Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox

The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a v...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology Vol. 22; no. 1; p. 93
Main Authors: Wirbel, Jakob, Zych, Konrad, Essex, Morgan, Karcher, Nicolai, Kartal, Ece, Salazar, Guillem, Bork, Peer, Sunagawa, Shinichi, Zeller, Georg
Format: Journal Article
Language:English
Published: London BioMed Central 30.03.2021
Springer Nature B.V
BMC
Subjects:
ISSN:1474-760X, 1474-7596, 1474-760X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
AbstractList The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de.
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
Abstract The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
ArticleNumber 93
Author Karcher, Nicolai
Zeller, Georg
Zych, Konrad
Bork, Peer
Essex, Morgan
Kartal, Ece
Salazar, Guillem
Sunagawa, Shinichi
Wirbel, Jakob
Author_xml – sequence: 1
  givenname: Jakob
  orcidid: 0000-0002-4073-3562
  surname: Wirbel
  fullname: Wirbel, Jakob
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)
– sequence: 2
  givenname: Konrad
  orcidid: 0000-0001-7426-0516
  surname: Zych
  fullname: Zych, Konrad
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Present Address: Clinical Microbiomics A/S
– sequence: 3
  givenname: Morgan
  orcidid: 0000-0001-8758-7497
  surname: Essex
  fullname: Essex, Morgan
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Present Address: Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine and Charité University Hospital
– sequence: 4
  givenname: Nicolai
  orcidid: 0000-0001-7894-8182
  surname: Karcher
  fullname: Karcher, Nicolai
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Department CIBIO, University of Trento
– sequence: 5
  givenname: Ece
  orcidid: 0000-0002-7720-455X
  surname: Kartal
  fullname: Kartal, Ece
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)
– sequence: 6
  givenname: Guillem
  orcidid: 0000-0002-9786-1493
  surname: Salazar
  fullname: Salazar, Guillem
  organization: Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich
– sequence: 7
  givenname: Peer
  orcidid: 0000-0002-2627-833X
  surname: Bork
  fullname: Bork, Peer
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Molecular Medicine Partnership Unit, Max Delbrück Centre for Molecular Medicine, Department of Bioinformatics, Biocenter, University of Würzburg
– sequence: 8
  givenname: Shinichi
  orcidid: 0000-0003-3065-0314
  surname: Sunagawa
  fullname: Sunagawa, Shinichi
  organization: Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich
– sequence: 9
  givenname: Georg
  orcidid: 0000-0003-1429-7485
  surname: Zeller
  fullname: Zeller, Georg
  email: zeller@embl.de
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33785070$$D View this record in MEDLINE/PubMed
BookMark eNqNUktvEzEYXKEi-oA_wAGtxIXLgr1-7gUpinhEasWBInGzvl1_mzjatYO9qci_x0lKaXuoOFi27Jn5Rp45L0588FgUryl5T6mWHxJlRDQVqWlejMiKPivOKFe8UpL8PLl3Pi3OU1oTQhteyxfFKWNKC6LIWYFXrouhdWHEcsQJKvAw7JJLJXhb5qeUKusSQsKyC-MGokvBl-ihHdCW7a6cVlh-X8yu5rPrcoRu5TyWA0L0zi_LKYShDb9fFs97GBK-ut0vih-fP13Pv1aX374s5rPLqlOKTxXtRA-9UKhJm83WKBulOtUKVL0l3GoOrWx5S7mtbVOz2lqrgPcMREO1UuyiWBx1bYC12UQ3QtyZAM4cLkJcGoiT6wY0jcBaE2YFkYRrzaDthORCA6VUUFVnrY9Hrc22HdF26KcIwwPRhy_ercwy3BhNiJakyQLvbgVi-LXFNJnRpQ6HATyGbTK1ELTJ4xv1H1CipJSCsAx9-wi6DtuYQ9ujcuCSE7YXfHPf_J3rv8FnQH0EHCKO2N9BKDH7dplju0xulzm0y9BM0o9InZtgcmH_AW54msqO1JTn-CXGf7afYP0BszLiYA
CitedBy_id crossref_primary_10_1007_s00018_022_04650_2
crossref_primary_10_1089_cmb_2021_0640
crossref_primary_10_1186_s40168_025_02046_5
crossref_primary_10_1016_j_fbio_2024_104541
crossref_primary_10_3389_fmicb_2021_683685
crossref_primary_10_3390_ijms242216459
crossref_primary_10_1099_mgen_0_000852
crossref_primary_10_3389_fnins_2023_1130730
crossref_primary_10_1002_advs_202403393
crossref_primary_10_1038_s41591_025_03610_0
crossref_primary_10_3390_ijms24065229
crossref_primary_10_1038_s42255_025_01318_6
crossref_primary_10_1186_s13099_022_00524_x
crossref_primary_10_1016_j_pnpbp_2023_110834
crossref_primary_10_3390_gastroent16030034
crossref_primary_10_1186_s40168_024_01990_y
crossref_primary_10_1038_s41537_021_00180_1
crossref_primary_10_1080_19490976_2024_2304900
crossref_primary_10_3389_fmicb_2022_961020
crossref_primary_10_1093_biostatistics_kxab048
crossref_primary_10_1099_mgen_0_000501
crossref_primary_10_3389_fmicb_2022_851450
crossref_primary_10_1002_advs_202400458
crossref_primary_10_1002_cam4_6636
crossref_primary_10_1186_s12866_024_03195_7
crossref_primary_10_1186_s12866_024_03278_5
crossref_primary_10_3389_fmars_2022_975042
crossref_primary_10_3389_fmicb_2025_1641967
crossref_primary_10_1038_s41467_025_56449_x
crossref_primary_10_1212_NXI_0000000000200437
crossref_primary_10_1136_gutjnl_2022_328256
crossref_primary_10_1038_s41467_024_46888_3
crossref_primary_10_3389_fnut_2022_849005
crossref_primary_10_1186_s13059_022_02753_4
crossref_primary_10_1128_msystems_01058_21
crossref_primary_10_1093_pnasnexus_pgae352
crossref_primary_10_1016_j_nexres_2025_100846
crossref_primary_10_1099_jmm_0_001706
crossref_primary_10_1186_s13073_023_01202_6
crossref_primary_10_1002_art_42658
crossref_primary_10_1016_j_vaccine_2021_07_076
crossref_primary_10_3390_ijms26189206
crossref_primary_10_1016_j_psj_2023_102652
crossref_primary_10_1016_j_soilbio_2025_109882
crossref_primary_10_1038_s41522_024_00583_9
crossref_primary_10_1128_msystems_00930_24
crossref_primary_10_1186_s13073_023_01180_9
crossref_primary_10_1093_bib_bbae530
crossref_primary_10_1017_gmb_2022_3
crossref_primary_10_1038_s41467_024_47523_x
crossref_primary_10_1099_mgen_0_001334
crossref_primary_10_3389_fmicb_2022_875101
crossref_primary_10_1038_s41559_023_02013_z
crossref_primary_10_1016_j_canlet_2024_217149
crossref_primary_10_1016_j_jid_2022_03_017
crossref_primary_10_1128_msystems_00364_23
crossref_primary_10_1016_j_ejca_2023_113472
crossref_primary_10_1093_ecco_jcc_jjac155
crossref_primary_10_1371_journal_pcbi_1010820
crossref_primary_10_1080_19490976_2024_2302076
crossref_primary_10_3389_fonc_2023_1185163
crossref_primary_10_1038_s41598_021_97007_x
crossref_primary_10_1038_s41467_025_56829_3
crossref_primary_10_3389_fmicb_2024_1492349
crossref_primary_10_1038_s43705_022_00182_9
crossref_primary_10_1093_bioadv_vbae203
crossref_primary_10_1016_j_lfs_2022_121118
crossref_primary_10_1038_s41586_024_08485_8
crossref_primary_10_3390_microorganisms12061058
crossref_primary_10_3389_fmicb_2023_1238199
crossref_primary_10_3389_fmicb_2024_1443292
crossref_primary_10_1016_j_cell_2024_10_022
crossref_primary_10_1038_s41467_024_55388_3
crossref_primary_10_1186_s13059_024_03390_9
crossref_primary_10_1053_j_gastro_2022_03_054
crossref_primary_10_1007_s00430_022_00741_w
crossref_primary_10_1016_j_celrep_2023_112464
crossref_primary_10_1002_imt2_70002
crossref_primary_10_1093_nar_gkac1080
crossref_primary_10_1186_s40168_022_01251_w
crossref_primary_10_1038_s42255_025_01350_6
crossref_primary_10_1371_journal_pcbi_1010050
crossref_primary_10_1038_s41467_022_34862_w
crossref_primary_10_1186_s40348_024_00186_6
crossref_primary_10_1093_procel_pwad024
crossref_primary_10_3390_nu15143087
crossref_primary_10_1136_gutjnl_2021_324755
crossref_primary_10_1186_s40168_021_01207_6
crossref_primary_10_1007_s00281_025_01053_w
crossref_primary_10_1038_s41467_023_38058_8
crossref_primary_10_1039_D4MO00016A
crossref_primary_10_1016_j_ijmm_2022_151560
crossref_primary_10_1038_s41596_024_00999_9
crossref_primary_10_1038_s41591_022_01695_5
crossref_primary_10_2147_COPD_S327036
crossref_primary_10_1159_000534203
crossref_primary_10_1016_j_isci_2024_110358
crossref_primary_10_1101_gr_278637_123
crossref_primary_10_1016_j_jhep_2021_11_011
crossref_primary_10_1016_j_cell_2024_05_029
crossref_primary_10_1016_j_euo_2023_02_004
crossref_primary_10_3324_haematol_2023_284693
crossref_primary_10_1038_s41598_023_47748_8
crossref_primary_10_1186_s40168_021_01219_2
crossref_primary_10_1016_j_psyneuen_2023_106335
crossref_primary_10_1080_1040841X_2024_2319669
crossref_primary_10_3389_fmicb_2023_1250806
crossref_primary_10_1093_braincomms_fcaf059
crossref_primary_10_1038_s41579_023_00984_1
crossref_primary_10_1155_agm3_9676659
crossref_primary_10_1093_nargab_lqac019
crossref_primary_10_1136_gutjnl_2023_330168
crossref_primary_10_1016_j_celrep_2024_114635
crossref_primary_10_3389_fnut_2022_961526
crossref_primary_10_3389_fnut_2022_930883
crossref_primary_10_1016_j_copbio_2022_102884
crossref_primary_10_1001_jamaoto_2025_2816
crossref_primary_10_3390_mps5030042
crossref_primary_10_1016_j_jid_2025_06_1590
crossref_primary_10_1080_15287394_2023_2243978
crossref_primary_10_1186_s40168_022_01410_z
crossref_primary_10_1093_ecco_jcc_jjaf102
crossref_primary_10_1371_journal_pcbi_1010066
crossref_primary_10_1186_s13059_022_02637_7
crossref_primary_10_7554_eLife_72801
crossref_primary_10_1016_j_jpsychires_2024_01_036
Cites_doi 10.1093/gigascience/gix050
10.15252/msb.20145645
10.1007/s00335-006-0063-1
10.1371/journal.pone.0061217
10.1038/nrgastro.2017.54
10.1038/nature12198
10.1126/science.aar6918
10.1038/nbt.3960
10.1111/j.2517-6161.1996.tb02080.x
10.1038/nmeth.2658
10.1371/journal.pone.0039743
10.1016/j.cell.2015.11.001
10.1038/s41591-018-0061-3
10.1371/journal.pcbi.1004977
10.2337/db14-1847
10.1093/infdis/jiu409
10.1038/s41591-019-0458-7
10.1111/j.1574-6976.2010.00251.x
10.1136/gutjnl-2015-309800
10.1038/s41591-019-0405-7
10.1038/s41598-019-46249-x
10.1186/s40168-015-0109-2
10.1007/978-0-387-84858-7
10.1186/s40168-018-0479-3
10.1038/ncomms7528
10.1038/ismej.2011.109
10.1371/journal.pone.0137725
10.1016/j.ebiom.2016.01.032
10.1038/nmeth.4468
10.1016/j.cels.2016.10.004
10.1136/gutjnl-2016-312729
10.1186/s40168-016-0222-x
10.1016/j.chom.2013.07.012
10.1136/gut.2005.073817
10.1186/s13059-015-0639-8
10.1186/gb-2011-12-6-r60
10.1186/s40168-015-0072-y
10.7554/eLife.46923
10.1101/gr.151803.112
10.1136/bmj.309.6965.1351
10.1038/nature07540
10.1093/nar/gkv1248
10.1371/journal.pone.0043052
10.1038/ajg.2013.221
10.1016/j.chom.2015.09.008
10.1053/j.gastro.2010.08.049
10.1128/AEM.00062-07
10.1371/journal.pone.0155362
10.32614/CRAN.package.carData
10.1186/s13073-016-0290-3
10.1016/j.cell.2018.02.044
10.7554/eLife.01202
10.1186/s13059-017-1271-6
10.1038/nbt.1823
10.1111/j.1467-9868.2005.00503.x
10.1136/gutjnl-2015-310376
10.1093/bioinformatics/btp621
10.1038/s41591-019-0406-6
10.1038/s41586-019-1237-9
10.1038/nbt.2942
10.1371/journal.pone.0068322
10.5281/zenodo.4457522
10.1038/nm.3914
10.1186/s40168-019-0684-8
10.1038/nature11450
10.1038/nature12506
10.1038/nbt.3981
10.1038/s41598-019-48352-5
10.1038/s41467-017-01973-8
10.1038/s41467-019-08844-4
10.1093/bioinformatics/btw183
10.1002/mds.26069
10.1016/j.cmet.2017.04.001
10.1002/hep.26093
10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073>3.0.CO;2-Z
10.1073/pnas.0706625104
10.1186/gb-2012-13-9-r79
10.1016/j.cell.2016.11.046
10.1371/journal.pone.0039242
10.1136/gutjnl-2015-310861
10.1128/mBio.01021-14
10.1016/j.chom.2014.02.005
10.1136/gut.52.1.79
10.1186/2049-2618-1-18
10.3389/fgene.2019.00579
10.1371/journal.pcbi.1007895
10.1038/nbt.2939
10.1038/nmeth.3869
10.1371/journal.pone.0062885
10.1016/j.cell.2014.09.053
10.1038/nature13568
10.1016/j.cell.2019.10.014
10.1111/ecog.02881
10.1126/science.aaw2367
10.1016/j.chom.2011.09.003
10.1038/s41467-017-00900-1
10.5281/zenodo.4454489
10.1038/s41564-018-0306-4
10.1093/bib/bbx104
10.1016/j.chom.2013.08.006
10.1038/nature15766
10.1186/s13073-017-0428-y
10.1038/nmicrobiol.2016.228
10.1136/bmjopen-2018-021682
10.1038/s41592-018-0176-y
10.1038/nmeth.3589
ContentType Journal Article
Copyright The Author(s) 2021
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-021-02306-1
DatabaseName Springer Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic


AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 93
ExternalDocumentID oai_doaj_org_article_95e2803d50604883abc56458a1115172
PMC8008609
33785070
10_1186_s13059_021_02306_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  grantid: 031A537B; 031L0181A
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 395357507
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: European Molecular Biology Laboratory
  funderid: http://dx.doi.org/10.13039/100013060
– fundername: Eidgenössische Technische Hochschule Zürich
  grantid: PHRT 521
  funderid: http://dx.doi.org/10.13039/501100003006
– fundername: Helmut Horten Stiftung (CH)
– fundername: ;
– fundername: ;
  grantid: 395357507
– fundername: ;
  grantid: PHRT 521
– fundername: ;
  grantid: 031A537B; 031L0181A
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
AFFHD
CITATION
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c774t-1c5faf57e80b0012e6977c7b5e7fd04d84ab6b4b14d2d9232ddd7a4f3a5918773
IEDL.DBID M7P
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635139200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1474-7596
IngestDate Mon Nov 10 04:35:28 EST 2025
Tue Nov 04 01:58:04 EST 2025
Thu Sep 04 17:34:15 EDT 2025
Thu Oct 02 10:41:57 EDT 2025
Tue Oct 14 14:21:46 EDT 2025
Thu Jan 02 22:37:01 EST 2025
Sat Nov 29 04:55:56 EST 2025
Tue Nov 18 22:04:53 EST 2025
Sat Sep 06 07:17:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Statistical modeling
Microbiome data analysis
Microbiome-wide association studies (MWAS)
Machine learning
Meta-analysis
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c774t-1c5faf57e80b0012e6977c7b5e7fd04d84ab6b4b14d2d9232ddd7a4f3a5918773
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1429-7485
0000-0002-9786-1493
0000-0003-3065-0314
0000-0001-7894-8182
0000-0002-7720-455X
0000-0002-4073-3562
0000-0001-7426-0516
0000-0002-2627-833X
0000-0001-8758-7497
OpenAccessLink https://www.proquest.com/docview/2514764037?pq-origsite=%requestingapplication%
PMID 33785070
PQID 2514764037
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_95e2803d50604883abc56458a1115172
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8008609
proquest_miscellaneous_2551950697
proquest_miscellaneous_2507666503
proquest_journals_2514764037
pubmed_primary_33785070
crossref_primary_10_1186_s13059_021_02306_1
crossref_citationtrail_10_1186_s13059_021_02306_1
springer_journals_10_1186_s13059_021_02306_1
PublicationCentury 2000
PublicationDate 2021-03-30
PublicationDateYYYYMMDD 2021-03-30
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2021
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References J Huerta-Cepas (2306_CR87) 2016; 44
C Manichanh (2306_CR97) 2006; 55
L Hoyles (2306_CR54) 2018; 24
JD Lewis (2306_CR28) 2015; 18
J Qin (2306_CR68) 2012; 490
D Knights (2306_CR17) 2011; 10
J Lloyd-Price (2306_CR30) 2019; 569
AM Thomas (2306_CR38) 2019; 25
R Sinha (2306_CR89) 2017; 35
A Milanese (2306_CR85) 2019; 10
MR McLaren (2306_CR13) 2019; 8
2306_CR75
A Kushugulova (2306_CR66) 2018; 8
C Duvallet (2306_CR20) 2017; 8
SW Olesen (2306_CR92) 2016; 1
FH Karlsson (2306_CR67) 2013; 498
D-W Kang (2306_CR59) 2013; 8
2306_CR80
A Horvath (2306_CR102) 2019; 9
HB Nielsen (2306_CR27) 2014; 32
T Ohkusa (2306_CR104) 2003; 52
AY Voigt (2306_CR12) 2015; 16
F Imhann (2306_CR78) 2016; 65
M Noguera-Julian (2306_CR50) 2016; 5
E Vogtmann (2306_CR36) 2016; 11
2306_CR109
VW-S Wong (2306_CR55) 2013; 8
F Scheperjans (2306_CR58) 2015; 30
BP Willing (2306_CR31) 2010; 139
R Loomba (2306_CR53) 2017; 25
PJ Turnbaugh (2306_CR63) 2009; 457
E Pasolli (2306_CR72) 2017; 14
J Li (2306_CR108) 2014; 32
Z Jie (2306_CR43) 2017; 8
TK Ho (2306_CR76) 1995
NT Baxter (2306_CR42) 2016; 8
JR Bedarf (2306_CR57) 2017; 9
J Yu (2306_CR35) 2017; 66
J Yu (2306_CR101) 2019; 37
J Wirbel (2306_CR37) 2019; 25
DM Dinh (2306_CR49) 2015; 211
XC Morgan (2306_CR32) 2012; 13
DT Truong (2306_CR84) 2015; 12
S Mandal (2306_CR16) 2015; 26
DN Frank (2306_CR71) 2007; 104
EA Franzosa (2306_CR5) 2019; 4
MC Ross (2306_CR65) 2015; 3
BJ Callahan (2306_CR98) 2016; 13
P Smialowski (2306_CR81) 2010; 26
A Le Goallec (2306_CR24) 2020; 16
L Zitvogel (2306_CR10) 2018; 359
CA Lozupone (2306_CR48) 2013; 14
D Zeevi (2306_CR93) 2015; 163
B Bischl (2306_CR70) 2016; 17
2306_CR4
WS Garrett (2306_CR3) 2019; 364
2306_CR2
JS Son (2306_CR60) 2015; 10
ML Zupancic (2306_CR64) 2012; 7
MR Rubinstein (2306_CR103) 2013; 14
MA Jackson (2306_CR79) 2016; 65
2306_CR8
E Papa (2306_CR33) 2012; 7
C Vincent (2306_CR46) 2013; 1
K Forslund (2306_CR11) 2015; 528
W Chen (2306_CR41) 2012; 7
JN Paulson (2306_CR15) 2013; 10
Q Feng (2306_CR34) 2015; 6
JU Scher (2306_CR25) 2013; 2
AM Schubert (2306_CR45) 2014; 5
T Wang (2306_CR40) 2012; 6
DR Roberts (2306_CR82) 2017; 40
E Pasolli (2306_CR19) 2016; 12
CA Lozupone (2306_CR88) 2013; 23
M Schirmer (2306_CR94) 2016; 167
2306_CR113
LP Coelho (2306_CR106) 2019; 7
S Yachida (2306_CR39) 2019; 25
2306_CR110
H Tilg (2306_CR9) 2016; 65
2306_CR112
E Le Chatelier (2306_CR61) 2013; 500
G Salazar (2306_CR105) 2019; 179
2306_CR111
PJ McMurdie (2306_CR69) 2013; 8
C Wen (2306_CR7) 2017; 18
CN Bernstein (2306_CR96) 2001; 91
Q He (2306_CR29) 2017; 6
R Tibshirani (2306_CR74) 1996; 58
Y-H Zhou (2306_CR23) 2019; 10
L Zhu (2306_CR56) 2013; 57
P Yilmaz (2306_CR100) 2011; 29
PI Costea (2306_CR90) 2017; 35
X Zhang (2306_CR6) 2015; 21
J Li (2306_CR44) 2017; 5
EA Franzosa (2306_CR86) 2018; 15
SG Thompson (2306_CR91) 1994; 309
H Xie (2306_CR95) 2016; 3
N Qin (2306_CR51) 2014; 513
Q Wang (2306_CR83) 2007; 73
AK Alkanani (2306_CR26) 2015; 64
JR Kultima (2306_CR107) 2016; 32
J Wang (2306_CR21) 2018; 6
S Bang (2306_CR22) 2019; 9
A Deloris Alexander (2306_CR77) 2006; 17
S Hawinkel (2306_CR73) 2019; 20
TSB Schmidt (2306_CR1) 2018; 172
PD Cani (2306_CR99) 2017; 14
Z Zhang (2306_CR52) 2013; 108
JK Goodrich (2306_CR62) 2014; 159
D Knights (2306_CR18) 2011; 35
N Segata (2306_CR14) 2011; 12
P Singh (2306_CR47) 2015; 3
References_xml – volume: 6
  start-page: 1
  year: 2017
  ident: 2306_CR29
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix050
– volume: 26
  start-page: 27663
  year: 2015
  ident: 2306_CR16
  publication-title: Microb Ecol Health Dis
– ident: 2306_CR8
  doi: 10.15252/msb.20145645
– volume: 17
  start-page: 1093
  year: 2006
  ident: 2306_CR77
  publication-title: Mamm Genome
  doi: 10.1007/s00335-006-0063-1
– volume: 8
  start-page: e61217
  year: 2013
  ident: 2306_CR69
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061217
– ident: 2306_CR111
– volume: 14
  start-page: 321
  year: 2017
  ident: 2306_CR99
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2017.54
– volume: 498
  start-page: 99
  year: 2013
  ident: 2306_CR67
  publication-title: Nature
  doi: 10.1038/nature12198
– volume: 359
  start-page: 1366
  year: 2018
  ident: 2306_CR10
  publication-title: Science
  doi: 10.1126/science.aar6918
– volume: 35
  start-page: 1069
  year: 2017
  ident: 2306_CR90
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3960
– volume: 58
  start-page: 267
  year: 1996
  ident: 2306_CR74
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 10
  start-page: 1200
  year: 2013
  ident: 2306_CR15
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2658
– ident: 2306_CR2
– volume: 7
  start-page: e39743
  year: 2012
  ident: 2306_CR41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039743
– volume: 163
  start-page: 1079
  year: 2015
  ident: 2306_CR93
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.11.001
– volume: 24
  start-page: 1070
  year: 2018
  ident: 2306_CR54
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0061-3
– volume: 12
  year: 2016
  ident: 2306_CR19
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004977
– volume: 64
  start-page: 3510
  year: 2015
  ident: 2306_CR26
  publication-title: Diabetes
  doi: 10.2337/db14-1847
– volume: 211
  start-page: 19
  year: 2015
  ident: 2306_CR49
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu409
– volume: 25
  start-page: 968
  year: 2019
  ident: 2306_CR39
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0458-7
– volume: 35
  start-page: 343
  year: 2011
  ident: 2306_CR18
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2010.00251.x
– volume: 66
  start-page: 70
  year: 2017
  ident: 2306_CR35
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309800
– volume: 25
  start-page: 667
  year: 2019
  ident: 2306_CR38
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0405-7
– volume: 9
  start-page: 10189
  year: 2019
  ident: 2306_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46249-x
– volume: 3
  start-page: 45
  year: 2015
  ident: 2306_CR47
  publication-title: Microbiome.
  doi: 10.1186/s40168-015-0109-2
– ident: 2306_CR80
  doi: 10.1007/978-0-387-84858-7
– volume: 6
  start-page: 101
  year: 2018
  ident: 2306_CR21
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0479-3
– volume: 6
  start-page: 6528
  year: 2015
  ident: 2306_CR34
  publication-title: Nat Commun
  doi: 10.1038/ncomms7528
– volume: 6
  start-page: 320
  year: 2012
  ident: 2306_CR40
  publication-title: ISME J
  doi: 10.1038/ismej.2011.109
– volume: 10
  year: 2015
  ident: 2306_CR60
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0137725
– volume: 37
  start-page: 531
  year: 2019
  ident: 2306_CR101
  publication-title: J Clin Orthod
– volume: 5
  start-page: 135
  year: 2016
  ident: 2306_CR50
  publication-title: EBioMedicine.
  doi: 10.1016/j.ebiom.2016.01.032
– volume: 14
  start-page: 1023
  year: 2017
  ident: 2306_CR72
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4468
– volume: 3
  start-page: 572
  year: 2016
  ident: 2306_CR95
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.10.004
– volume: 65
  start-page: 2035
  year: 2016
  ident: 2306_CR9
  publication-title: Gut
  doi: 10.1136/gutjnl-2016-312729
– volume: 5
  start-page: 14
  year: 2017
  ident: 2306_CR44
  publication-title: Microbiome.
  doi: 10.1186/s40168-016-0222-x
– volume: 14
  start-page: 195
  year: 2013
  ident: 2306_CR103
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.07.012
– volume: 55
  start-page: 205
  year: 2006
  ident: 2306_CR97
  publication-title: Gut
  doi: 10.1136/gut.2005.073817
– volume: 16
  start-page: 73
  year: 2015
  ident: 2306_CR12
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0639-8
– volume: 12
  start-page: R60
  year: 2011
  ident: 2306_CR14
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-6-r60
– volume: 3
  start-page: 7
  year: 2015
  ident: 2306_CR65
  publication-title: Microbiome.
  doi: 10.1186/s40168-015-0072-y
– volume: 8
  year: 2019
  ident: 2306_CR13
  publication-title: Elife.
  doi: 10.7554/eLife.46923
– volume: 23
  start-page: 1704
  year: 2013
  ident: 2306_CR88
  publication-title: Genome Res
  doi: 10.1101/gr.151803.112
– volume: 309
  start-page: 1351
  year: 1994
  ident: 2306_CR91
  publication-title: BMJ
  doi: 10.1136/bmj.309.6965.1351
– volume: 457
  start-page: 480
  year: 2009
  ident: 2306_CR63
  publication-title: Nature.
  doi: 10.1038/nature07540
– volume: 44
  start-page: D286
  year: 2016
  ident: 2306_CR87
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1248
– volume: 7
  year: 2012
  ident: 2306_CR64
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043052
– volume: 108
  start-page: 1601
  year: 2013
  ident: 2306_CR52
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2013.221
– volume: 18
  start-page: 489
  year: 2015
  ident: 2306_CR28
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.09.008
– volume: 139
  start-page: 1844
  year: 2010
  ident: 2306_CR31
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.08.049
– volume: 73
  start-page: 5261
  year: 2007
  ident: 2306_CR83
  publication-title: Appl Environ Microbiol Am Soc Microbiol
  doi: 10.1128/AEM.00062-07
– volume: 11
  start-page: e0155362
  year: 2016
  ident: 2306_CR36
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155362
– ident: 2306_CR109
  doi: 10.32614/CRAN.package.carData
– volume: 8
  start-page: 37
  year: 2016
  ident: 2306_CR42
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0290-3
– volume: 172
  start-page: 1198
  year: 2018
  ident: 2306_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.044
– volume: 2
  year: 2013
  ident: 2306_CR25
  publication-title: Elife.
  doi: 10.7554/eLife.01202
– volume: 18
  start-page: 142
  year: 2017
  ident: 2306_CR7
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1271-6
– volume: 29
  start-page: 415
  year: 2011
  ident: 2306_CR100
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1823
– ident: 2306_CR75
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 65
  start-page: 740
  year: 2016
  ident: 2306_CR78
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310376
– volume: 26
  start-page: 440
  year: 2010
  ident: 2306_CR81
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp621
– volume: 25
  start-page: 679
  year: 2019
  ident: 2306_CR37
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0406-6
– volume: 569
  start-page: 655
  year: 2019
  ident: 2306_CR30
  publication-title: Nature.
  doi: 10.1038/s41586-019-1237-9
– volume: 32
  start-page: 834
  year: 2014
  ident: 2306_CR108
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2942
– volume: 8
  year: 2013
  ident: 2306_CR59
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068322
– ident: 2306_CR113
  doi: 10.5281/zenodo.4457522
– volume: 21
  start-page: 895
  year: 2015
  ident: 2306_CR6
  publication-title: Nat Med
  doi: 10.1038/nm.3914
– volume: 7
  start-page: 84
  year: 2019
  ident: 2306_CR106
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0684-8
– volume: 490
  start-page: 55
  year: 2012
  ident: 2306_CR68
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 500
  start-page: 541
  year: 2013
  ident: 2306_CR61
  publication-title: Nature
  doi: 10.1038/nature12506
– volume: 35
  start-page: 1077
  year: 2017
  ident: 2306_CR89
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3981
– volume: 9
  start-page: 12000
  year: 2019
  ident: 2306_CR102
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48352-5
– start-page: 278
  volume-title: Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition
  year: 1995
  ident: 2306_CR76
– volume: 8
  start-page: 1784
  year: 2017
  ident: 2306_CR20
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– volume: 10
  start-page: 1014
  year: 2019
  ident: 2306_CR85
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08844-4
– volume: 32
  start-page: 2520
  year: 2016
  ident: 2306_CR107
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw183
– volume: 30
  start-page: 350
  year: 2015
  ident: 2306_CR58
  publication-title: Mov Disord
  doi: 10.1002/mds.26069
– volume: 25
  start-page: 1054
  year: 2017
  ident: 2306_CR53
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2017.04.001
– ident: 2306_CR112
– volume: 57
  start-page: 601
  year: 2013
  ident: 2306_CR56
  publication-title: Hepatology.
  doi: 10.1002/hep.26093
– volume: 91
  start-page: 854
  year: 2001
  ident: 2306_CR96
  publication-title: Cancer
  doi: 10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073>3.0.CO;2-Z
– volume: 17
  start-page: 1
  year: 2016
  ident: 2306_CR70
  publication-title: J Mach
– volume: 104
  start-page: 13780
  year: 2007
  ident: 2306_CR71
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0706625104
– volume: 13
  start-page: R79
  year: 2012
  ident: 2306_CR32
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-9-r79
– volume: 167
  start-page: 1897
  year: 2016
  ident: 2306_CR94
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.046
– volume: 7
  year: 2012
  ident: 2306_CR33
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039242
– volume: 65
  start-page: 749
  year: 2016
  ident: 2306_CR79
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310861
– volume: 5
  start-page: e01021
  year: 2014
  ident: 2306_CR45
  publication-title: MBio
  doi: 10.1128/mBio.01021-14
– ident: 2306_CR4
  doi: 10.1016/j.chom.2014.02.005
– volume: 52
  start-page: 79
  year: 2003
  ident: 2306_CR104
  publication-title: Gut
  doi: 10.1136/gut.52.1.79
– volume: 1
  start-page: 18
  year: 2013
  ident: 2306_CR46
  publication-title: Microbiome.
  doi: 10.1186/2049-2618-1-18
– volume: 10
  start-page: 579
  year: 2019
  ident: 2306_CR23
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00579
– volume: 16
  start-page: e1007895
  year: 2020
  ident: 2306_CR24
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007895
– volume: 32
  start-page: 822
  year: 2014
  ident: 2306_CR27
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2939
– volume: 13
  start-page: 581
  year: 2016
  ident: 2306_CR98
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 8
  year: 2013
  ident: 2306_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062885
– volume: 159
  start-page: 789
  year: 2014
  ident: 2306_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.053
– volume: 513
  start-page: 59
  year: 2014
  ident: 2306_CR51
  publication-title: Nature.
  doi: 10.1038/nature13568
– volume: 179
  start-page: 1068
  year: 2019
  ident: 2306_CR105
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.014
– volume: 40
  start-page: 913
  year: 2017
  ident: 2306_CR82
  publication-title: Ecography
  doi: 10.1111/ecog.02881
– volume: 364
  start-page: 1133
  year: 2019
  ident: 2306_CR3
  publication-title: Science
  doi: 10.1126/science.aaw2367
– volume: 10
  start-page: 292
  year: 2011
  ident: 2306_CR17
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.09.003
– volume: 8
  start-page: 845
  year: 2017
  ident: 2306_CR43
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00900-1
– ident: 2306_CR110
  doi: 10.5281/zenodo.4454489
– volume: 4
  start-page: 293
  year: 2019
  ident: 2306_CR5
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0306-4
– volume: 20
  start-page: 210
  year: 2019
  ident: 2306_CR73
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx104
– volume: 14
  start-page: 329
  year: 2013
  ident: 2306_CR48
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.08.006
– volume: 528
  start-page: 262
  year: 2015
  ident: 2306_CR11
  publication-title: Nature.
  doi: 10.1038/nature15766
– volume: 9
  start-page: 39
  year: 2017
  ident: 2306_CR57
  publication-title: Genome Med
  doi: 10.1186/s13073-017-0428-y
– volume: 1
  start-page: 16228
  year: 2016
  ident: 2306_CR92
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.228
– volume: 8
  year: 2018
  ident: 2306_CR66
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2018-021682
– volume: 15
  start-page: 962
  year: 2018
  ident: 2306_CR86
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0176-y
– volume: 12
  start-page: 902
  year: 2015
  ident: 2306_CR84
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3589
SSID ssj0019426
ssj0017866
Score 2.6615624
Snippet The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is...
Abstract The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Algorithms
Animal Genetics and Genomics
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Computational Biology - methods
computer software
Confounding Factors, Epidemiologic
Crohn Disease - etiology
Databases, Genetic
Datasets
Evolutionary Biology
Gastrointestinal Microbiome
genome
Human Genetics
Humans
Inflammatory bowel disease
Learning algorithms
Life Sciences
Machine Learning
Meta-analysis
Meta-Analysis as Topic
Metagenome
Metagenomics
Metagenomics - methods
Microbial Genetics and Genomics
microbiome
Microbiome data analysis
Microbiome-wide association studies (MWAS)
Microbiomes
Microbiota
Models, Statistical
Plant Genetics and Genomics
ROC Curve
Software
Statistical analysis
Statistical modeling
Taxonomy
therapeutics
Variables
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlad2I6dY6moOECFRJF6sxx7Ait1k6qbIvrvGTtOYHmUC9fYiZx52N9oxt8Q8qLuQAAGs6wCVINUoWKu9cA4D-CFL7sK0kXhd_royJycNB9-avUVa8ImeuBJcHuNgthAKSQiPGMEfikSoBiHTqrw9I27L9fNHEzl_EGDB898RcbUexvcqVXDYjlCwtys3DqGElv_nyDm75WSv6RL0yl0eJvcyvCR7k_LvkOuQX-X3JgaSl7eI_B-NRErrYGuYXTMZc4R6vpA01JYTslQv3QgpJAuUAXaXlLEg_QjhvcH-8d0nQotgebOEp_pOAyn7fDtPvl0-Ob44C3LjRSYR3Q3stKrznVKg-EJREGNqM_rVoHuApfBSNfWrWxLGaqAiK8KIWgnO-FUUxqtxQOy0w89PCLUuyrWoyoBQsrKdQYcblG-MohsvOO8IOUsV-szy3hsdnFqU7RhajvpwqIubNKFLQvycnnnbOLYuHL266iuZWbkx04P0Gpsthr7L6spyO6sbJuddmMR6kldSy50QZ4vw-huMYfiehgu4hyuMeJTXFw1J1L2cBRyQR5O9rOsVght8BMoJ71lWVu_sz3Sr74k2m8Tw0_eFOTVbIM_lv53cT3-H-J6Qm5WyXkEE3yX7IznF_CUXPdfx9Xm_Flyve9JnC2R
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9SFXzx-2O1SgTfNJjdJJvs41ksCraIrdK3kE1m60Fvt9xdi_3vnWQ_5LQW9PV29shOZjK_YSa_IeRV2YAATGZZAbgNUoWCudoD4zyAFz5vCkgXhT_p_X1zdFR9Hi6FrcZu97EkmU7q5NamfLvC01ZVLLYUJNzMMOe5juHOxIENXw6-TbWDCoPOeD3m0vc2QlBi6r8MXv7ZJflbqTRFoN07_7f2u-T2gDjprDeRe-QatPfJzX4G5cUDAnvznotpAXQBa8fcQFNCXRto-gI2VHGon4YWUkh3rgKtLyhCSHrwcba3Mzuki9SbCXQYRnFM1113Unc_HpKvu-8Pdz6wYfYC8wgI1yz3qnGN0mB4wl1QIlD0ulagm8BlMNLVZS3rXIYiIEgsQgjayUY4VeVGa_GIbLVdC08I9a6ILaxKgJCycI0Bh6eaLwyCIe84z0g-bof1AzF5nI9xYlOCYkrbq8-i-mxSn80z8np657Sn5bhS-l3c5UkyUmqnH7rlsR081FYK4qSukBgXjRFospFpxziMBgphXka2Rxuxg5-vLKJDqUvJhc7Iy-kxemgsu7gWurMowzUmiYqLq2Qiyw9HJWfkcW9202qF0Ab_AvWkNwxy43M2n7Tz74kp3MSMlVcZeTOa5a-l_11dT_9N_Bm5VSTLFkzwbbK1Xp7Bc3LDn6_nq-WL5Js_AeJNM8k
  priority: 102
  providerName: Springer Nature
Title Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox
URI https://link.springer.com/article/10.1186/s13059-021-02306-1
https://www.ncbi.nlm.nih.gov/pubmed/33785070
https://www.proquest.com/docview/2514764037
https://www.proquest.com/docview/2507666503
https://www.proquest.com/docview/2551950697
https://pubmed.ncbi.nlm.nih.gov/PMC8008609
https://doaj.org/article/95e2803d50604883abc56458a1115172
Volume 22
WOSCitedRecordID wos000635139200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYBhIv3GGBURmJN7Dm-BI7T6idNjGJVtU2UOElcmxnVFqTre0Q-_fYjpupXPrCS6QkTmT7HB9_9jn-DgBvs8pS6xaziFgnBsYNQarUFmFsrKY6rYgNB4U_idFITib5OG64LWJY5comBkNtGu33yPfdPMxExjAVHy6vkM8a5b2rMYXGFtjxLAkkhO6NOy-CkB6rxJuckfaokQ9A5Hm2OkEjs_2FM-Q8Rz5aIUBylK7NUoHM_28I9M9Ayt-8qWGSOnr4v817BB5EeAr7rT49Bnds_QTcaxNW3jwFdjhtiZtmFs7sUiEVOU2gqg0MbUHR5QN1l-EQ2nBAy8DyBjq8CU-P-8OD_hmchUBOC2PminO4bJqLsvn5DHw-Ojw7-IhiogakHXpcolTzSlVcWIkDSLOZQ5ValNyKymBmJFNlVrIyZYYYhyiJMUYoVlHF81QKQZ-D7bqp7S6AWhEf78qppYwRVUmrnAnURDrkpBXGCUhXgil0ZDH3yTQuirCakVnRCrNwwiyCMIs0Ae-6by5bDo-NpQde3l1Jz78dHjTz8yIO5yLn1qf1MoGeUUrq9NvT8kjlpg7uMGEC9lZiLqJRWBS3Mk7Am-61G87eR6Nq21z7Mli4FSXHdFMZTwmEXScn4EWrgF1tKRXS_cL1k1hTzbXmrL-pp98Drbj0y1ucJ-D9Solvq_7v7nq5uaWvwH0SxhVFFO-B7eX82r4Gd_WP5XQx74EtMRHhKntgZ3A4Gp_0wq5ILwxk92x8PBx_dXcng2_-evrlF5fqSrs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuF8CA4wET2DNiZPYeUCoDKZVa6tKFGk8Bcd2RqU1GW0G9E_xG7Gdy1QufdsDj23cKD75zvF3em4Az-NcU22cWRxo8xrCSAVYZFJjQpSWVPp5oF2h8JCNx_zoKJlswc-2FsamVbY20RlqVUr7H_muOYdDFoeEsjenX7GdGmWjq-0IjRoWh3r13bhsy9eDd-b9vgiC_ffTvQPcTBXA0lCdCvsyykUeMc2JYxQ6NhRIsizSLFckVDwUWZyFmR-qQBn6EyilmAhzKqLE54xRc99LsB1asPdgezIYTT51cQvGLTtqPiRhUBc32ZTHKInbmh0e7y7N0REl2OZHOCcA-2vnohsf8DfO-2fq5m_xW3cs7t_43wR6E643BBz1a425BVu6uA1X6pGcqzugR7O6NdVco7muBBZN1xYkCoWc7HAT1EKym-GItCtBUyhbIcOo0YdBf7TXn6K5S1XVqJnNcYyqsjzJyh934eOF7PEe9Iqy0A8ASRHYjN6IamowJHKuhTHyMuCGG0pBiAd-C4RUNn3a7biQk9T5azxOa_CkBjypA0_qe_Cy-81p3aVk4-q3Fl_dStth3H1RLo7TxmClSaTt4DLlGlByTo0G28ZDXJjDMTKs14OdFlZpY_aW6TmmPHjWXTYGy0ahRKHLM7uGMOMzR4RuWmObHhEjZA_u14DvnpZSxs0tjJzYmiqsbWf9SjH74hqnc-vAk8SDV63SnD_6v8X1cPNOn8LVg-lomA4H48NHcC1wOk0xJTvQqxZn-jFclt-q2XLxpDEWCD5ftDr9AgsjoUk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQeYgL70KggJG4gVUntmPnuBRWVLSrSi2oN8uxJ2WlblLtpoj-e2znAQulEuKaTKJ4PBN_o5n5BqHXeQUMfDBLMvDbwIXLiCktEEodWGbTKoPYKLwnZzN1fFwc_NLFH6vdh5Rk19MQWJrqdvvMVZ2Lq3x75f-8oiChvCBiaOLjn-s8FNKHeP3wy5hHKPwBNLTKXPrc2nEUWfsvg5p_Vkz-ljaNp9H07v-v4x660yNRPOlM5z66BvUDdLObTXnxEMH-vONoWgBeQGuI6elLsKkdjqshfXYH23GYIYbYi-VweYE9tMSHu5P9nckRXsSaTcD9kIoT3DbNadl8f4Q-Tz8c7Xwk_UwGYj1QbElqRWUqIUHRiMcg9wDSylKArBzlTnFT5iUvU-4y58Fj5pyThlfMiCJVUrJNtFE3NTxB2JoslLYKBozzzFQKjP_b2Ux5kGQNpQlKh63RticsD3MzTnUMXFSuO_Vprz4d1afTBL0Znznr6DqulH4XdnyUDFTb8UKzPNG95-pCQJjg5SITo1LMm3Jg4FHGnxLCw78EbQ32onv_X2mPGrnMOWUyQa_G295zQzrG1NCcBxkqffAoKLtKJrD_UK_kBD3uTHD8Wsak8q_wepJrxrm2nPU79fxrZBBXIZKlRYLeDib689P_rq6n_yb-Et06eD_Ve7uzT8_Q7SwaOSOMbqGNdnkOz9EN-62dr5Yvosv-AMNOP5E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+meta-analysis+and+cross-disease+comparison+enabled+by+the+SIAMCAT+machine+learning+toolbox&rft.jtitle=Genome+Biology&rft.au=Wirbel%2C+Jakob&rft.au=Zych%2C+Konrad&rft.au=Essex%2C+Morgan&rft.au=Karcher%2C+Nicolai&rft.date=2021-03-30&rft.pub=Springer+Nature+B.V&rft.issn=1474-7596&rft.eissn=1474-760X&rft.volume=22&rft.spage=1&rft_id=info:doi/10.1186%2Fs13059-021-02306-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon