CaTT contexts are finite computads

Two novel descriptions of weak {\omega}-categories have been recently proposed, using type-theoretic ideas. The first one is the dependent type theory CaTT whose models are {\omega}-categories. The second is a recursive description of a category of computads together with an adjunction to globular s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic Notes in Theoretical Informatics and Computer Science Ročník 4 - Proceedings of...
Hlavní autoři: Benjamin, Thibaut, Markakis, Ioannis, Sarti, Chiara
Médium: Journal Article
Jazyk:angličtina
Vydáno: 11.12.2024
ISSN:2969-2431, 2969-2431
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Two novel descriptions of weak {\omega}-categories have been recently proposed, using type-theoretic ideas. The first one is the dependent type theory CaTT whose models are {\omega}-categories. The second is a recursive description of a category of computads together with an adjunction to globular sets, such that the algebras for the induced monad are again {\omega}-categories. We compare the two descriptions by showing that there exits a fully faithful morphism of categories with families from the syntactic category of CaTT to the opposite of the category of computads, which gives an equivalence on the subcategory of finite computads. We derive a more direct connection between the category of models of CaTT and the category of algebras for the monad on globular sets, induced by the adjunction with computads.
ISSN:2969-2431
2969-2431
DOI:10.46298/entics.14675