Coherent encoding of subjective spatial position in visual cortex and hippocampus
A major role of vision is to guide navigation, and navigation is strongly driven by vision 1 – 4 . Indeed, the brain’s visual and navigational systems are known to interact 5 , 6 , and signals related to position in the environment have been suggested to appear as early as in the visual cortex 6 , 7...
Uložené v:
| Vydané v: | Nature (London) Ročník 562; číslo 7725; s. 124 - 127 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.10.2018
Nature Publishing Group |
| Predmet: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A major role of vision is to guide navigation, and navigation is strongly driven by vision
1
–
4
. Indeed, the brain’s visual and navigational systems are known to interact
5
,
6
, and signals related to position in the environment have been suggested to appear as early as in the visual cortex
6
,
7
. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. When animals licked in a given location—whether correctly or incorrectly—neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal’s subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex.
When running through a virtual reality corridor, a mouse’s position is represented in both the hippocampus (as expected) and the primary visual cortex, for places that are visually identical. |
|---|---|
| AbstractList | A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain's visual and navigational systems are known to interact5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location-whether correctly or incorrectly-neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex.A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain's visual and navigational systems are known to interact5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location-whether correctly or incorrectly-neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex. A major role of vision is to guide navigation, and navigation is strongly driven by vision.sup.1-4. Indeed, the brain's visual and navigational systems are known to interact.sup.5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex.sup.6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location--whether correctly or incorrectly--neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex. A major role of vision is to guide navigation, and navigation is strongly driven by vision1–4. Indeed, the brain’s visual and navigational systems are known to interact5,6, and signals related to position in the environment have been suggested to appear as early as in visual cortex6,7. To establish the nature of these signals we recorded in primary visual cortex (V1) and in hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly in those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. Indeed, when animals licked in a given location – whether correct or incorrect – neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal’s subjective position. The presence of such navigational signals as early as in a primary sensory area suggests that they permeate sensory processing in the cortex. A major role of vision is to guide navigation, and navigation is strongly driven by vision 1 – 4 . Indeed, the brain’s visual and navigational systems are known to interact 5 , 6 , and signals related to position in the environment have been suggested to appear as early as in the visual cortex 6 , 7 . Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. When animals licked in a given location—whether correctly or incorrectly—neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal’s subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex. When running through a virtual reality corridor, a mouse’s position is represented in both the hippocampus (as expected) and the primary visual cortex, for places that are visually identical. A major role of vision is to guide navigation, and navigation is strongly driven by vision . Indeed, the brain's visual and navigational systems are known to interact , and signals related to position in the environment have been suggested to appear as early as in the visual cortex . Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location-whether correctly or incorrectly-neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex. A major role of vision is to guide navigation, and navigation is strongly driven by vision.sup.1-4. Indeed, the brain's visual and navigational systems are known to interact.sup.5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex.sup.6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location--whether correctly or incorrectly--neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex.When running through a virtual reality corridor, a mouse's position is represented in both the hippocampus (as expected) and the primary visual cortex, for places that are visually identical. A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain's visual and navigational systems are known to interact5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal's subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal's position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal's subjective estimate of position, inferred from the animal's licks, better than its actual position. When animals licked in a given location-whether correctly or incorrectly-neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal's subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex. |
| Audience | Academic |
| Author | Saleem, Aman B. Fournier, Julien Harris, Kenneth D. Carandini, Matteo Diamanti, E. Mika |
| AuthorAffiliation | 4 UCL Institute of Neurology, University College London, London, WC1N 3BG, UK 1 UCL Institute of Ophthalmology, University College London, London, EC1V9EL, UK 2 Department of Experimental Psychology, University College London, London, WC1H 0AP, UK 3 CoMPLEX, Department of Computer Science, University College London, London, WC1E 6BT, UK |
| AuthorAffiliation_xml | – name: 3 CoMPLEX, Department of Computer Science, University College London, London, WC1E 6BT, UK – name: 1 UCL Institute of Ophthalmology, University College London, London, EC1V9EL, UK – name: 2 Department of Experimental Psychology, University College London, London, WC1H 0AP, UK – name: 4 UCL Institute of Neurology, University College London, London, WC1N 3BG, UK |
| Author_xml | – sequence: 1 givenname: Aman B. surname: Saleem fullname: Saleem, Aman B. email: aman.saleem@ucl.ac.uk organization: UCL Institute of Ophthalmology, University College London, Department of Experimental Psychology, University College London – sequence: 2 givenname: E. Mika surname: Diamanti fullname: Diamanti, E. Mika organization: UCL Institute of Ophthalmology, University College London, CoMPLEX, Department of Computer Science, University College London – sequence: 3 givenname: Julien surname: Fournier fullname: Fournier, Julien organization: UCL Institute of Ophthalmology, University College London – sequence: 4 givenname: Kenneth D. surname: Harris fullname: Harris, Kenneth D. organization: UCL Institute of Neurology, University College London – sequence: 5 givenname: Matteo surname: Carandini fullname: Carandini, Matteo organization: UCL Institute of Ophthalmology, University College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30202092$$D View this record in MEDLINE/PubMed https://hal.science/hal-03949451$$DView record in HAL |
| BookMark | eNp9k01v1DAQhi1URD_gB3BBEVyoUIo_Eju-IK1WQCutQEARR8txnKxXWTuNkxX8eyba0nZXW-RDpJnnfe3JzJyiIx-8ReglwRcEs-J9zEhe8BSTIsU54Sl5gk5IJnia8UIcoROMKWQKxo_RaYwrjIES2TN0zDCFI-kJ-jYPS9tbPyTWm1A53yShTuJYrqwZ3MYmsdOD023ShegGF3zifLJxcYSQCf1gfyfaV8nSdV0wet2N8Tl6Wus22he33zP089PH6_lluvj6-Wo-W6RGCDqksmS45DWRTFNDhZbSVDWua1xmVtic26qqCqs5zXNJBS4hb4TEeVZWhmtasDP0YevbjeXaVgZq6HWrut6tdf9HBe3Ubsa7pWrCRnGGZcYkGJxvDZZ7ssvZQk0xzGQms5xsCLBvby_rw81o46DWLhrbttrbMEZFCaaMMllM73qzh67C2Hv4FUBRxgnOqLinGt1a5Xwd4I1mMlWzXFApOZMUqPQA1VhvoSCYhdpBeId_fYA3nbtRD6GLAxCcyq6dOeh6viMABvo-NHqMUV39-L7LvnucnV3_mn_ZpV897OFdF_7NJwBkC5g-xNjb-g4hWE07oLY7oGAH1LQDauqV2NMYN-hpdqFO1_5XSbfKCLf4xvb3rXtc9BfVXBXl |
| CitedBy_id | crossref_primary_10_7554_eLife_50340 crossref_primary_10_7554_eLife_92938_3 crossref_primary_10_1016_j_cub_2021_07_015 crossref_primary_10_1371_journal_pbio_3001530 crossref_primary_10_1016_j_brainres_2019_146313 crossref_primary_10_1038_s41583_023_00716_7 crossref_primary_10_1038_s41586_021_04242_3 crossref_primary_10_1016_j_cub_2023_07_012 crossref_primary_10_1126_sciadv_adv5651 crossref_primary_10_7554_eLife_76051 crossref_primary_10_1371_journal_pcbi_1009832 crossref_primary_10_1038_s41586_022_04404_x crossref_primary_10_7554_eLife_95764_4 crossref_primary_10_3390_bios12020129 crossref_primary_10_1073_pnas_2212418120 crossref_primary_10_1038_s41586_024_08034_3 crossref_primary_10_1038_s41598_023_30265_z crossref_primary_10_3389_fncom_2023_1198128 crossref_primary_10_7554_eLife_95764 crossref_primary_10_1016_j_neuron_2020_03_034 crossref_primary_10_7554_eLife_92938 crossref_primary_10_1152_jn_00016_2024 crossref_primary_10_1016_j_neubiorev_2023_105200 crossref_primary_10_1093_cercor_bhad045 crossref_primary_10_1016_j_conb_2020_03_009 crossref_primary_10_1073_pnas_2017032118 crossref_primary_10_1007_s10489_022_03253_5 crossref_primary_10_1038_s41467_022_35488_8 crossref_primary_10_1038_d41586_019_00791_w crossref_primary_10_1016_j_jneumeth_2021_109100 crossref_primary_10_1523_JNEUROSCI_1990_20_2020 crossref_primary_10_1371_journal_pcbi_1007791 crossref_primary_10_1038_s41586_025_09180_y crossref_primary_10_1152_jn_00301_2019 crossref_primary_10_7554_eLife_85069 crossref_primary_10_7554_eLife_85069_3 crossref_primary_10_1016_j_conb_2020_10_004 crossref_primary_10_1002_cne_25075 crossref_primary_10_1038_s41586_025_09101_z crossref_primary_10_1016_j_conb_2024_102882 crossref_primary_10_1002_hipo_23483 crossref_primary_10_1162_imag_a_00516 crossref_primary_10_3390_vision5030033 crossref_primary_10_1016_j_conb_2019_09_006 crossref_primary_10_1038_s41467_023_37804_2 crossref_primary_10_1073_pnas_2117300119 crossref_primary_10_7554_eLife_81958 crossref_primary_10_1016_j_neulet_2019_134596 crossref_primary_10_1016_j_conb_2024_102880 crossref_primary_10_1088_1741_2552_ad6cf4 crossref_primary_10_1523_JNEUROSCI_1782_24_2025 crossref_primary_10_1016_j_cogpsych_2025_101734 crossref_primary_10_1016_j_conb_2019_11_013 crossref_primary_10_1038_s41467_025_60122_8 crossref_primary_10_1016_j_neuron_2021_10_020 crossref_primary_10_1016_j_neuron_2022_07_006 crossref_primary_10_1016_j_cub_2021_06_094 crossref_primary_10_7554_eLife_60628 crossref_primary_10_1523_JNEUROSCI_1828_20_2021 crossref_primary_10_1111_gbb_12665 crossref_primary_10_1007_s11571_020_09623_4 crossref_primary_10_1016_j_cub_2020_02_070 crossref_primary_10_1523_JNEUROSCI_1619_23_2024 crossref_primary_10_1038_s41467_020_17000_2 crossref_primary_10_7554_eLife_91153_3 crossref_primary_10_3389_fncom_2023_1136985 crossref_primary_10_1093_sleep_zsae262 crossref_primary_10_3389_fncom_2022_929348 crossref_primary_10_1016_j_isci_2023_106481 crossref_primary_10_1016_j_neuron_2020_07_014 crossref_primary_10_1016_j_tins_2021_07_009 crossref_primary_10_1371_journal_pone_0329788 crossref_primary_10_1002_hipo_23143 crossref_primary_10_3389_fnbeh_2020_576154 crossref_primary_10_1038_s41467_024_49897_4 crossref_primary_10_1523_JNEUROSCI_1788_20_2020 crossref_primary_10_1523_JNEUROSCI_1061_19_2019 crossref_primary_10_1146_annurev_neuro_120722_100503 crossref_primary_10_1371_journal_pbio_3002384 crossref_primary_10_1146_annurev_neuro_102320_085825 crossref_primary_10_1038_s41467_023_42441_w crossref_primary_10_3389_fnins_2021_715749 crossref_primary_10_1016_j_neuron_2024_10_020 crossref_primary_10_7554_eLife_54962 crossref_primary_10_1038_s41422_021_00478_w crossref_primary_10_1016_j_conb_2020_02_004 crossref_primary_10_1016_j_conb_2020_11_004 crossref_primary_10_1016_j_tics_2019_03_007 crossref_primary_10_7554_eLife_91153 crossref_primary_10_1016_j_tins_2020_05_005 crossref_primary_10_1073_pnas_2321614121 crossref_primary_10_1016_j_cub_2019_01_077 crossref_primary_10_1038_s41583_018_0076_2 crossref_primary_10_1371_journal_pcbi_1008835 crossref_primary_10_1038_s41467_020_14355_4 crossref_primary_10_1016_j_cell_2022_02_017 crossref_primary_10_1016_j_neuron_2022_05_012 crossref_primary_10_1038_s41467_023_37704_5 crossref_primary_10_1038_s42003_023_05291_2 crossref_primary_10_1093_nc_niab017 crossref_primary_10_7554_eLife_51458 crossref_primary_10_1016_j_cub_2020_07_006 crossref_primary_10_1146_annurev_neuro_111020_084824 crossref_primary_10_1523_JNEUROSCI_1124_22_2022 crossref_primary_10_1016_j_cub_2022_02_028 crossref_primary_10_3390_ijms24054701 crossref_primary_10_1073_pnas_2107337119 crossref_primary_10_3389_fncir_2019_00022 crossref_primary_10_1016_j_neuron_2019_05_012 crossref_primary_10_1016_j_neuron_2020_09_024 crossref_primary_10_1038_s41467_024_48329_7 crossref_primary_10_1371_journal_pbio_3002277 crossref_primary_10_7554_eLife_63705 crossref_primary_10_1016_j_tins_2024_11_006 crossref_primary_10_1016_j_visres_2019_10_007 crossref_primary_10_1073_pnas_2020810118 crossref_primary_10_1111_mila_12525 crossref_primary_10_1016_j_conb_2019_08_005 crossref_primary_10_1016_j_neuron_2022_01_027 |
| Cites_doi | 10.1016/j.neuron.2018.03.037 10.1038/nn1825 10.1038/nature08499 10.1038/nn.4268 10.1111/j.1460-9568.1995.tb00642.x 10.1523/JNEUROSCI.07-07-01951.1987 10.1523/ENEURO.0207-17.2017 10.1073/pnas.1215834110 10.1038/nn.4385 10.1016/j.neuron.2015.02.022 10.1038/ncomms14531 10.1038/nn.3567 10.1016/S0896-6273(03)00286-1 10.1002/1098-1063(2000)10:4<398::AID-HIPO6>3.0.CO;2-K 10.1523/JNEUROSCI.22-20-09035.2002 10.1016/j.beproc.2016.12.012 10.1038/nrn3827 10.1016/j.neuron.2010.01.033 10.1523/JNEUROSCI.0594-14.2015 10.1126/science.1232655 10.1046/j.1460-9568.1999.00446.x 10.1038/nn.4061 10.1016/0165-0270(91)90038-2 10.1162/NECO_a_00661 10.1523/JNEUROSCI.3488-10.2011 10.7554/eLife.34789 10.1523/JNEUROSCI.2864-06.2007 10.1146/annurev.neuro.31.061307.090723 10.1007/BF00237147 10.1152/jn.01056.2015 10.1186/1475-925X-2-13 10.1016/j.neuron.2014.08.042 10.1002/hipo.1052 10.1016/j.neuron.2015.05.037 10.1523/JNEUROSCI.3485-16.2017 10.1016/j.cub.2013.04.012 10.1016/j.neuron.2015.03.027 10.1371/journal.pone.0080465 10.1152/jn.00417.2007 10.7554/eLife.08902 10.1038/nn1053 10.1523/JNEUROSCI.09-08-02737.1989 10.1101/061507 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Oct 4, 2018 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Nature Limited 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Oct 4, 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC 5PM |
| DOI | 10.1038/s41586-018-0516-1 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection (ProQuest) ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 127 |
| ExternalDocumentID | PMC6309439 oai:HAL:hal-03949451v1 A572996392 30202092 10_1038_s41586_018_0516_1 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 095669 – fundername: Wellcome Trust grantid: 205093 – fundername: Wellcome Trust grantid: 205093/Z/16/Z – fundername: Wellcome Trust grantid: 200501/Z/16/Z |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AEZWR AFBBN AFFDN AFHIU AFHKK AGCDD AGGDT AGQPQ AHWEU AIXLP AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZY4 ~8M ~G0 ACMFV AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO 1XC AFKWF ESTFP 5PM |
| ID | FETCH-LOGICAL-c772t-9b30b6f193a2c27a99cdf0ff0b4e7e56eddd8ea62559270b99cc79054bdc6a283 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446187900050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 01:52:32 EST 2025 Tue Oct 14 20:39:43 EDT 2025 Fri Sep 05 13:54:11 EDT 2025 Tue Oct 07 06:44:44 EDT 2025 Tue Nov 11 10:10:41 EST 2025 Sat Nov 29 11:50:11 EST 2025 Tue Jun 10 15:34:51 EDT 2025 Tue Nov 04 18:03:55 EST 2025 Thu Nov 13 15:51:06 EST 2025 Thu Nov 13 15:25:40 EST 2025 Mon Jul 21 06:08:06 EDT 2025 Tue Nov 18 22:40:04 EST 2025 Sat Nov 29 02:12:48 EST 2025 Fri Feb 21 02:37:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7725 |
| Keywords | Reward Zone Reward Regions Pupil Position Water Reward Running Speed |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c772t-9b30b6f193a2c27a99cdf0ff0b4e7e56eddd8ea62559270b99cc79054bdc6a283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors jointly supervised this work. |
| ORCID | 0000-0001-7167-8132 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6309439 |
| PMID | 30202092 |
| PQID | 2123610427 |
| PQPubID | 40569 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309439 hal_primary_oai_HAL_hal_03949451v1 proquest_miscellaneous_2102323988 proquest_journals_2123610427 gale_infotracmisc_A572996392 gale_infotracgeneralonefile_A572996392 gale_infotraccpiq_572996392 gale_infotracacademiconefile_A572996392 gale_incontextgauss_ISR_A572996392 gale_incontextgauss_ATWCN_A572996392 pubmed_primary_30202092 crossref_primary_10_1038_s41586_018_0516_1 crossref_citationtrail_10_1038_s41586_018_0516_1 springer_journals_10_1038_s41586_018_0516_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-00 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-00 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Ji, Wilson (CR5) 2007; 10 Geiller, Fattahi, Choi, Royer (CR4) 2017; 8 Witter (CR23) 2000; 10 Lenck-Santini, Muller, Save, Poucet (CR17) 2002; 22 Poort (CR21) 2015; 86 Niell, Stryker (CR8) 2010; 65 Madisen (CR31) 2015; 85 Chen, King, Burgess, O’Keefe (CR3) 2013; 110 Jurjut, Georgieva, Busse, Katzner (CR22) 2017; 37 Eichenbaum (CR27) 2014; 15 Ayaz, Saleem, Schölvinck, Carandini (CR34) 2013; 23 Ratzlaff, Grinvald (CR35) 1991; 36 Wiener, Paul, Eichenbaum (CR13) 1989; 9 Ravassard (CR10) 2013; 340 Hok (CR18) 2007; 27 Kadir, Goodman, Harris (CR44) 2014; 26 Haggerty, Ji (CR6) 2015; 4 O’Keefe, Speakman (CR15) 1987; 68 Aronov, Tank (CR29) 2014; 84 Wekselblatt, Flister, Piscopo, Niell (CR32) 2016; 115 Peron, Freeman, Iyer, Guo, Svoboda (CR41) 2015; 86 Pologruto, Sabatini, Svoboda (CR39) 2003; 2 Wang, Gao, Burkhalter (CR24) 2011; 31 Muller, Kubie (CR1) 1987; 7 Yang, Heeger, Seidemann (CR38) 2007; 98 Wiener, Korshunov, Garcia, Berthoz (CR2) 1995; 7 Steinmetz, Buetfering, Lecoq, Lee, Peters, Jacobs, Coen, Ollerenshaw, Valley, de Vries, Garrett, Zhuang, Groblewski, Manavi, Miles, White, Lee, Griffin, Larkin, Roll, Cross, Nguyen, Larsen, Pendergraft, Daigle, Tasic, Thompson, Waters, Olsen, Margolis, Zeng, Hausser, Carandini, Harris (CR33) 2017; 4 Grieves, Jeffery (CR26) 2017; 135 McNaughton, Barnes, O’Keefe (CR12) 1983; 52 Czurkó, Hirase, Csicsvari, Buzsáki (CR14) 1999; 11 Lenck-Santini, Save, Poucet (CR16) 2001; 11 Chen, King, Lu, Cacucci, Burgess (CR30) 2018; 7 Carandini (CR36) 2015; 35 Cushman (CR28) 2013; 8 Saleem, Ayaz, Jeffery, Harris, Carandini (CR9) 2013; 16 Rosenzweig, Redish, McNaughton, Barnes (CR19) 2003; 6 Rossant (CR43) 2016; 19 CR40 Dipoppa (CR42) 2018; 98 Makino, Komiyama (CR20) 2015; 18 Kalatsky, Stryker (CR37) 2003; 38 Fiser (CR7) 2016; 19 Harvey, Collman, Dombeck, Tank (CR11) 2009; 461 Moser, Kropff, Moser (CR25) 2008; 31 Nicholas A. Steinmetz (516_CR33) 2017; 4 AB Saleem (516_CR9) 2013; 16 J Poort (516_CR21) 2015; 86 Q Wang (516_CR24) 2011; 31 C Rossant (516_CR43) 2016; 19 G Chen (516_CR30) 2018; 7 SP Peron (516_CR41) 2015; 86 RM Grieves (516_CR26) 2017; 135 CD Harvey (516_CR11) 2009; 461 T Geiller (516_CR4) 2017; 8 D Ji (516_CR5) 2007; 10 CM Niell (516_CR8) 2010; 65 A Czurkó (516_CR14) 1999; 11 A Ayaz (516_CR34) 2013; 23 O Jurjut (516_CR22) 2017; 37 H Makino (516_CR20) 2015; 18 JD Cushman (516_CR28) 2013; 8 SN Kadir (516_CR44) 2014; 26 DC Haggerty (516_CR6) 2015; 4 M Dipoppa (516_CR42) 2018; 98 A Fiser (516_CR7) 2016; 19 J O’Keefe (516_CR15) 1987; 68 M Carandini (516_CR36) 2015; 35 516_CR40 L Madisen (516_CR31) 2015; 85 EH Ratzlaff (516_CR35) 1991; 36 H Eichenbaum (516_CR27) 2014; 15 BL McNaughton (516_CR12) 1983; 52 P Ravassard (516_CR10) 2013; 340 JB Wekselblatt (516_CR32) 2016; 115 D Aronov (516_CR29) 2014; 84 MP Witter (516_CR23) 2000; 10 SI Wiener (516_CR13) 1989; 9 PP Lenck-Santini (516_CR16) 2001; 11 Z Yang (516_CR38) 2007; 98 VA Kalatsky (516_CR37) 2003; 38 G Chen (516_CR3) 2013; 110 ES Rosenzweig (516_CR19) 2003; 6 TA Pologruto (516_CR39) 2003; 2 RU Muller (516_CR1) 1987; 7 SI Wiener (516_CR2) 1995; 7 V Hok (516_CR18) 2007; 27 EI Moser (516_CR25) 2008; 31 P-P Lenck-Santini (516_CR17) 2002; 22 30301952 - Nat Rev Neurosci. 2018 Nov;19(11):642. doi: 10.1038/s41583-018-0076-2. |
| References_xml | – volume: 98 start-page: 602 year: 2018 end-page: 615.e8 ident: CR42 article-title: Vision and locomotion shape the interactions between neuron types in mouse visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2018.03.037 – volume: 10 start-page: 100 year: 2007 end-page: 107 ident: CR5 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. doi: 10.1038/nn1825 – volume: 461 start-page: 941 year: 2009 end-page: 946 ident: CR11 article-title: Intracellular dynamics of hippocampal place cells during virtual navigation publication-title: Nature doi: 10.1038/nature08499 – volume: 19 start-page: 634 year: 2016 end-page: 641 ident: CR43 article-title: Spike sorting for large, dense electrode arrays publication-title: Nat. Neurosci. doi: 10.1038/nn.4268 – volume: 7 start-page: 2206 year: 1995 end-page: 2219 ident: CR2 article-title: Inertial, substratal and landmark cue control of hippocampal CA1 place cell activity publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1995.tb00642.x – volume: 7 start-page: 1951 year: 1987 end-page: 1968 ident: CR1 article-title: The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-07-01951.1987 – volume: 4 start-page: ENEURO.0207-17.2017 issue: 5 year: 2017 ident: CR33 article-title: Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines publication-title: eneuro doi: 10.1523/ENEURO.0207-17.2017 – volume: 110 start-page: 378 year: 2013 end-page: 383 ident: CR3 article-title: How vision and movement combine in the hippocampal place code publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215834110 – volume: 19 start-page: 1658 year: 2016 end-page: 1664 ident: CR7 article-title: Experience-dependent spatial expectations in mouse visual cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4385 – volume: 85 start-page: 942 year: 2015 end-page: 958 ident: CR31 article-title: Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance publication-title: Neuron doi: 10.1016/j.neuron.2015.02.022 – volume: 8 year: 2017 ident: CR4 article-title: Place cells are more strongly tied to landmarks in deep than in superficial CA1 publication-title: Nat. Commun. doi: 10.1038/ncomms14531 – volume: 16 start-page: 1864 year: 2013 end-page: 1869 ident: CR9 article-title: Integration of visual motion and locomotion in mouse visual cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.3567 – volume: 38 start-page: 529 year: 2003 end-page: 545 ident: CR37 article-title: New paradigm for optical imaging: temporally encoded maps of intrinsic signal publication-title: Neuron doi: 10.1016/S0896-6273(03)00286-1 – volume: 10 start-page: 398 year: 2000 end-page: 410 ident: CR23 article-title: Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways publication-title: Hippocampus doi: 10.1002/1098-1063(2000)10:4<398::AID-HIPO6>3.0.CO;2-K – volume: 22 start-page: 9035 year: 2002 end-page: 9047 ident: CR17 article-title: Relationships between place cell firing fields and navigational decisions by rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-20-09035.2002 – volume: 135 start-page: 113 year: 2017 end-page: 131 ident: CR26 article-title: The representation of space in the brain publication-title: Behav. Processes doi: 10.1016/j.beproc.2016.12.012 – volume: 15 start-page: 732 year: 2014 end-page: 744 ident: CR27 article-title: Time cells in the hippocampus: a new dimension for mapping memories publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3827 – volume: 65 start-page: 472 year: 2010 end-page: 479 ident: CR8 article-title: Modulation of visual responses by behavioral state in mouse visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2010.01.033 – volume: 35 start-page: 53 year: 2015 end-page: 63 ident: CR36 article-title: Imaging the awake visual cortex with a genetically encoded voltage indicator publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0594-14.2015 – volume: 340 start-page: 1342 year: 2013 end-page: 1346 ident: CR10 article-title: Multisensory control of hippocampal spatiotemporal selectivity publication-title: Science doi: 10.1126/science.1232655 – volume: 11 start-page: 344 year: 1999 end-page: 352 ident: CR14 article-title: Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00446.x – volume: 18 start-page: 1116 year: 2015 end-page: 1122 ident: CR20 article-title: Learning enhances the relative impact of top-down processing in the visual cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4061 – ident: CR40 – volume: 36 start-page: 127 year: 1991 end-page: 137 ident: CR35 article-title: A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(91)90038-2 – volume: 26 start-page: 2379 year: 2014 end-page: 2394 ident: CR44 article-title: High-dimensional cluster analysis with the masked EM algorithm publication-title: Neural Comput. doi: 10.1162/NECO_a_00661 – volume: 31 start-page: 1905 year: 2011 end-page: 1918 ident: CR24 article-title: Gateways of ventral and dorsal streams in mouse visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3488-10.2011 – volume: 7 year: 2018 ident: CR30 article-title: Spatial cell firing during virtual navigation of open arenas by head-restrained mice publication-title: eLife doi: 10.7554/eLife.34789 – volume: 27 start-page: 472 year: 2007 end-page: 482 ident: CR18 article-title: Goal-related activity in hippocampal place cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2864-06.2007 – volume: 31 start-page: 69 year: 2008 end-page: 89 ident: CR25 article-title: Place cells, grid cells, and the brain’s spatial representation system publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.31.061307.090723 – volume: 52 start-page: 41 year: 1983 end-page: 49 ident: CR12 article-title: The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats publication-title: Exp. Brain Res. doi: 10.1007/BF00237147 – volume: 68 start-page: 1 year: 1987 end-page: 27 ident: CR15 article-title: Single unit activity in the rat hippocampus during a spatial memory task publication-title: Exp. Brain Res. – volume: 115 start-page: 2852 year: 2016 end-page: 2866 ident: CR32 article-title: Large-scale imaging of cortical dynamics during sensory perception and behavior publication-title: J. Neurophysiol. doi: 10.1152/jn.01056.2015 – volume: 2 year: 2003 ident: CR39 article-title: ScanImage: flexible software for operating laser scanning microscopes publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-2-13 – volume: 84 start-page: 442 year: 2014 end-page: 456 ident: CR29 article-title: Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system publication-title: Neuron doi: 10.1016/j.neuron.2014.08.042 – volume: 11 start-page: 377 year: 2001 end-page: 390 ident: CR16 article-title: Evidence for a relationship between place-cell spatial firing and spatial memory performance publication-title: Hippocampus doi: 10.1002/hipo.1052 – volume: 86 start-page: 1478 year: 2015 end-page: 1490 ident: CR21 article-title: Learning enhances sensory and multiple non-sensory representations in primary visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2015.05.037 – volume: 37 start-page: 6460 year: 2017 end-page: 6474 ident: CR22 article-title: Learning enhances sensory processing in mouse V1 before improving behavior publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3485-16.2017 – volume: 23 start-page: 890 year: 2013 end-page: 894 ident: CR34 article-title: Locomotion controls spatial integration in mouse visual cortex publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.04.012 – volume: 86 start-page: 783 year: 2015 end-page: 799 ident: CR41 article-title: A cellular resolution map of barrel cortex activity during tactile behavior publication-title: Neuron doi: 10.1016/j.neuron.2015.03.027 – volume: 8 year: 2013 ident: CR28 article-title: Multisensory control of multimodal behavior: do the legs know what the tongue is doing? publication-title: PLoS One doi: 10.1371/journal.pone.0080465 – volume: 98 start-page: 1002 year: 2007 end-page: 1014 ident: CR38 article-title: Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.00417.2007 – volume: 4 year: 2015 ident: CR6 article-title: Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats during spatial behavior publication-title: eLife doi: 10.7554/eLife.08902 – volume: 6 start-page: 609 year: 2003 end-page: 615 ident: CR19 article-title: Hippocampal map realignment and spatial learning publication-title: Nat. Neurosci. doi: 10.1038/nn1053 – volume: 9 start-page: 2737 year: 1989 end-page: 2763 ident: CR13 article-title: Spatial and behavioral correlates of hippocampal neuronal activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.09-08-02737.1989 – volume: 10 start-page: 398 year: 2000 ident: 516_CR23 publication-title: Hippocampus doi: 10.1002/1098-1063(2000)10:4<398::AID-HIPO6>3.0.CO;2-K – volume: 110 start-page: 378 year: 2013 ident: 516_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215834110 – volume: 9 start-page: 2737 year: 1989 ident: 516_CR13 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.09-08-02737.1989 – volume: 22 start-page: 9035 year: 2002 ident: 516_CR17 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-20-09035.2002 – volume: 19 start-page: 1658 year: 2016 ident: 516_CR7 publication-title: Nat. Neurosci. doi: 10.1038/nn.4385 – volume: 23 start-page: 890 year: 2013 ident: 516_CR34 publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.04.012 – volume: 11 start-page: 377 year: 2001 ident: 516_CR16 publication-title: Hippocampus doi: 10.1002/hipo.1052 – volume: 4 year: 2015 ident: 516_CR6 publication-title: eLife doi: 10.7554/eLife.08902 – volume: 85 start-page: 942 year: 2015 ident: 516_CR31 publication-title: Neuron doi: 10.1016/j.neuron.2015.02.022 – volume: 36 start-page: 127 year: 1991 ident: 516_CR35 publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(91)90038-2 – volume: 52 start-page: 41 year: 1983 ident: 516_CR12 publication-title: Exp. Brain Res. doi: 10.1007/BF00237147 – volume: 38 start-page: 529 year: 2003 ident: 516_CR37 publication-title: Neuron doi: 10.1016/S0896-6273(03)00286-1 – volume: 10 start-page: 100 year: 2007 ident: 516_CR5 publication-title: Nat. Neurosci. doi: 10.1038/nn1825 – volume: 31 start-page: 1905 year: 2011 ident: 516_CR24 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3488-10.2011 – volume: 31 start-page: 69 year: 2008 ident: 516_CR25 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.31.061307.090723 – volume: 340 start-page: 1342 year: 2013 ident: 516_CR10 publication-title: Science doi: 10.1126/science.1232655 – volume: 2 year: 2003 ident: 516_CR39 publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-2-13 – volume: 35 start-page: 53 year: 2015 ident: 516_CR36 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0594-14.2015 – volume: 19 start-page: 634 year: 2016 ident: 516_CR43 publication-title: Nat. Neurosci. doi: 10.1038/nn.4268 – volume: 26 start-page: 2379 year: 2014 ident: 516_CR44 publication-title: Neural Comput. doi: 10.1162/NECO_a_00661 – volume: 37 start-page: 6460 year: 2017 ident: 516_CR22 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3485-16.2017 – volume: 7 year: 2018 ident: 516_CR30 publication-title: eLife doi: 10.7554/eLife.34789 – volume: 84 start-page: 442 year: 2014 ident: 516_CR29 publication-title: Neuron doi: 10.1016/j.neuron.2014.08.042 – volume: 18 start-page: 1116 year: 2015 ident: 516_CR20 publication-title: Nat. Neurosci. doi: 10.1038/nn.4061 – volume: 11 start-page: 344 year: 1999 ident: 516_CR14 publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00446.x – volume: 7 start-page: 1951 year: 1987 ident: 516_CR1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-07-01951.1987 – volume: 7 start-page: 2206 year: 1995 ident: 516_CR2 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1995.tb00642.x – volume: 8 year: 2013 ident: 516_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0080465 – volume: 65 start-page: 472 year: 2010 ident: 516_CR8 publication-title: Neuron doi: 10.1016/j.neuron.2010.01.033 – volume: 27 start-page: 472 year: 2007 ident: 516_CR18 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2864-06.2007 – volume: 15 start-page: 732 year: 2014 ident: 516_CR27 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3827 – ident: 516_CR40 doi: 10.1101/061507 – volume: 86 start-page: 783 year: 2015 ident: 516_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2015.03.027 – volume: 135 start-page: 113 year: 2017 ident: 516_CR26 publication-title: Behav. Processes doi: 10.1016/j.beproc.2016.12.012 – volume: 115 start-page: 2852 year: 2016 ident: 516_CR32 publication-title: J. Neurophysiol. doi: 10.1152/jn.01056.2015 – volume: 4 start-page: ENEURO.0207-17. issue: 5 year: 2017 ident: 516_CR33 publication-title: eneuro doi: 10.1523/ENEURO.0207-17.2017 – volume: 6 start-page: 609 year: 2003 ident: 516_CR19 publication-title: Nat. Neurosci. doi: 10.1038/nn1053 – volume: 68 start-page: 1 year: 1987 ident: 516_CR15 publication-title: Exp. Brain Res. – volume: 461 start-page: 941 year: 2009 ident: 516_CR11 publication-title: Nature doi: 10.1038/nature08499 – volume: 8 year: 2017 ident: 516_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms14531 – volume: 16 start-page: 1864 year: 2013 ident: 516_CR9 publication-title: Nat. Neurosci. doi: 10.1038/nn.3567 – volume: 86 start-page: 1478 year: 2015 ident: 516_CR21 publication-title: Neuron doi: 10.1016/j.neuron.2015.05.037 – volume: 98 start-page: 602 year: 2018 ident: 516_CR42 publication-title: Neuron doi: 10.1016/j.neuron.2018.03.037 – volume: 98 start-page: 1002 year: 2007 ident: 516_CR38 publication-title: J. Neurophysiol. doi: 10.1152/jn.00417.2007 – reference: 30301952 - Nat Rev Neurosci. 2018 Nov;19(11):642. doi: 10.1038/s41583-018-0076-2. |
| SSID | ssj0005174 |
| Score | 2.6154308 |
| Snippet | A major role of vision is to guide navigation, and navigation is strongly driven by vision
1
–
4
. Indeed, the brain’s visual and navigational systems are... A major role of vision is to guide navigation, and navigation is strongly driven by vision . Indeed, the brain's visual and navigational systems are known to... A major role of vision is to guide navigation, and navigation is strongly driven by vision.sup.1-4. Indeed, the brain's visual and navigational systems are... A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain's visual and navigational systems are known to... A major role of vision is to guide navigation, and navigation is strongly driven by vision1–4. Indeed, the brain’s visual and navigational systems are known to... |
| SourceID | pubmedcentral hal proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 124 |
| SubjectTerms | 14/69 631/378/116 631/378/1595/3922 631/378/2613 631/378/3917 631/378/3920 64/110 64/60 Animals Brain Brain research Coding Computer applications Female Hippocampus Hippocampus (Brain) Hippocampus - cytology Hippocampus - physiology Humanities and Social Sciences Information processing Landmarks Letter Life Sciences Male Mice Mice, Inbred C57BL Modulation multidisciplinary Navigation Navigation behavior Neurons Neurons - physiology Neurons and Cognition Populations Reinforcement Representations Reward Science Science (multidisciplinary) Sensory integration Somatosensory cortex Space perception Spatial Behavior - physiology Spatial Processing - physiology Virtual Reality Visual cortex Visual Cortex - cytology Visual Cortex - physiology Visual signals |
| Title | Coherent encoding of subjective spatial position in visual cortex and hippocampus |
| URI | https://link.springer.com/article/10.1038/s41586-018-0516-1 https://www.ncbi.nlm.nih.gov/pubmed/30202092 https://www.proquest.com/docview/2123610427 https://www.proquest.com/docview/2102323988 https://hal.science/hal-03949451 https://pubmed.ncbi.nlm.nih.gov/PMC6309439 |
| Volume | 562 |
| WOSCitedRecordID | wos000446187900050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature (UW-Madison Shared) customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfoBhIvwMZXWKkCmoCBwvL98YS6atPQaClbgcKL5TjJWgRpNjcVfz53jtOSbeyFl5Oau7h2znc-x5ffEbLNs9COuG8aGbNcw01iMCnOEgMr28aIfxWliSw2EQwG4XgcDdULN6HSKmufKB11MuP4jnzXljAhWBniXXFmYNUoPF1VJTRaZB1REtAwh973VYrHBRTm-lTTCXcFLFwh7qWB41m-YTXWJeWdWxNMjrwceV5OoLxwiioXp4O7_zuse-SOCkv1bjWPNsiNNN8kt2R6KBebZEO5AKG_UjjVO_fJJ_y0A8GddATDxDVQn2W6KOMflRPVBWZrQ6t1Ypg-zfXFVJRwiWOO72-d5Yk-mRYFLKi_ilI8IJ8P9ke9Q0NVaDA4ROVzI4odM_YzCAKZze2ARRFPMjPLzNhNg9Tz0yRJwpT5uG-xAzMGPkdEMDdOuM8gsnlI1vJZnj4muhcwm0Gjlsd9F2JIlsU280E-SlPXTTKNmLV-KFfw5VhF4yeVx-hOSCuVUlApRZVSSyOvl7cUFXbHdcLbqHSKmBg5Jt2cslII2h197Q1o14M9CLiqyNbI86vE3p8cN4ReKqFsBn3kTH3qACNFtK2G5FZDkhfTM_oX90WDe1pp-Kpm2g1BcBG82WmYyctngIjih90PFK-ZTuRGrmct4AG06xlKlR8TdDU9NfJsycbmMTcvT2clykDchzCSoUYeVXax_CsHdiO2iT0IGhbT6EuTk08nEuXcdzDpNdLIm9q2Vt36pxafXD-ILXLbRpOXyZhtsjY_L9On5CZfzKfivENawfEXpONA0hBo2LM6ZH1vfzA8hl9He2-B9s0jpHZf0o-SDpEGFT3pSDcE9w27o_63P6sCf-4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2AYIXYOMWVsCgcVe0xLk_IFQNplYrFYMi-mYcx1mDIM2WpsCf4jdyTi4t2cbe9sBrzqlrOz4Xx5-_Q8iWjH0WSNfQY2Hauh2FYFJSRDpWtg2R_ypQUVlswhsO_fE4eL9Cfjd3YRBW2fjE0lFHU4nfyLdZSROClSFeZ4c6Vo3C09WmhEa1LPbUrx-wZctf9d_A-33M2O7b0U5Pr6sK6BIyyZkehJYRujEkLoJJ5okgkFFsxLER2spTjquiKPKVcDHXZp4Rglwii5UdRtIVEI2h3VVyAfy4hxAyb-wtISXHWJ-bU1TL384hUPq4dweJY7q62YqDdTRYnSAY82SmexKweezUtgyGu9f-t2m8Tq7WaTftVnayTlZUukEulfBXmW-Q9drF5fRZzcP9_AbZx6srSF5FkewTYzydxjQvwq9VkKA5otGh1Qb4RpOUzpO8gEcSMcw_qUgjOkmyDBKG71mR3ySfzmWQt8haOk3VHUIdTzABjZqOdG3IkUUcMuGCfqCUbUexRoxmPXBZ07NjlZBvvIQJWD6vlhCHJcRxCXFTIy8WP8kqbpKzlLdwkXHk_EgRVHQgijzn3dHnnSHvOrDHAlccMI08Ok2t__FDS-lprRRPoY9S1Fc5YKTIJtbS3Gxpyiw55H9Jn7SkB9UbPq2ZTksRXKBsdxosZzEHyJje6w44PjOswA5sx5zDBHQai-C1n8750hw08nAhxuYRe5iqaYE6kNciTaavkduVHS7-yoLdFjOwB17LQlt9aUvSZFKyuLsWgnoDjbxsbHnZrX--xbtnD-IBudwbvRvwQX-4t0muMHQ3JfC0Q9ZmR4W6Ry7K-SzJj-6XjouSL-dt4n8ArCzQ9g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2cREvwMYtrEBA466oiXN_QKjaqFZtqsoYYuLFOI6zBkGazU2Bv8av45xcWrKNve2B1_jUtZ1zc_z5O4RsiCSgofBMI-GWYzhxBCYleGxgZdsI-a9CGZfFJvzhMDg4CEdL5HdzFwZhlY1PLB11PBH4jbxLS5oQrAzRTWpYxGir_zY_MrCCFJ60NuU0KhXZkb9-wPZNvRlswbt-Smn_3f7mtlFXGDAEZJVTI4xsM_ISSGI4FdTnYSjixEwSM3KkL11PxnEcSO5h3k19M4J2gYxWThQLj0Nkhn6XySUf9pi48Ru5nxfwkhMM0M2Jqh10FQTNAPfx0OJanmG1YmIdGZbHCMw8nfWeBm-eOMEtA2P_xv-8pDfJ9Tod13uV_aySJZmtkSslLFaoNbJauz6lv6j5uV_eIu_xSguSWulIAoqxX58kuiqir1Xw0BWi1KHXBhCnp5k-S1UBjwRim3_qPIv1cZrnkEh8zwt1m3y8kEneISvZJJP3iO76nHLo1HKF50DuzJOIcg_kQykdJ040Yja6wURN247VQ76xEj5gB6xSJwbqxFCdmKWRV_Of5BVnyXnCG6hwDLlAMlSBQ14oxXr7nzaHrOfC3gtcdEg18uQsscGHvZbQ81oomcAYBa-veMBMkWWsJbnekhR5esT-an3Waj2s3vBZ3XRaguAaRXvQYEXzNUAm9e3eLsNnph06oeNaM1iATmMdrPbfii1MQyOP583YPWISMzkpUAbyXaTPDDRyt7LJ-V_ZsAujJo7Ab1lrayztliwdl-zuno1g31Ajrxu7Xgzrn2_x_vmTeESugmWz3cFwZ51co-h5Sjxqh6xMjwv5gFwWs2mqjh-WPkwnXy7awv8AgCPZ6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+encoding+of+subjective+spatial+position+in+visual+cortex+and+hippocampus&rft.jtitle=Nature+%28London%29&rft.au=Saleem%2C+Aman+B&rft.au=Diamanti%2C+E.+Mika&rft.au=Fournier%2C+Julien&rft.au=Harris%2C+Kenneth+D&rft.date=2018-10-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=562&rft.issue=7725&rft.spage=124&rft_id=info:doi/10.1038%2Fs41586-018-0516-1&rft.externalDBID=ATWCN&rft.externalDocID=A572996392 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |