Deep Embedding Sentiment Analysis on Product Reviews Using Naive Bayesian Classifier
Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an ef...
Uloženo v:
| Vydáno v: | International Journal of Scientific Research in Computer Science, Engineering and Information Technology s. 858 - 864 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
31.03.2019
|
| ISSN: | 2456-3307, 2456-3307 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. Deep learning is a class of machine learning algorithms that learn in supervised and unsupervised manners. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings supervision signals. The framework consists of two steps: (1) learning a high-level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; (2) adding a category layer on top of the embedding layer and use labelled sentences for supervised fine-tuning. We explore two kinds of low-level network structure for modelling review sentences, namely, convolutional function extractors and long temporary memory. Convolutional layer is the core building block of a CNN and it consists of kernels. Applications are image and video recognition, natural language processing, image classification |
|---|---|
| AbstractList | Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. Deep learning is a class of machine learning algorithms that learn in supervised and unsupervised manners. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings supervision signals. The framework consists of two steps: (1) learning a high-level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; (2) adding a category layer on top of the embedding layer and use labelled sentences for supervised fine-tuning. We explore two kinds of low-level network structure for modelling review sentences, namely, convolutional function extractors and long temporary memory. Convolutional layer is the core building block of a CNN and it consists of kernels. Applications are image and video recognition, natural language processing, image classification |
| Author | Rachana, Nakkala Sahithya, Nukabathini Mary Saroj Priyanka, Perikala Jyothi, P. J. Prathyusha, Manda |
| Author_xml | – sequence: 1 givenname: Nukabathini Mary Saroj surname: Sahithya fullname: Sahithya, Nukabathini Mary Saroj organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India – sequence: 2 givenname: Manda surname: Prathyusha fullname: Prathyusha, Manda organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India – sequence: 3 givenname: Nakkala surname: Rachana fullname: Rachana, Nakkala organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India – sequence: 4 givenname: Perikala surname: Priyanka fullname: Priyanka, Perikala organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India – sequence: 5 givenname: P. J. surname: Jyothi fullname: Jyothi, P. J. organization: Department of CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India |
| BookMark | eNpNkDtPwzAUhS1UJErpyO4_ELB9ndgZSwhQqQJEwxw5zjWylDpVXIry7wmPoct5SEffcC7JLPQBCbnm7AZEJvRtsS3XFc9TwZU-I3Mh0ywBYGp2ki_IMkbfMCmV5Knic1LdI-5puWuwbX34oFsMB7-bhK6C6cboI-0DfR369tMe6BsePX5F-h5_ts_GH5HemRGjN4EWnZngzuNwRc6d6SIu_31BqoeyKp6SzcvjulhtEquUTiA3jmeoMHXCobYtAwA0EmXjcsu0TlExcHpquU5txhCgtVII0ziNIGBBkj-sHfoYB3T1fvA7M4w1Z_XvKfXpKfANo4BXSA |
| Cites_doi | 10.18653/v1/N16-1093 10.1109/TPAMI.2013.50 10.1037/h0031619 10.1145/2436256.2436274 10.3115/v1/p14-2009 10.1145/1341531.1341561 10.1145/775224.775226 10.1561/2200000006 10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.32628/CSEIT1952178 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2456-3307 |
| EndPage | 864 |
| ExternalDocumentID | 10_32628_CSEIT1952178 |
| GroupedDBID | AAYXX CITATION M~E |
| ID | FETCH-LOGICAL-c778-39af16e7e5f2fe8cd0333ea4e4bf9c0885e703f8bf9985c60e33dc422abf8e323 |
| ISSN | 2456-3307 |
| IngestDate | Sat Nov 29 06:23:53 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c778-39af16e7e5f2fe8cd0333ea4e4bf9c0885e703f8bf9985c60e33dc422abf8e323 |
| OpenAccessLink | https://doi.org/10.32628/cseit1952178 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_32628_CSEIT1952178 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-3-31 |
| PublicationDateYYYYMMDD | 2019-03-31 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-3-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationTitle | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| PublicationYear | 2019 |
| References | ref13 ref12 ref11 ref10 ref0 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref12 doi: 10.18653/v1/N16-1093 – ident: ref13 – ident: ref4 – ident: ref5 – ident: ref10 doi: 10.1109/TPAMI.2013.50 – ident: ref7 doi: 10.1037/h0031619 – ident: ref6 doi: 10.1145/2436256.2436274 – ident: ref3 doi: 10.3115/v1/p14-2009 – ident: ref8 – ident: ref2 doi: 10.1145/1341531.1341561 – ident: ref0 doi: 10.1145/775224.775226 – ident: ref9 doi: 10.1561/2200000006 – ident: ref1 doi: 10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9 – ident: ref11 |
| SSID | ssib044741571 |
| Score | 2.060569 |
| Snippet | Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 858 |
| Title | Deep Embedding Sentiment Analysis on Product Reviews Using Naive Bayesian Classifier |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2456-3307 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044741571 issn: 2456-3307 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELKgLEo1R7QFwqQ-Jd27vH0gaBRCNELNRbtF7Pqm6KE6VN1Vz4u_yNzj78oMqhHLhY9sZeRZ5PM-PZ75sl5J3t6MFHsY5S0GXEBZeRwqgSpUOpdcJjJZyO--e3bDIRp6fy-2Dwp9HCXF9kdS1ubuTyv5oax9DYVjr7D-ZuJ8UBPEej4xHNjsd7Gf4YYHkw_lVA6fQqU0sHciv-Xf-R2uoDbKPXsDRweeCZAxNleUSf1AactNJtmFmZKhB4zzvS-981xJDQOjfhqEctn89rCv2-EY0bcd6364IYCMmtiHJLsX-qzirEk0tzJ-u5Kixjsq6szmhjS9qL89bBI57PNuuwinWievWGH8pqnP0caj5XF6p7qNqoeq48XXlVtb-FYojVX7EmijifaZdxI8b8RrofYMuY99PC94tvQr5vpH43mmBmG1uJxNF0_DUfSUx0MtGFzYYqcCeathxH_LpyE8z6jz8gD-MskTaCnPweN46Pc5vXueJA-2d9P1g3w8f-DL38qZcI5bvkSTA4PfTIe0oGUD8juUUdbVFHW9TRBnV0UdOAOhpQRx3qqEMdbVBHO9Q9J_nncX70JQobdkQ6sywbqcwohQwSExsQuhwyxkBx4IWRGsNZAhhfjMArKRKdDoGxUvM4VoURwGL2guzUixpeEopZLJg0iQEM41yXsszwohypDDPMQsIr8r55C7Olb8sy2_rCX9_3xjfkcQeoPbJztVrDW_JIX19Vl6t9Z65bhxeH4A |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Embedding+Sentiment+Analysis+on+Product+Reviews+Using+Naive+Bayesian+Classifier&rft.jtitle=International+Journal+of+Scientific+Research+in+Computer+Science%2C+Engineering+and+Information+Technology&rft.au=Sahithya%2C+Nukabathini+Mary+Saroj&rft.au=Prathyusha%2C+Manda&rft.au=Rachana%2C+Nakkala&rft.au=Priyanka%2C+Perikala&rft.date=2019-03-31&rft.issn=2456-3307&rft.eissn=2456-3307&rft.spage=858&rft.epage=864&rft_id=info:doi/10.32628%2FCSEIT1952178&rft.externalDBID=n%2Fa&rft.externalDocID=10_32628_CSEIT1952178 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2456-3307&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2456-3307&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2456-3307&client=summon |