103_PhysRevLett_131_053802
crossref_primary_10_1088_1751_8121_ac864b
crossref_primary_10_1103_PhysRevResearch_7_L012022
crossref_primary_10_1038_s41467_023_36952_9
crossref_primary_10_1038_s41467_018_06010_w
crossref_primary_10_1038_s41535_024_00633_7
crossref_primary_10_1088_1367_2630_aadf67
crossref_primary_10_1021_jacs_5c03736
crossref_primary_10_1038_s41467_020_17685_5
crossref_primary_10_1063_5_0118768
crossref_primary_10_1016_j_newton_2025_100069
crossref_primary_10_1007_s40843_021_1921_3
crossref_primary_10_5802_crphys_3
crossref_primary_10_1063_5_0144939
crossref_primary_10_1103_PhysRevB_104_085136
crossref_primary_10_1103_PhysRevLett_128_066602
crossref_primary_10_1088_0256_307X_37_9_097301
crossref_primary_10_1103_PhysRevResearch_1_032027
crossref_primary_10_1063_5_0185359
crossref_primary_10_1039_C8QI00366A
crossref_primary_10_1088_1367_2630_ad1d74
crossref_primary_10_1103_PhysRevB_106_214510
crossref_primary_10_1038_s41467_024_55484_4
crossref_primary_10_1016_j_optlastec_2020_106772
crossref_primary_10_21468_SciPostPhys_18_6_209
crossref_primary_10_1038_s41586_022_04504_8
crossref_primary_10_1088_1361_6633_aceeee
crossref_primary_10_1038_s41467_021_26241_8
crossref_primary_10_1038_s41467_021_23826_1
crossref_primary_10_1103_PhysRevB_107_035143
crossref_primary_10_1002_adma_202201058
crossref_primary_10_1038_s41467_023_43042_3
crossref_primary_10_1088_1367_2630_ab9d56
crossref_primary_10_1016_j_cpc_2021_107993
crossref_primary_10_1038_s41467_019_11949_5
crossref_primary_10_1103_PhysRevLett_129_204302
crossref_primary_10_1021_jacs_4c09993
crossref_primary_10_1103_lqkm_44dr
crossref_primary_10_1103_PhysRevB_111_134407
crossref_primary_10_1103_PhysRevMaterials_6_044204
crossref_primary_10_1038_s41598_023_35812_2
crossref_primary_10_1103_PhysRevB_106_195113
crossref_primary_10_1103_PhysRevB_111_L201102
crossref_primary_10_1039_D0QI00884B
crossref_primary_10_1038_s41524_022_00954_w
crossref_primary_10_1038_s41467_025_58226_2
crossref_primary_10_1038_s41524_021_00695_2
crossref_primary_10_1103_PhysRevResearch_4_023177
crossref_primary_10_1038_s41524_021_00672_9
crossref_primary_10_1038_s41524_020_0301_1
crossref_primary_10_1038_s41467_023_42773_7
crossref_primary_10_1038_s41467_024_45395_9
crossref_primary_10_1007_s11433_023_2248_2
crossref_primary_10_1126_science_adf8458
crossref_primary_10_1038_s41467_023_37102_x
crossref_primary_10_1038_s41535_024_00710_x
crossref_primary_10_1088_2053_1591_aa84be
crossref_primary_10_1103_PhysRevApplied_20_024062
crossref_primary_10_1103_PhysRevLett_130_236601
crossref_primary_10_1038_547272a
crossref_primary_10_1016_j_mtcomm_2024_110445
crossref_primary_10_1103_PhysRevResearch_1_032002
crossref_primary_10_1103_PhysRevResearch_4_023063
crossref_primary_10_1016_j_chempr_2020_10_009
crossref_primary_10_1103_PhysRevResearch_1_032005
crossref_primary_10_1002_adma_202303098
crossref_primary_10_1063_5_0038799
crossref_primary_10_1103_PhysRevResearch_5_033216
crossref_primary_10_1038_s41524_021_00498_5
crossref_primary_10_1038_s41467_024_53862_6
crossref_primary_10_1103_PhysRevResearch_4_023188
crossref_primary_10_1016_j_scib_2025_02_032
crossref_primary_10_1063_1_5122795
crossref_primary_10_1103_PhysRevX_14_031039
crossref_primary_10_1063_5_0020096
crossref_primary_10_1088_1751_8121_ace4a7
crossref_primary_10_1103_PhysRevResearch_2_043414
crossref_primary_10_1063_5_0155940
crossref_primary_10_1088_2053_1583_ad0f2a
crossref_primary_10_1103_f79k_t2tz
crossref_primary_10_1103_PhysRevX_14_041060
crossref_primary_10_1103_w5dn_z87b
crossref_primary_10_1103_PhysRevLett_134_126601
crossref_primary_10_1103_PhysRevX_14_031037
crossref_primary_10_1002_adma_202106909
crossref_primary_10_1016_j_seppur_2024_127543
crossref_primary_10_1103_PhysRevB_104_104408
crossref_primary_10_1103_PhysRevB_107_195153
crossref_primary_10_1103_PhysRevB_110_214110
crossref_primary_10_1038_s41467_024_48808_x
crossref_primary_10_1103_b3pw_my97
crossref_primary_10_1038_s41467_022_33471_x
crossref_primary_10_1016_j_ijmecsci_2025_110144
crossref_primary_10_1103_PhysRevB_111_165109
crossref_primary_10_1073_pnas_2021826118
crossref_primary_10_1103_PhysRevB_105_075407
crossref_primary_10_1007_s12274_024_6986_6
crossref_primary_10_1103_PhysRevMaterials_5_L091202
crossref_primary_10_1038_s41567_017_0032_5
crossref_primary_10_1103_PhysRevB_111_155305
crossref_primary_10_1038_s41567_022_01743_4
crossref_primary_10_1002_adma_202204113
crossref_primary_10_1016_j_mtcomm_2024_109628
crossref_primary_10_1039_D4RA06808D
crossref_primary_10_1103_PhysRevX_12_040501
crossref_primary_10_1063_5_0235472
crossref_primary_10_59717_j_xinn_mater_2023_100013
crossref_primary_10_1088_1361_648X_ac0d82
crossref_primary_10_1209_0295_5075_acc2e2
crossref_primary_10_1038_s41524_024_01210_z
crossref_primary_10_1103_PhysRevResearch_4_033170
crossref_primary_10_1016_j_aop_2018_10_006
crossref_primary_10_1016_j_scib_2024_09_045
crossref_primary_10_1038_s41467_025_60020_z
crossref_primary_10_1103_fpc3_bsz6
crossref_primary_10_1103_PhysRevLett_131_176501
crossref_primary_10_1088_1751_8121_aac093
crossref_primary_10_1016_j_cpc_2021_107948
crossref_primary_10_1088_1361_6463_ac12f7
crossref_primary_10_1103_PhysRevMaterials_7_074205
crossref_primary_10_1073_pnas_1900527116
crossref_primary_10_1103_PhysRevX_9_011039
crossref_primary_10_1103_PhysRevResearch_3_013278
crossref_primary_10_1103_PhysRevB_111_155406
crossref_primary_10_1038_s41535_020_00300_7
crossref_primary_10_1039_C9NH00100J
crossref_primary_10_3389_fchem_2025_1544147
crossref_primary_10_1088_0256_307X_42_7_070706
crossref_primary_10_1103_PhysRevB_104_125302
crossref_primary_10_1103_RevModPhys_93_025002
crossref_primary_10_1038_s41377_022_00977_4
crossref_primary_10_1103_PhysRevResearch_6_033205
crossref_primary_10_1103_4k4y_4hj4
crossref_primary_10_1103_PhysRevMaterials_9_014409
crossref_primary_10_1103_PhysRevB_103_115207
crossref_primary_10_1103_PhysRevResearch_4_023011
crossref_primary_10_1103_PhysRevX_10_031001
crossref_primary_10_1103_PhysRevResearch_3_013052
crossref_primary_10_1146_annurev_conmatphys_031218_013712
crossref_primary_10_1038_s41535_022_00461_7
crossref_primary_10_1038_s41467_024_52156_1
crossref_primary_10_1063_5_0180800
crossref_primary_10_1103_PhysRevResearch_5_033013
crossref_primary_10_1016_j_mattod_2019_08_003
crossref_primary_10_1103_PhysRevB_104_085116
crossref_primary_10_1103_PRXQuantum_2_020320
crossref_primary_10_1103_PhysRevB_111_L081103
crossref_primary_10_1016_j_physb_2024_416202
crossref_primary_10_1039_D5CC01314C
crossref_primary_10_1038_s42005_023_01446_z
crossref_primary_10_1088_1361_648X_ad2a0e
crossref_primary_10_1140_epjp_s13360_022_03118_3
crossref_primary_10_1038_s41524_019_0237_5
crossref_primary_10_1103_PhysRevB_107_045129
crossref_primary_10_1103_PhysRevResearch_3_023086
crossref_primary_10_1103_PhysRevResearch_3_L012028
crossref_primary_10_1016_j_mser_2021_100620
crossref_primary_10_1038_s41578_022_00430_3
crossref_primary_10_1126_science_abg9094
crossref_primary_10_3390_s19184048
crossref_primary_10_1002_chem_202303679
crossref_primary_10_1088_1361_648X_ac73cf
crossref_primary_10_1088_2515_7639_ab084b
crossref_primary_10_3390_app9224832
crossref_primary_10_1038_s41586_021_03521_3
crossref_primary_10_1103_PhysRevX_9_011012
crossref_primary_10_1103_PhysRevB_104_085128
crossref_primary_10_1016_j_jmst_2022_04_058
crossref_primary_10_1038_547287a
crossref_primary_10_1103_PhysRevB_107_195110
crossref_primary_10_1002_qute_202300462
crossref_primary_10_1103_PhysRevB_106_144504
crossref_primary_10_1038_s41578_021_00380_2
crossref_primary_10_1038_s41524_020_0342_5
crossref_primary_10_1038_s41535_024_00637_3
crossref_primary_10_1177_17436753231213060
crossref_primary_10_1103_PhysRevX_12_021066
crossref_primary_10_1038_s41567_019_0418_7
crossref_primary_10_1088_1674_1056_ac009f
crossref_primary_10_1088_2516_1075_acba6f
crossref_primary_10_1126_science_aaz7654
crossref_primary_10_1016_j_cpc_2020_107760
crossref_primary_10_1002_adfm_202417313
crossref_primary_10_1007_s00023_022_01232_7
crossref_primary_10_1038_s42005_023_01502_8
crossref_primary_10_1103_PhysRevResearch_2_013064
crossref_primary_10_1038_s41524_019_0260_6
crossref_primary_10_1038_s41567_021_01445_3
crossref_primary_10_1039_D0SC03429K
crossref_primary_10_1088_1751_8121_add199
crossref_primary_10_1126_science_aaz7650
crossref_primary_10_1088_0256_307X_41_10_107301
crossref_primary_10_1063_PT_3_4567
crossref_primary_10_1038_s41598_019_49187_w
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_1088_1361_648X_ab052c
crossref_primary_10_1002_adma_202418904
crossref_primary_10_1103_PhysRevB_111_045403
crossref_primary_10_1016_j_scib_2017_11_016
crossref_primary_10_1103_PhysRevApplied_18_064094
crossref_primary_10_1103_PhysRevB_105_085128
crossref_primary_10_1038_s41535_023_00574_7
crossref_primary_10_1103_PhysRevX_12_011021
crossref_primary_10_1088_1367_2630_ac2ce2
crossref_primary_10_1103_PhysRevX_14_041004
crossref_primary_10_1016_j_scib_2021_12_025
crossref_primary_10_1103_PhysRevResearch_3_013239
crossref_primary_10_1088_1367_2630_ac45cb
crossref_primary_10_1038_s41535_020_00256_8
crossref_primary_10_1063_5_0025396
crossref_primary_10_1103_vqvs_rbzn
crossref_primary_10_1093_pnasnexus_pgaf285
crossref_primary_10_1103_b9ll_927t
crossref_primary_10_1038_s41586_022_04519_1
crossref_primary_10_1038_s41467_025_63572_2
crossref_primary_10_1016_j_scib_2024_11_026
crossref_primary_10_1088_1402_4896_adaf7d
crossref_primary_10_1073_pnas_2106744118
crossref_primary_10_1038_s41467_018_05054_2
crossref_primary_10_1103_PhysRevLett_126_016402
crossref_primary_10_1007_s11433_023_2271_y
crossref_primary_10_1140_epjc_s10052_025_13932_5
crossref_primary_10_1088_1751_8121_abba47
crossref_primary_10_1103_PhysRevResearch_3_013243
crossref_primary_10_1126_science_aba7604
crossref_primary_10_1038_s41586_025_09187_5
crossref_primary_10_1088_0256_307X_42_3_037303
crossref_primary_10_1038_s41524_018_0104_9
crossref_primary_10_1016_j_physleta_2019_126177
crossref_primary_10_1088_2515_7639_abf0b5
crossref_primary_10_1103_PhysRevApplied_21_044002
crossref_primary_10_1103_PhysRevB_107_125145
crossref_primary_10_1016_j_cjph_2025_04_004
crossref_primary_10_1038_s41598_024_68920_8
crossref_primary_10_1021_jacs_0c01227
crossref_primary_10_1016_j_newton_2025_100133
crossref_primary_10_1038_s43246_024_00635_9
crossref_primary_10_1088_1361_6463_ac13f4
crossref_primary_10_1021_jacs_4c03711
crossref_primary_10_1088_1751_8121_ad0011
crossref_primary_10_1038_s41467_024_49306_w
crossref_primary_10_1002_pssr_201800081
crossref_primary_10_1016_j_physb_2024_416773
crossref_primary_10_1103_PhysRevX_13_031011
crossref_primary_10_1038_s43246_021_00209_z
crossref_primary_10_1209_0295_5075_ad3053
crossref_primary_10_1002_adma_202103476
crossref_primary_10_1038_s41586_025_08715_7
crossref_primary_10_1038_s41467_024_54511_8
crossref_primary_10_1038_s41467_023_38862_2
crossref_primary_10_1038_s41467_024_47103_z
crossref_primary_10_1016_j_ijmecsci_2023_108441
crossref_primary_10_1103_rr5g_3js8
crossref_primary_10_1038_s41467_024_46717_7
crossref_primary_10_1103_PhysRevB_111_115407
crossref_primary_10_3389_fchem_2021_796323
crossref_primary_10_1038_s41467_020_16058_2
crossref_primary_10_1063_5_0083499
crossref_primary_10_1016_j_eml_2024_102231
crossref_primary_10_1016_j_ssc_2018_08_014
crossref_primary_10_1038_s41467_021_22136_w
crossref_primary_10_1103_PhysRevLett_128_127601
crossref_primary_10_1038_s41563_018_0169_3
crossref_primary_10_1038_s41524_025_01706_2
crossref_primary_10_1088_1361_6633_aad6a6
crossref_primary_10_3390_condmat8010008
crossref_primary_10_3390_condmat8010009
crossref_primary_10_1088_2516_1075_abbb25
crossref_primary_10_1063_5_0028231
crossref_primary_10_1103_PhysRevResearch_7_012076
crossref_primary_10_1038_s41586_021_04105_x
crossref_primary_10_1038_s41535_025_00731_0
crossref_primary_10_1002_smtd_202400517
crossref_primary_10_1002_adfm_202417750
crossref_primary_10_1038_s41586_019_0937_5
crossref_primary_10_1016_j_jallcom_2022_164893
crossref_primary_10_1016_j_physleta_2024_130194
crossref_primary_10_1038_s41563_020_00820_4
crossref_primary_10_1088_1361_648X_ab832b
crossref_primary_10_1039_D3QM00538K
crossref_primary_10_1093_ptep_ptab124
crossref_primary_10_1002_apxr_202200041
crossref_primary_10_1093_ptep_ptaa151
crossref_primary_10_3390_sym15091651
crossref_primary_10_1103_PhysRevResearch_7_023195
crossref_primary_10_1038_s41563_018_0210_6
crossref_primary_10_1038_s41598_021_00577_z
crossref_primary_10_1103_PhysRevX_14_041048
crossref_primary_10_1088_2515_7639_ab3ea2
crossref_primary_10_1103_jxhg_xtzm
crossref_primary_10_1103_mfwg_svcp
crossref_primary_10_1038_s41567_022_01604_0
crossref_primary_10_1038_s41586_020_2837_0
crossref_primary_10_1038_s41567_024_02486_0
crossref_primary_10_1038_s41598_019_41746_5
crossref_primary_10_1103_ctth_l8bx
crossref_primary_10_1126_science_aan2802
crossref_primary_10_1103_PhysRevLett_131_266501
crossref_primary_10_1016_j_jallcom_2021_163253
crossref_primary_10_1103_PhysRevResearch_2_012078
crossref_primary_10_1007_s00205_021_01721_9
crossref_primary_10_1103_PhysRevX_12_011030
crossref_primary_10_1016_j_rinp_2023_106739
crossref_primary_10_1515_nanoph_2021_0433
crossref_primary_10_1038_s42005_022_01006_x
crossref_primary_10_1016_j_apmt_2020_100921
crossref_primary_10_1088_1361_6463_ac28fa
crossref_primary_10_1103_PhysRevLett_128_087002
crossref_primary_10_1038_s41586_018_0375_9
crossref_primary_10_1038_s41467_021_26450_1
crossref_primary_10_1063_5_0064746
crossref_primary_10_1103_PhysRevLett_129_076401
crossref_primary_10_1515_nanoph_2022_0547
crossref_primary_10_1103_PhysRevB_103_024205
crossref_primary_10_1002_smll_202407232
crossref_primary_10_1038_s41467_024_45302_2
crossref_primary_10_1038_s41467_024_54203_3
crossref_primary_10_1063_5_0281262
crossref_primary_10_1007_s11005_018_1129_1
crossref_primary_10_1007_s11467_021_1100_y
crossref_primary_10_1103_PhysRevResearch_3_033045
crossref_primary_10_1103_PhysRevResearch_3_033167
crossref_primary_10_1073_pnas_2108617118
crossref_primary_10_3390_nano15020148
crossref_primary_10_1063_5_0094013
crossref_primary_10_1103_33mm_mx88
crossref_primary_10_1038_s41467_021_27158_y
crossref_primary_10_1021_jacs_3c00284
crossref_primary_10_1021_acs_chemrev_4c00912
crossref_primary_10_1103_nys8_5mg2
crossref_primary_10_1103_PhysRevResearch_2_022066
crossref_primary_10_1088_0256_307X_38_6_066801
crossref_primary_10_1103_PhysRevB_111_L041117
crossref_primary_10_1103_PhysRevLett_126_027002
crossref_primary_10_1103_PhysRevResearch_3_L042044
crossref_primary_10_1088_1367_2630_aba651
crossref_primary_10_7566_JPSJ_94_031005
crossref_primary_10_1063_PT_3_5001
crossref_primary_10_1016_j_jssc_2023_124346
crossref_primary_10_1103_PhysRevResearch_3_L032003
crossref_primary_10_1103_gb96_1tqy
crossref_primary_10_1016_j_scib_2024_04_009
crossref_primary_10_1103_PhysRevB_111_205135
crossref_primary_10_1103_PhysRevB_111_205139
crossref_primary_10_1016_j_jmps_2023_105251
crossref_primary_10_1038_s42005_022_01022_x
crossref_primary_10_1088_1361_648X_ac638a
crossref_primary_10_1088_2515_7639_ad2083
crossref_primary_10_1038_s41567_020_0922_9
crossref_primary_10_1103_PhysRevB_111_104434
crossref_primary_10_1103_PhysRevResearch_2_013229
crossref_primary_10_1016_j_matt_2020_05_006
crossref_primary_10_1063_5_0221779
crossref_primary_10_1103_2qp5_rblc
crossref_primary_10_1002_smtd_202300308
crossref_primary_10_1038_s41467_024_47467_2
crossref_primary_10_1016_j_mtphys_2022_100956
crossref_primary_10_1016_j_jmmm_2022_169147
crossref_primary_10_1038_s41524_022_00707_9
crossref_primary_10_1002_advs_202202564
crossref_primary_10_1088_1361_648X_abeacd
crossref_primary_10_1103_PhysRevX_8_041045
crossref_primary_10_1103_PhysRevResearch_6_023046
crossref_primary_10_1103_PhysRevX_8_041043
crossref_primary_10_1103_PhysRevB_111_045128
crossref_primary_10_1016_j_mtphys_2025_101664
crossref_primary_10_1103_PhysRevB_111_205123
crossref_primary_10_1016_j_cpc_2023_108722
crossref_primary_10_1016_j_physb_2022_414056
crossref_primary_10_1103_PhysRevB_104_195114
crossref_primary_10_1103_PhysRevB_111_195113
crossref_primary_10_1103_PhysRevResearch_6_013219
crossref_primary_10_1103_z7lp_pqp6
crossref_primary_10_1103_PhysRevB_111_205127
crossref_primary_10_1146_annurev_matsci_070218_010114
crossref_primary_10_1103_PhysRevB_111_195110
crossref_primary_10_1103_PhysRevB_111_085147
crossref_primary_10_1557_mrs_2017_220
crossref_primary_10_1557_s43580_022_00440_x
crossref_primary_10_1007_s11433_025_2719_4
crossref_primary_10_1088_0256_307X_39_8_084301
crossref_primary_10_3390_ma12172710
crossref_primary_10_1016_j_jpowsour_2022_231655
crossref_primary_10_1103_PhysRevB_106_085140
crossref_primary_10_1103_PhysRevResearch_3_033105
crossref_primary_10_1038_s41467_022_33894_6
crossref_primary_10_1088_1367_2630_ad6c78
crossref_primary_10_1103_PhysRevB_111_184202
crossref_primary_10_1063_5_0242343
crossref_primary_10_1016_j_crci_2018_03_007
crossref_primary_10_1088_2053_1583_ad3136
crossref_primary_10_1103_PhysRevResearch_5_023099
crossref_primary_10_1002_mgea_21
crossref_primary_10_1016_j_physleta_2024_129989
crossref_primary_10_1103_5gmg_q1z5
crossref_primary_10_1103_PhysRevResearch_2_023018
crossref_primary_10_1021_acsami_5c09626
crossref_primary_10_1146_annurev_matsci_070218_010023
crossref_primary_10_1007_s40766_025_00068_1
crossref_primary_10_1007_s10409_023_23041_x
crossref_primary_10_1039_D4SC04125A
crossref_primary_10_1140_epjb_e2018_90302_7
crossref_primary_10_1103_PhysRevResearch_2_013007
crossref_primary_10_1103_PhysRevB_111_075133
crossref_primary_10_1103_PhysRevB_105_184514
crossref_primary_10_1021_acs_inorgchem_4c00532
crossref_primary_10_1038_s41524_025_01655_w
crossref_primary_10_1002_pssr_202300048
crossref_primary_10_1103_8bpq_v1zx
crossref_primary_10_1103_j1fj_jl38
crossref_primary_10_1103_PhysRevResearch_6_033195
crossref_primary_10_1103_PhysRevB_111_174407
crossref_primary_10_1103_PhysRevResearch_2_033071
crossref_primary_10_1038_s41586_019_1630_4
crossref_primary_10_1088_1361_648X_ad3abd
crossref_primary_10_1038_s41586_020_03125_3
crossref_primary_10_1002_pssr_202500181
crossref_primary_10_1021_jacs_5c04593
crossref_primary_10_1063_5_0205296
crossref_primary_10_1063_5_0022948
crossref_primary_10_1063_5_0233622
crossref_primary_10_1103_PhysRevB_104_035424
crossref_primary_10_1103_PhysRevB_111_125163
crossref_primary_10_1063_5_0035850
crossref_primary_10_1103_PhysRevB_110_L241402
crossref_primary_10_1093_nsr_nwaa218
crossref_primary_10_1103_PhysRevB_107_125308
crossref_primary_10_1088_1361_648X_ad3ac2
crossref_primary_10_1103_5rqd_bp11
crossref_primary_10_1103_PhysRevB_111_L241104
crossref_primary_10_3390_cryst12101478
crossref_primary_10_1557_s43577_021_00192_3
crossref_primary_10_1007_s11433_019_1515_4
crossref_primary_10_1021_jacs_3c02146
crossref_primary_10_1038_s41598_022_26596_y
crossref_primary_10_3390_cryst11080917
crossref_primary_10_1038_s42005_024_01767_7
crossref_primary_10_1088_0256_307X_42_2_027403
crossref_primary_10_1103_PhysRevB_111_115120
crossref_primary_10_1016_j_jallcom_2023_169776
crossref_primary_10_1016_j_physleta_2020_126938
crossref_primary_10_1007_s11433_022_2032_7
crossref_primary_10_1103_PhysRevResearch_2_023117
crossref_primary_10_1016_j_physb_2022_414121
crossref_primary_10_1103_PhysRevResearch_2_013300
crossref_primary_10_1016_j_cocom_2022_e00771
crossref_primary_10_1146_annurev_matsci_070218_010049
crossref_primary_10_1016_j_jpcs_2022_111024
crossref_primary_10_1088_1367_2630_ac8306
crossref_primary_10_1038_s41467_020_14443_5
crossref_primary_10_1103_PhysRevB_111_075154
crossref_primary_10_3390_cryst15050485
crossref_primary_10_1088_1674_1056_ac67cb
crossref_primary_10_1103_PhysRevLett_129_047601
crossref_primary_10_1103_PhysRevB_103_L121115
crossref_primary_10_1088_1361_648X_abd0c2
crossref_primary_10_1088_1361_648X_ab5e70
crossref_primary_10_1038_s41467_021_26092_3
crossref_primary_10_1038_s41586_019_0944_6
crossref_primary_10_1038_s42005_024_01600_1
crossref_primary_10_1103_PhysRevB_106_L161108
crossref_primary_10_1063_5_0186917
crossref_primary_10_1038_s41535_024_00682_y
crossref_primary_10_1002_adma_202103257
crossref_primary_10_1002_apxr_202400038
crossref_primary_10_1103_PhysRevX_12_021016
crossref_primary_10_1038_s42005_020_00395_1
crossref_primary_10_1088_1674_1056_ab37f9
crossref_primary_10_1103_8bpm_qbzp
crossref_primary_10_1103_PhysRevB_103_165109
crossref_primary_10_1021_jacs_2c03485
crossref_primary_10_1103_PhysRevB_111_075168
crossref_primary_10_1002_advs_202205940
crossref_primary_10_1021_acsnano_5c04200
crossref_primary_10_1088_2516_1075_ab168b
crossref_primary_10_1103_PhysRevB_104_245101
crossref_primary_10_1038_s41467_021_22350_6
crossref_primary_10_1038_s41524_025_01687_2
crossref_primary_10_3389_fchem_2020_608398
crossref_primary_10_1103_PhysRevB_104_195125
crossref_primary_10_1063_5_0239018
crossref_primary_10_1016_j_jcis_2022_05_147
crossref_primary_10_1103_PhysRevB_103_214203
crossref_primary_10_1002_smll_202411464
crossref_primary_10_1038_s41567_020_0967_9
crossref_primary_10_1088_0256_307X_41_6_067301
crossref_primary_10_1021_jacs_2c02281
crossref_primary_10_3390_ma18174044
crossref_primary_10_1103_PhysRevX_11_021052
crossref_primary_10_1038_s41578_023_00644_z
crossref_primary_10_1088_1361_648X_aca135
crossref_primary_10_1103_PhysRevResearch_3_043230
crossref_primary_10_1002_qute_201900117
crossref_primary_10_1038_s42005_022_01001_2
crossref_primary_10_1063_5_0126759
crossref_primary_10_1007_s44214_024_00060_6
crossref_primary_10_1073_pnas_1720828115
crossref_primary_10_1007_s10910_020_01182_7
crossref_primary_10_1103_PhysRevB_111_045426
crossref_primary_10_1103_PhysRevResearch_1_013012
crossref_primary_10_1016_j_cpc_2021_108226
crossref_primary_10_1103_PhysRevB_101_075108
crossref_primary_10_1103_x7mg_wvxx
crossref_primary_10_1088_1402_4896_acfce3
crossref_primary_10_1016_j_scib_2020_12_028
crossref_primary_10_1103_nlp7_gcdj
crossref_primary_10_3389_fphy_2024_1437146
Cites_doi 10.1103/PhysRevB.26.3010
10.1515/9781400846733
10.1038/nphys1274
10.1126/science.1245085
10.1103/PhysRevB.26.4269
10.1103/PhysRevLett.61.2015
10.1103/PhysRevB.93.035453
10.1038/nphys1270
10.1016/S0370-1573(00)00093-4
10.1103/PhysRevLett.98.046402
10.1103/PhysRevX.7.041069
10.1103/PhysRevB.93.241104
10.1107/S0567740878004276
10.1002/anie.198708461
10.1038/nphys3622
10.1103/PhysRevB.83.035108
10.1038/s41467-017-00133-2
10.1103/PhysRevB.90.054111
10.1007/978-3-642-60488-1_4
10.1107/S0108767305040286
10.1103/PhysRevB.92.205310
10.1038/nmat3990
10.1038/nphys2790
10.1103/PhysRevB.87.035119
10.1103/RevModPhys.84.1419
10.1038/ncomms11696
10.1103/PhysRevLett.49.1455
10.1007/BF02096648
10.1524/zkri.217.2.51.20632
10.1103/PhysRevLett.95.226801
10.1103/PhysRevB.47.1651
10.1103/PhysRevB.85.115415
10.1007/978-1-4612-0979-9_1
10.1103/PhysRevLett.89.077002
10.1007/s00023-013-0236-x
10.1088/1367-2630/13/8/085017
10.1126/science.aaf5037
10.1103/PhysRevLett.62.2747
10.1103/PhysRevB.95.115309
10.1103/PhysRevE.96.023310
10.1103/PhysRevLett.117.096404
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Jul 20, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 20, 2017
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OTOTI
DOI 10.1038/nature23268
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed


Agricultural Science Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Chemistry
EISSN 1476-4687
EndPage 305
ExternalDocumentID 1535042
A624705224
A498891312
28726818
10_1038_nature23268
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA148699
– fundername: NCI NIH HHS
  grantid: R01 CA159859
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
NPM
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
69O
6XO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAUGY
AAYJO
ABEEJ
ABGFU
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
AMRJV
B-7
EMB
F20
I-U
OTOTI
P-O
U1R
XFK
ZA5
ID FETCH-LOGICAL-c779t-b5118e1508a25ac51e1caf4c9737f0bdc3ae8924cc233141c05fc350f971a9263
IEDL.DBID M7P
ISICitedReferencesCount 1203
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405844900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Fri May 19 02:14:25 EDT 2023
Wed Oct 01 08:31:13 EDT 2025
Sat Nov 29 14:29:58 EST 2025
Tue Nov 11 10:16:58 EST 2025
Tue Nov 11 10:15:15 EST 2025
Sat Nov 29 11:44:40 EST 2025
Tue Jun 10 15:36:10 EDT 2025
Tue Jun 10 15:32:46 EDT 2025
Tue Nov 04 17:50:03 EST 2025
Thu Nov 13 14:32:05 EST 2025
Thu Nov 13 14:57:08 EST 2025
Thu Nov 13 14:22:14 EST 2025
Thu Nov 13 15:31:30 EST 2025
Thu Apr 03 07:02:16 EDT 2025
Sat Nov 29 02:12:25 EST 2025
Tue Nov 18 21:03:26 EST 2025
Fri Feb 21 02:37:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7663
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c779t-b5118e1508a25ac51e1caf4c9737f0bdc3ae8924cc233141c05fc350f971a9263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0016239
USDOE Office of Science (SC)
PMID 28726818
PQID 1922897073
PQPubID 40569
PageCount 8
ParticipantIDs osti_scitechconnect_1535042
proquest_miscellaneous_1921133677
proquest_journals_1922897073
gale_infotracmisc_A624705224
gale_infotracmisc_A498891312
gale_infotracgeneralonefile_A498891312
gale_infotraccpiq_624705224
gale_infotraccpiq_498891312
gale_infotracacademiconefile_A498891312
gale_incontextgauss_ISR_A624705224
gale_incontextgauss_ISR_A498891312
gale_incontextgauss_ATWCN_A624705224
gale_incontextgauss_ATWCN_A498891312
pubmed_primary_28726818
crossref_primary_10_1038_nature23268
crossref_citationtrail_10_1038_nature23268
springer_journals_10_1038_nature23268
PublicationCentury 2000
PublicationDate 2017-07-20
PublicationDateYYYYMMDD 2017-07-20
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ReadNCompactly-supported Wannier functions and algebraic k-theoryPhys. Rev. B2017951153092017PhRvB..95k5309R10.1103/PhysRevB.95.115309
WatanabeHPoHCZaletelMPVishwanathAFilling-enforced gaplessness in band structures of the 230 space groupsPhys. Rev. Lett.20161170964042016PhRvL.117i6404W10.1103/PhysRevLett.117.096404
KaneCLMeleEJQuantum spin Hall effect in graphenePhys. Rev. Lett.2005952268012005PhRvL..95v6801K1:STN:280:DC%2BD2Mnps1ymug%3D%3D10.1103/PhysRevLett.95.226801
KivelsonSWannier functions in one-dimensional disordered systems: application to fractionally charged solitonsPhys. Rev. B198226426942771982PhRvB..26.4269K1:CAS:528:DyaL3sXit1ertQ%3D%3D10.1103/PhysRevB.26.4269
MarzariNMostofiAAYatesJRSouzaIVanderbiltDMaximally localized Wannier functions: theory and applicationsRev. Mod. Phys.201284141914752012RvMP...84.1419M1:CAS:528:DC%2BC3sXit1SmtL4%3D10.1103/RevModPhys.84.1419
WinklerGWSoluyanovAATroyerMSmooth gauge and wannier functions for topological band structures in arbitrary dimensionsPhys. Rev. B2016930354532016PhRvB..93c5453W10.1103/PhysRevB.93.035453
Kittel, C. Quantum Theory of Solids 186–190 (Wiley, 1987)
SoluyanovAAVanderbiltDSmooth gauge for topological insulatorsPhys. Rev. B2012851154152012PhRvB..85k5415S10.1103/PhysRevB.85.115415
LiuZA stable three-dimensional topological dirac semimetal Cd3As2Nat. Mater.2014136776812014NatMa..13..677L1:CAS:528:DC%2BC2cXos1ars7c%3D10.1038/nmat3990
Bernevig, B. A & Hughes, T. L. Topological Insulators and Topological Superconductors 226–228 (Princeton Univ. Press, 2013)
RyuSHatsugaiYTopological origin of zero-energy edge states in particle-hole symmetric systemsPhys. Rev. Lett.2002890770022002PhRvL..89g7002R10.1103/PhysRevLett.89.077002
SoluyanovAAVanderbiltDWannier representation of Z2 topological insulatorsPhys. Rev. B2011830351082011PhRvB..83c5108S10.1103/PhysRevB.83.035108
BradlynBBeyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystalsScience2016353aaf5037355955810.1126/science.aaf5037
BrouderCPanatiGCalandraMMourouganeCMarzariNExponential localization of Wannier functions in insulatorsPhys. Rev. Lett.2007980464022007PhRvL..98d6402B10.1103/PhysRevLett.98.046402
King-SmithRDVanderbiltDTheory of polarization of crystalline solidsPhys. Rev. B1993471651(R)1654(R)1993PhRvB..47.1651K10.1103/PhysRevB.47.1651
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Preprint at https://arxiv.org/abs/1611.07987 (2016)
AroyoMIKirovACapillasCPerez-MatoJMWondratschekHBilbao Crystallographic Server. II. Representations of crystallographic point groups and space groupsActa Crystallogr. A2006621151282006AcCrA..62..115A10.1107/S0108767305040286
AtalaMDirect measurement of the Zak phase in topological bloch bandsNat. Phys.201397958001:CAS:528:DC%2BC3sXhslWjtL7M10.1038/nphys2790
MichelLZakJElementary energy bands in crystals are connectedPhys. Rep.20013413773952001PhR...341..377M18454651:CAS:528:DC%2BD3MXitV2htg%3D%3D10.1016/S0370-1573(00)00093-4
ZakJBerry’s phase for energy bands in solidsPhys. Rev. Lett.198962274727501989PhRvL..62.2747Z1:STN:280:DC%2BC2sfosFGhsw%3D%3D10.1103/PhysRevLett.62.2747
SchoopLMDirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiSNat. Commun.20167116962016NatCo...711696S1:CAS:528:DC%2BC28XptVyjtbw%3D10.1038/ncomms11696
BacryHDuals of crystallographic groups. Band and quasi-band representationsCommun. Math. Phys.19931533593901993CMaPh.153..359B121830610.1007/BF02096648
FreedDSMooreGWTwisted equivariant matterAnn. Henri Poincare201314192720232013AnHP...14.1927F311992310.1007/s00023-013-0236-x
FerrariAIl sottossido di piomboGazz. Chim. Ital.192656630
NakajimaSTopological Thouless pumping of ultracold fermionsNat. Phys.2016122963001:CAS:528:DC%2BC28XhtFOls78%3D10.1038/nphys3622
Tubman, N. M. & Yang, D. C. Quantum dissection of a covalent bond with the entanglement spectrum. Preprint at https://arxiv.org/abs/1412.1495 (2014)
Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Preprint at https://arxiv.org/abs/1612.02007 (2016)
Bacry, H., Michel, L. & Zak, J. inGroup Theoretical Methods in Physics (eds Doebner, H. D. et al.) 289–308 (Springer, 1988)
MorrisAJGreyCPPickardCJThermodynamically stable lithium silicides and germanides from density functional theory calculationsPhys. Rev. B2014900541112014PhRvB..90e4111M10.1103/PhysRevB.90.054111
HoffmannRHow chemistry and physics meet in the solid stateAngew. Chem. Int. Edn Engl.19872684687810.1002/anie.198708461
WangYLinHDasTHasanMBansilATopological insulators in the quaternary chalcogenide compounds and ternary famatinite compoundsNew J. Phys.2011130850172011NJPh...13h5017W10.1088/1367-2630/13/8/085017
LiuZDiscovery of a three-dimensional topological dirac semimetal, Na3BiScience20143438648672014Sci...343..864L1:CAS:528:DC%2BC2cXis1Cgsr8%3D10.1126/science.1245085
XuQTwo-dimensional oxide topological insulator with iron-pnictide superconductor lifeas structurePhys. Rev. B2015922053102015PhRvB..92t5310X10.1103/PhysRevB.92.205310
Elcoro, L. et al. Double crystallographic groups and their representations on the bilbao crystallographic server. Preproof available at https://arxiv.org/abs/1706.09272 (2017)
LouREmergence of topological bands on the surface of zrsnte crystalPhys. Rev. B201693241104(R)2016PhRvB..93x1104L10.1103/PhysRevB.93.241104
ZakJBand representations of space groupsPhys. Rev. B198226301030231982PhRvB..26.3010Z1:CAS:528:DyaL38Xlslartb8%3D10.1103/PhysRevB.26.3010
RiceMJMeleEJElementary excitations of a linearly conjugated diatomic polymerPhys. Rev. Lett.198249145514591982PhRvL..49.1455R1:CAS:528:DyaL38Xmt1GrtLk%3D10.1103/PhysRevLett.49.1455
HaldaneFDMModel for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”Phys. Rev. Lett.198861201520181988PhRvL..61.2015H9257491:CAS:528:DyaL1MXhs1Ojsg%3D%3D10.1103/PhysRevLett.61.2015
Fulton, W & Harris, J. Representation Theory: A First Course Ch. 3 (Springer, 2004)
Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Preprint at https://arxiv.org/abs/1703.00911 (2017)
FangCGilbertMJBernevigBAEntanglement spectrum classification of Cn-invariant noninteracting topological insulators in two dimensionsPhys. Rev. B2013870351192013PhRvB..87c5119F10.1103/PhysRevB.87.035119
PfitznerAReiserSRefinement of the crystal structures of Cu3Ps4 and Cu3SbS4 and a comment on normal tetrahedral structuresZ. Kristallogr.2002217511:CAS:528:DC%2BD38XivFKmtLo%3D
Vergniory, M. G. et al. Graph theory data for topological quantum chemistry. Preproof available at https://arxiv.org/abs/1706.08529 (2017)
ZhangHTopological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surfaceNat. Phys.200954384421:CAS:528:DC%2BD1MXms1Ols7s%3D10.1038/nphys1270
Evarestov, R. A & Smirnov, V. P. Site Symmetry in Crystals 89–184 (Springer, 1997)
XiaYObservation of a large-gap topological-insulator class with a single Dirac cone on the surfaceNat. Phys.200953984021:CAS:528:DC%2BD1MXms1Ols70%3D10.1038/nphys1274
FalckLLindqvistOMoretJTricopper(ii) tellurate(vi)Acta Crystallogr. B19783489689710.1107/S0567740878004276
C Fang (BFnature23268_CR35) 2013; 87
Z Liu (BFnature23268_CR24) 2014; 343
J Zak (BFnature23268_CR26) 1989; 62
BFnature23268_CR40
BFnature23268_CR7
A Pfitzner (BFnature23268_CR38) 2002; 217
S Nakajima (BFnature23268_CR33) 2016; 12
AA Soluyanov (BFnature23268_CR9) 2012; 85
Q Xu (BFnature23268_CR42) 2015; 92
BFnature23268_CR29
B Bradlyn (BFnature23268_CR46) 2016; 353
N Marzari (BFnature23268_CR6) 2012; 84
M Atala (BFnature23268_CR32) 2013; 9
N Read (BFnature23268_CR10) 2017; 95
L Michel (BFnature23268_CR12) 2001; 341
DS Freed (BFnature23268_CR16) 2013; 14
AJ Morris (BFnature23268_CR45) 2014; 90
R Lou (BFnature23268_CR43) 2016; 93
H Watanabe (BFnature23268_CR41) 2016; 117
BFnature23268_CR5
C Brouder (BFnature23268_CR13) 2007; 98
MJ Rice (BFnature23268_CR31) 1982; 49
BFnature23268_CR3
BFnature23268_CR1
FDM Haldane (BFnature23268_CR19) 1988; 61
LM Schoop (BFnature23268_CR44) 2016; 7
S Ryu (BFnature23268_CR28) 2002; 89
S Kivelson (BFnature23268_CR30) 1982; 26
J Zak (BFnature23268_CR2) 1982; 26
GW Winkler (BFnature23268_CR22) 2016; 93
BFnature23268_CR11
CL Kane (BFnature23268_CR14) 2005; 95
Z Liu (BFnature23268_CR23) 2014; 13
BFnature23268_CR34
L Falck (BFnature23268_CR47) 1978; 34
H Bacry (BFnature23268_CR4) 1993; 153
R Hoffmann (BFnature23268_CR25) 1987; 26
Y Wang (BFnature23268_CR39) 2011; 13
Y Xia (BFnature23268_CR21) 2009; 5
BFnature23268_CR17
BFnature23268_CR18
BFnature23268_CR36
RD King-Smith (BFnature23268_CR27) 1993; 47
MI Aroyo (BFnature23268_CR15) 2006; 62
AA Soluyanov (BFnature23268_CR8) 2011; 83
A Ferrari (BFnature23268_CR37) 1926; 56
H Zhang (BFnature23268_CR20) 2009; 5
28726840 - Nature. 2017 Jul 19;547(7663):272-274
28726825 - Nature. 2017 Jul 19;547(7663):287-288
32472016 - Nature. 2020 May 29
28726842 - Nature. 2017 Jul 19;547(7663):257-258
References_xml – reference: Elcoro, L. et al. Double crystallographic groups and their representations on the bilbao crystallographic server. Preproof available at https://arxiv.org/abs/1706.09272 (2017)
– reference: LiuZDiscovery of a three-dimensional topological dirac semimetal, Na3BiScience20143438648672014Sci...343..864L1:CAS:528:DC%2BC2cXis1Cgsr8%3D10.1126/science.1245085
– reference: RiceMJMeleEJElementary excitations of a linearly conjugated diatomic polymerPhys. Rev. Lett.198249145514591982PhRvL..49.1455R1:CAS:528:DyaL38Xmt1GrtLk%3D10.1103/PhysRevLett.49.1455
– reference: HoffmannRHow chemistry and physics meet in the solid stateAngew. Chem. Int. Edn Engl.19872684687810.1002/anie.198708461
– reference: WinklerGWSoluyanovAATroyerMSmooth gauge and wannier functions for topological band structures in arbitrary dimensionsPhys. Rev. B2016930354532016PhRvB..93c5453W10.1103/PhysRevB.93.035453
– reference: MorrisAJGreyCPPickardCJThermodynamically stable lithium silicides and germanides from density functional theory calculationsPhys. Rev. B2014900541112014PhRvB..90e4111M10.1103/PhysRevB.90.054111
– reference: KivelsonSWannier functions in one-dimensional disordered systems: application to fractionally charged solitonsPhys. Rev. B198226426942771982PhRvB..26.4269K1:CAS:528:DyaL3sXit1ertQ%3D%3D10.1103/PhysRevB.26.4269
– reference: LiuZA stable three-dimensional topological dirac semimetal Cd3As2Nat. Mater.2014136776812014NatMa..13..677L1:CAS:528:DC%2BC2cXos1ars7c%3D10.1038/nmat3990
– reference: RyuSHatsugaiYTopological origin of zero-energy edge states in particle-hole symmetric systemsPhys. Rev. Lett.2002890770022002PhRvL..89g7002R10.1103/PhysRevLett.89.077002
– reference: FalckLLindqvistOMoretJTricopper(ii) tellurate(vi)Acta Crystallogr. B19783489689710.1107/S0567740878004276
– reference: Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Preprint at https://arxiv.org/abs/1703.00911 (2017)
– reference: ZakJBerry’s phase for energy bands in solidsPhys. Rev. Lett.198962274727501989PhRvL..62.2747Z1:STN:280:DC%2BC2sfosFGhsw%3D%3D10.1103/PhysRevLett.62.2747
– reference: ZhangHTopological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surfaceNat. Phys.200954384421:CAS:528:DC%2BD1MXms1Ols7s%3D10.1038/nphys1270
– reference: WatanabeHPoHCZaletelMPVishwanathAFilling-enforced gaplessness in band structures of the 230 space groupsPhys. Rev. Lett.20161170964042016PhRvL.117i6404W10.1103/PhysRevLett.117.096404
– reference: AroyoMIKirovACapillasCPerez-MatoJMWondratschekHBilbao Crystallographic Server. II. Representations of crystallographic point groups and space groupsActa Crystallogr. A2006621151282006AcCrA..62..115A10.1107/S0108767305040286
– reference: Vergniory, M. G. et al. Graph theory data for topological quantum chemistry. Preproof available at https://arxiv.org/abs/1706.08529 (2017)
– reference: HaldaneFDMModel for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”Phys. Rev. Lett.198861201520181988PhRvL..61.2015H9257491:CAS:528:DyaL1MXhs1Ojsg%3D%3D10.1103/PhysRevLett.61.2015
– reference: Kittel, C. Quantum Theory of Solids 186–190 (Wiley, 1987)
– reference: ReadNCompactly-supported Wannier functions and algebraic k-theoryPhys. Rev. B2017951153092017PhRvB..95k5309R10.1103/PhysRevB.95.115309
– reference: FreedDSMooreGWTwisted equivariant matterAnn. Henri Poincare201314192720232013AnHP...14.1927F311992310.1007/s00023-013-0236-x
– reference: Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Preprint at https://arxiv.org/abs/1611.07987 (2016)
– reference: Tubman, N. M. & Yang, D. C. Quantum dissection of a covalent bond with the entanglement spectrum. Preprint at https://arxiv.org/abs/1412.1495 (2014)
– reference: PfitznerAReiserSRefinement of the crystal structures of Cu3Ps4 and Cu3SbS4 and a comment on normal tetrahedral structuresZ. Kristallogr.2002217511:CAS:528:DC%2BD38XivFKmtLo%3D
– reference: BrouderCPanatiGCalandraMMourouganeCMarzariNExponential localization of Wannier functions in insulatorsPhys. Rev. Lett.2007980464022007PhRvL..98d6402B10.1103/PhysRevLett.98.046402
– reference: XuQTwo-dimensional oxide topological insulator with iron-pnictide superconductor lifeas structurePhys. Rev. B2015922053102015PhRvB..92t5310X10.1103/PhysRevB.92.205310
– reference: BradlynBBeyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystalsScience2016353aaf5037355955810.1126/science.aaf5037
– reference: Bernevig, B. A & Hughes, T. L. Topological Insulators and Topological Superconductors 226–228 (Princeton Univ. Press, 2013)
– reference: AtalaMDirect measurement of the Zak phase in topological bloch bandsNat. Phys.201397958001:CAS:528:DC%2BC3sXhslWjtL7M10.1038/nphys2790
– reference: NakajimaSTopological Thouless pumping of ultracold fermionsNat. Phys.2016122963001:CAS:528:DC%2BC28XhtFOls78%3D10.1038/nphys3622
– reference: Fulton, W & Harris, J. Representation Theory: A First Course Ch. 3 (Springer, 2004)
– reference: MarzariNMostofiAAYatesJRSouzaIVanderbiltDMaximally localized Wannier functions: theory and applicationsRev. Mod. Phys.201284141914752012RvMP...84.1419M1:CAS:528:DC%2BC3sXit1SmtL4%3D10.1103/RevModPhys.84.1419
– reference: WangYLinHDasTHasanMBansilATopological insulators in the quaternary chalcogenide compounds and ternary famatinite compoundsNew J. Phys.2011130850172011NJPh...13h5017W10.1088/1367-2630/13/8/085017
– reference: XiaYObservation of a large-gap topological-insulator class with a single Dirac cone on the surfaceNat. Phys.200953984021:CAS:528:DC%2BD1MXms1Ols70%3D10.1038/nphys1274
– reference: ZakJBand representations of space groupsPhys. Rev. B198226301030231982PhRvB..26.3010Z1:CAS:528:DyaL38Xlslartb8%3D10.1103/PhysRevB.26.3010
– reference: MichelLZakJElementary energy bands in crystals are connectedPhys. Rep.20013413773952001PhR...341..377M18454651:CAS:528:DC%2BD3MXitV2htg%3D%3D10.1016/S0370-1573(00)00093-4
– reference: FangCGilbertMJBernevigBAEntanglement spectrum classification of Cn-invariant noninteracting topological insulators in two dimensionsPhys. Rev. B2013870351192013PhRvB..87c5119F10.1103/PhysRevB.87.035119
– reference: Evarestov, R. A & Smirnov, V. P. Site Symmetry in Crystals 89–184 (Springer, 1997)
– reference: SoluyanovAAVanderbiltDSmooth gauge for topological insulatorsPhys. Rev. B2012851154152012PhRvB..85k5415S10.1103/PhysRevB.85.115415
– reference: Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Preprint at https://arxiv.org/abs/1612.02007 (2016)
– reference: King-SmithRDVanderbiltDTheory of polarization of crystalline solidsPhys. Rev. B1993471651(R)1654(R)1993PhRvB..47.1651K10.1103/PhysRevB.47.1651
– reference: LouREmergence of topological bands on the surface of zrsnte crystalPhys. Rev. B201693241104(R)2016PhRvB..93x1104L10.1103/PhysRevB.93.241104
– reference: Bacry, H., Michel, L. & Zak, J. inGroup Theoretical Methods in Physics (eds Doebner, H. D. et al.) 289–308 (Springer, 1988)
– reference: KaneCLMeleEJQuantum spin Hall effect in graphenePhys. Rev. Lett.2005952268012005PhRvL..95v6801K1:STN:280:DC%2BD2Mnps1ymug%3D%3D10.1103/PhysRevLett.95.226801
– reference: SoluyanovAAVanderbiltDWannier representation of Z2 topological insulatorsPhys. Rev. B2011830351082011PhRvB..83c5108S10.1103/PhysRevB.83.035108
– reference: BacryHDuals of crystallographic groups. Band and quasi-band representationsCommun. Math. Phys.19931533593901993CMaPh.153..359B121830610.1007/BF02096648
– reference: FerrariAIl sottossido di piomboGazz. Chim. Ital.192656630
– reference: SchoopLMDirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiSNat. Commun.20167116962016NatCo...711696S1:CAS:528:DC%2BC28XptVyjtbw%3D10.1038/ncomms11696
– volume: 26
  start-page: 3010
  year: 1982
  ident: BFnature23268_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.26.3010
– ident: BFnature23268_CR29
  doi: 10.1515/9781400846733
– volume: 5
  start-page: 398
  year: 2009
  ident: BFnature23268_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1274
– ident: BFnature23268_CR7
– volume: 343
  start-page: 864
  year: 2014
  ident: BFnature23268_CR24
  publication-title: Science
  doi: 10.1126/science.1245085
– volume: 26
  start-page: 4269
  year: 1982
  ident: BFnature23268_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.26.4269
– volume: 61
  start-page: 2015
  year: 1988
  ident: BFnature23268_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
– volume: 93
  start-page: 035453
  year: 2016
  ident: BFnature23268_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.035453
– volume: 5
  start-page: 438
  year: 2009
  ident: BFnature23268_CR20
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1270
– volume: 341
  start-page: 377
  year: 2001
  ident: BFnature23268_CR12
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00093-4
– volume: 98
  start-page: 046402
  year: 2007
  ident: BFnature23268_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.046402
– ident: BFnature23268_CR17
  doi: 10.1103/PhysRevX.7.041069
– volume: 93
  start-page: 241104(R)
  year: 2016
  ident: BFnature23268_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.241104
– volume: 34
  start-page: 896
  year: 1978
  ident: BFnature23268_CR47
  publication-title: Acta Crystallogr. B
  doi: 10.1107/S0567740878004276
– volume: 26
  start-page: 846
  year: 1987
  ident: BFnature23268_CR25
  publication-title: Angew. Chem. Int. Edn Engl.
  doi: 10.1002/anie.198708461
– volume: 12
  start-page: 296
  year: 2016
  ident: BFnature23268_CR33
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3622
– volume: 83
  start-page: 035108
  year: 2011
  ident: BFnature23268_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.035108
– ident: BFnature23268_CR18
  doi: 10.1038/s41467-017-00133-2
– ident: BFnature23268_CR36
– volume: 90
  start-page: 054111
  year: 2014
  ident: BFnature23268_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.054111
– ident: BFnature23268_CR5
  doi: 10.1007/978-3-642-60488-1_4
– volume: 62
  start-page: 115
  year: 2006
  ident: BFnature23268_CR15
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767305040286
– ident: BFnature23268_CR34
– volume: 92
  start-page: 205310
  year: 2015
  ident: BFnature23268_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.205310
– volume: 13
  start-page: 677
  year: 2014
  ident: BFnature23268_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3990
– volume: 9
  start-page: 795
  year: 2013
  ident: BFnature23268_CR32
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2790
– volume: 87
  start-page: 035119
  year: 2013
  ident: BFnature23268_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.035119
– volume: 56
  start-page: 630
  year: 1926
  ident: BFnature23268_CR37
  publication-title: Gazz. Chim. Ital.
– volume: 84
  start-page: 1419
  year: 2012
  ident: BFnature23268_CR6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.1419
– volume: 7
  start-page: 11696
  year: 2016
  ident: BFnature23268_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11696
– volume: 49
  start-page: 1455
  year: 1982
  ident: BFnature23268_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1455
– volume: 153
  start-page: 359
  year: 1993
  ident: BFnature23268_CR4
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02096648
– volume: 217
  start-page: 51
  year: 2002
  ident: BFnature23268_CR38
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.217.2.51.20632
– volume: 95
  start-page: 226801
  year: 2005
  ident: BFnature23268_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 47
  start-page: 1651(R)
  year: 1993
  ident: BFnature23268_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 85
  start-page: 115415
  year: 2012
  ident: BFnature23268_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.115415
– ident: BFnature23268_CR11
  doi: 10.1007/978-1-4612-0979-9_1
– volume: 89
  start-page: 077002
  year: 2002
  ident: BFnature23268_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.077002
– ident: BFnature23268_CR3
– ident: BFnature23268_CR1
– volume: 14
  start-page: 1927
  year: 2013
  ident: BFnature23268_CR16
  publication-title: Ann. Henri Poincare
  doi: 10.1007/s00023-013-0236-x
– volume: 13
  start-page: 085017
  year: 2011
  ident: BFnature23268_CR39
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/8/085017
– volume: 353
  start-page: aaf5037
  year: 2016
  ident: BFnature23268_CR46
  publication-title: Science
  doi: 10.1126/science.aaf5037
– volume: 62
  start-page: 2747
  year: 1989
  ident: BFnature23268_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2747
– volume: 95
  start-page: 115309
  year: 2017
  ident: BFnature23268_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.115309
– ident: BFnature23268_CR40
  doi: 10.1103/PhysRevE.96.023310
– volume: 117
  start-page: 096404
  year: 2016
  ident: BFnature23268_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.096404
– reference: 28726842 - Nature. 2017 Jul 19;547(7663):257-258
– reference: 28726840 - Nature. 2017 Jul 19;547(7663):272-274
– reference: 28726825 - Nature. 2017 Jul 19;547(7663):287-288
– reference: 32472016 - Nature. 2020 May 29;:
SSID ssj0005174
Score 2.6296644
Snippet Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of...
Not provided.
SourceID osti
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 298
SubjectTerms 119/118
639/766/119/2792
639/766/119/995
Analysis
Atomic structure
Band theory
Band theory (Physics)
Chemical bonds
Chemical properties
Chemical research
Chemistry
Crystal structure
Electrical insulators
Electron states
Group theory
Humanities and Social Sciences
Iron
Materials
Metalloids
Methods
multidisciplinary
Orbitals
Polarization
Quantum chemistry
Science
Science & Technology - Other Topics
Solitons
Symmetry
Topological groups
Topology
Title Topological quantum chemistry
URI https://link.springer.com/article/10.1038/nature23268
https://www.ncbi.nlm.nih.gov/pubmed/28726818
https://www.proquest.com/docview/1922897073
https://www.proquest.com/docview/1921133677
https://www.osti.gov/biblio/1535042
Volume 547
WOSCitedRecordID wos000405844900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: NPG (Nature Publishing Group)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database (ProQuest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYB4IXYOWrdKsKGp9SWBwndfyEumoTaGqJug4KL1biOtMk6MfS8vdz5zhdyrrywMtJkc92kvvwOb78jpB9oVwIw4UA7wca7LcS7SS-px0e4-YgpTpgiSk2wXu9cDgUkf3gltm0ysInGkc9mij8Rn4AkQjsDTho5MfpzMGqUXi6aktobJFtRElgJnUvukrx-AuF2f6f57LwIIfNhHACMVZLK5L1y5UJGNi6oPPagalZh44f_O8TPCT3bQTabOcqs0Nu6XGV3O0Uhd-q5I7JClVZlexYy8-aby089btHZG-Q11VA6TZnC5DM4ldTFd0fk7Pjo0Hnk2OLLDiKczF3EtxiaESFj70gVgHVVMWprwRnPHWTkWKxDmGTppTHGPWpcoNUscBNBaex8FrsCamMJ2P9jDRZEge6lfoaggo_dhORBiJxWQJBShh4I69G3hcvWiqLQI6FMH5KcxLOQlmSSo3sL5mnOfDGDWwoMYlQFmPMlTmPF1km24NvnZ5s-yLEY1jqbWZreT53IRD1a-TlOrbPp_2VsW5mKo30xjKlE3hGFdu_HeBNIeDWynD1FU41vZjJza2lWV6vtJ7nurBukt0VRlAJ9c_m0jR1tAcJQRkiCytMwVJzCQYXgM-HzoW-S-sAM3ml7DXyYtmM42JS31hPFoaHUsZanNfI09y8lqKGjTxIl4J8XxX2Vhr8uh4833wTdXLPw3jM5bAs7JLK_HKh98ht9Xt-kV02yBbvf0U65IaGQMMObZDtw6Ne1Ierk8MPQLvuCVKva-gXQ6OG8TmGngKNgh_QL2oPut__ADTDe1Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VACoXoOEV2oJBLS_JqnfXznoPCEWBqlFLhEqA3hZ7s64qQR51AuJP8RuZ8SN1aBpOPXDe8azjeey32dlvALaU8RCGK4XZDz3Yb8bWjX1uXRnR5iBhNhBx1mxCdrvh0ZH6sAK_y7swVFZZ5sQsUfeHhv4j30EkgnsDiR75ZjR2qWsUna6WLTRyt9i3v37ili193XmL9t3mfPddr73nFl0FXCOlmrgxYWpLNOgRDyITMMtMlPhGSSETL-4bEdkQdyXGcCGYz4wXJEYEXqIkixRvCtR7Ba5iHmdUQiYPP5-VlPzF-lzcB_REuJPTdCJ8IU7XygpYrAO1IQb0IpB77oA2W_d2b_1vX-w23CwQttPKQ2INVuygDqvtsrFdHa5nVa8mrcNakdlS50VBv_3yDmz28r4R5L3OeIqeN_3umPLxu_DpUl7-HtQGw4F9AI6Io8A2E98iaPIjL1ZJoGJPxAjCwoD3eQNelYbVpmBYp0Yf33R20i9CXfGCBmzNhEc5scgFYuQhmqg6BlQLdBxN01S3el_aXd3yVUjHzIwvF2tyX3oItP0GPF0k1vl4OKfrYqGKpueFUDLE32ii4jYHfikiFJtTtz4naUYnY718tDLLs7nR49wXFk2yMSeILmH-OVyZZp3iTyPoJOZkQyVmZqIRDAS4puHDZXzpIsGn-iy4GvBkNkx6qWhxYIfTTIYxIZpSNuB-Hs4zU_NQonUZ2ne7jO-K8vN-8HD5SzyG1b3e-wN90Onur8MNTtjTk7gEbkBtcjq1m3DN_JicpKePsozlwNfLDvg_DKbJ6g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8LwALa-QFgxqeUlW7F076z0gFKVEREVRBUH0ttibdVUJ8qgTEH-NX8eMvQ4OTcOpB847nnU838x-m52dAdiV2kMaLiVGP0Rw0EqMmwTMuCKmzUHqm5AnebMJ0e9HR0fycAN-lXdhKK2yjIl5oB6ONf1H3kQmgnsDgYhspjYt4nC_-2YydamDFJ20lu00CogcmJ8_cPuWve7to633GOu-HXTeubbDgKuFkDM3IX5tqCR6zMJYh77xdZwGWgouUi8Zah6bCHcoWjPO_cDXXphqHnqpFH4sWYuj3ktwWXBEMd1S71TSS_6qAG3vBno8ahYlO5HKUH3Xympo14TaGJ17FeE9c1ibr4HdW__z17sNNy3zdtqFq2zChhltwfVO2fBuC67m2bA624JNG_Ey54Uty_3yDuwMin4ShGpnOkdEzr85unz8Lny6kJe_B7XReGQegMOTODStNDBIpoLYS2QaysTjCZKzKGRDVodXpZGVtpXXqQHIV5VnAPBIVRBRh92F8KQoOHKOGKFFUQmPEZnzOJ5nmWoPPnf6qh3IiI6ffbZerMUC4SEBD-rwdJVY7-OHJV3nC1U0PbdC6Rh_o47tLQ_8UlRobEldY0lST06mav1oZZZnS6PHBRZWTbK9JIiQ0P8crkzTIF9USEaporKm1DM9U0gSQlzr8OHS15QN_Jn642h1eLIYJr2UzDgy43ku4_uct4Sow_3CtRemZpFA6_po373S1yvKz-Lg4fqXeAzX0M_V-17_oAE3GFFST-DKuA212enc7MAV_X12kp0-yoOXA18u2t9_Aw270kU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+quantum+chemistry&rft.jtitle=Nature+%28London%29&rft.au=Bradlyn%2C+Barry&rft.au=Elcoro%2C+L&rft.au=Cano%2C+Jennifer&rft.au=Vergniory%2C+M.+G&rft.date=2017-07-20&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=547&rft.issue=7663&rft.spage=298&rft_id=info:doi/10.1038%2Fnature23268&rft.externalDocID=A624705224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon