Deep Embedding Sentiment Analysis on Product Reviews Using Naive Bayesian Classifier

Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an ef...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Scientific Research in Computer Science, Engineering and Information Technology s. 858 - 864
Hlavní autoři: Sahithya, Nukabathini Mary Saroj, Prathyusha, Manda, Rachana, Nakkala, Priyanka, Perikala, Jyothi, P. J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: 31.03.2019
ISSN:2456-3307, 2456-3307
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. Deep learning is a class of machine learning algorithms that learn in supervised and unsupervised manners. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings supervision signals. The framework consists of two steps: (1) learning a high-level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; (2) adding a category layer on top of the embedding layer and use labelled sentences for supervised fine-tuning. We explore two kinds of low-level network structure for modelling review sentences, namely, convolutional function extractors and long temporary memory. Convolutional layer is the core building block of a CNN and it consists of kernels. Applications are image and video recognition, natural language processing, image classification
AbstractList Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. Deep learning is a class of machine learning algorithms that learn in supervised and unsupervised manners. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings supervision signals. The framework consists of two steps: (1) learning a high-level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; (2) adding a category layer on top of the embedding layer and use labelled sentences for supervised fine-tuning. We explore two kinds of low-level network structure for modelling review sentences, namely, convolutional function extractors and long temporary memory. Convolutional layer is the core building block of a CNN and it consists of kernels. Applications are image and video recognition, natural language processing, image classification
Author Rachana, Nakkala
Sahithya, Nukabathini Mary Saroj
Priyanka, Perikala
Jyothi, P. J.
Prathyusha, Manda
Author_xml – sequence: 1
  givenname: Nukabathini Mary Saroj
  surname: Sahithya
  fullname: Sahithya, Nukabathini Mary Saroj
  organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India
– sequence: 2
  givenname: Manda
  surname: Prathyusha
  fullname: Prathyusha, Manda
  organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India
– sequence: 3
  givenname: Nakkala
  surname: Rachana
  fullname: Rachana, Nakkala
  organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India
– sequence: 4
  givenname: Perikala
  surname: Priyanka
  fullname: Priyanka, Perikala
  organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India
– sequence: 5
  givenname: P. J.
  surname: Jyothi
  fullname: Jyothi, P. J.
  organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India
BookMark eNpNkDtPwzAUhS1UJErpyO4_ELB9ndgZSwhQqQJEwxw5zjWylDpVXIry7wmPoct5SEffcC7JLPQBCbnm7AZEJvRtsS3XFc9TwZU-I3Mh0ywBYGp2ki_IMkbfMCmV5Knic1LdI-5puWuwbX34oFsMB7-bhK6C6cboI-0DfR369tMe6BsePX5F-h5_ts_GH5HemRGjN4EWnZngzuNwRc6d6SIu_31BqoeyKp6SzcvjulhtEquUTiA3jmeoMHXCobYtAwA0EmXjcsu0TlExcHpquU5txhCgtVII0ziNIGBBkj-sHfoYB3T1fvA7M4w1Z_XvKfXpKfANo4BXSA
Cites_doi 10.18653/v1/N16-1093
10.1109/TPAMI.2013.50
10.1037/h0031619
10.1145/2436256.2436274
10.3115/v1/p14-2009
10.1145/1341531.1341561
10.1145/775224.775226
10.1561/2200000006
10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.32628/CSEIT1952178
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2456-3307
EndPage 864
ExternalDocumentID 10_32628_CSEIT1952178
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c778-39af16e7e5f2fe8cd0333ea4e4bf9c0885e703f8bf9985c60e33dc422abf8e323
ISSN 2456-3307
IngestDate Sat Nov 29 06:23:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c778-39af16e7e5f2fe8cd0333ea4e4bf9c0885e703f8bf9985c60e33dc422abf8e323
OpenAccessLink https://doi.org/10.32628/cseit1952178
PageCount 7
ParticipantIDs crossref_primary_10_32628_CSEIT1952178
PublicationCentury 2000
PublicationDate 2019-3-31
PublicationDateYYYYMMDD 2019-03-31
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-3-31
  day: 31
PublicationDecade 2010
PublicationTitle International Journal of Scientific Research in Computer Science, Engineering and Information Technology
PublicationYear 2019
References ref13
ref12
ref11
ref10
ref0
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.18653/v1/N16-1093
– ident: ref13
– ident: ref4
– ident: ref5
– ident: ref10
  doi: 10.1109/TPAMI.2013.50
– ident: ref7
  doi: 10.1037/h0031619
– ident: ref6
  doi: 10.1145/2436256.2436274
– ident: ref3
  doi: 10.3115/v1/p14-2009
– ident: ref8
– ident: ref2
  doi: 10.1145/1341531.1341561
– ident: ref0
  doi: 10.1145/775224.775226
– ident: ref9
  doi: 10.1561/2200000006
– ident: ref1
  doi: 10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
– ident: ref11
SSID ssib044741571
Score 2.060569
Snippet Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where...
SourceID crossref
SourceType Index Database
StartPage 858
Title Deep Embedding Sentiment Analysis on Product Reviews Using Naive Bayesian Classifier
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2456-3307
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044741571
  issn: 2456-3307
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELKgLEo1R7QFwqQ-Jd27vH0gaBRCNELNRbtF7Pqm6KE6VN1Vz4u_yNzj78oMqhHLhY9sZeRZ5PM-PZ75sl5J3t6MFHsY5S0GXEBZeRwqgSpUOpdcJjJZyO--e3bDIRp6fy-2Dwp9HCXF9kdS1ubuTyv5oax9DYVjr7D-ZuJ8UBPEej4xHNjsd7Gf4YYHkw_lVA6fQqU0sHciv-Xf-R2uoDbKPXsDRweeCZAxNleUSf1AactNJtmFmZKhB4zzvS-981xJDQOjfhqEctn89rCv2-EY0bcd6364IYCMmtiHJLsX-qzirEk0tzJ-u5Kixjsq6szmhjS9qL89bBI57PNuuwinWievWGH8pqnP0caj5XF6p7qNqoeq48XXlVtb-FYojVX7EmijifaZdxI8b8RrofYMuY99PC94tvQr5vpH43mmBmG1uJxNF0_DUfSUx0MtGFzYYqcCeathxH_LpyE8z6jz8gD-MskTaCnPweN46Pc5vXueJA-2d9P1g3w8f-DL38qZcI5bvkSTA4PfTIe0oGUD8juUUdbVFHW9TRBnV0UdOAOhpQRx3qqEMdbVBHO9Q9J_nncX70JQobdkQ6sywbqcwohQwSExsQuhwyxkBx4IWRGsNZAhhfjMArKRKdDoGxUvM4VoURwGL2guzUixpeEopZLJg0iQEM41yXsszwohypDDPMQsIr8r55C7Olb8sy2_rCX9_3xjfkcQeoPbJztVrDW_JIX19Vl6t9Z65bhxeH4A
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Embedding+Sentiment+Analysis+on+Product+Reviews+Using+Naive+Bayesian+Classifier&rft.jtitle=International+Journal+of+Scientific+Research+in+Computer+Science%2C+Engineering+and+Information+Technology&rft.au=Sahithya%2C+Nukabathini+Mary+Saroj&rft.au=Prathyusha%2C+Manda&rft.au=Rachana%2C+Nakkala&rft.au=Priyanka%2C+Perikala&rft.date=2019-03-31&rft.issn=2456-3307&rft.eissn=2456-3307&rft.spage=858&rft.epage=864&rft_id=info:doi/10.32628%2FCSEIT1952178&rft.externalDBID=n%2Fa&rft.externalDocID=10_32628_CSEIT1952178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2456-3307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2456-3307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2456-3307&client=summon