Quantification of ortholog losses in insects and vertebrates

The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genome biology Ročník 8; číslo 11; s. R242
Hlavní autoři: Wyder, Stefan, Kriventseva, Evgenia V, Schröder, Reinhard, Kadowaki, Tatsuhiko, Zdobnov, Evgeny M
Médium: Journal Article
Jazyk:angličtina
Vydáno: England BioMed Central 16.11.2007
Témata:
ISSN:1474-760X, 1465-6906, 1474-760X, 1465-6914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.
AbstractList Comparison of the gene repertoires of 5 vertebrates and 5 insects showed that the rate of losses correlates well with the species' rates of molecular evolution and radiation times and suggests that the Urbilateria genome contained more than 7,000 genes.
The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits.BACKGROUNDThe increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits.To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes.RESULTSTo consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes.Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.CONCLUSIONOur results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.
Comparison of the gene repertoires of 5 vertebrates and 5 insects showed that the rate of losses correlates well with the species' rates of molecular evolution and radiation times and suggests that the Urbilateria genome contained more than 7,000 genes. Background The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. Results To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. Conclusion Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.
BACKGROUND: The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. RESULTS: To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. CONCLUSION: Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.
The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.
ArticleNumber R242
Author Kadowaki, Tatsuhiko
Schröder, Reinhard
Wyder, Stefan
Zdobnov, Evgeny M
Kriventseva, Evgenia V
AuthorAffiliation 2 Swiss Institute of Bioinformatics, rue Michel-Servet, 1211 Geneva, Switzerland
1 Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
4 Interf. Institut für Zellbiologie, Abt. Genetik der Tiere, Universität Tübingen, 72076 Tübingen, Germany
6 Imperial College London, South Kensington Campus, London SW7 2AZ, UK
3 Department of Structural Biology and Bioinformatics, University of Geneva Medical School, rue Michel-Servet, 1211 Geneva, Switzerland
5 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
AuthorAffiliation_xml – name: 1 Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
– name: 5 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
– name: 2 Swiss Institute of Bioinformatics, rue Michel-Servet, 1211 Geneva, Switzerland
– name: 4 Interf. Institut für Zellbiologie, Abt. Genetik der Tiere, Universität Tübingen, 72076 Tübingen, Germany
– name: 3 Department of Structural Biology and Bioinformatics, University of Geneva Medical School, rue Michel-Servet, 1211 Geneva, Switzerland
– name: 6 Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Author_xml – sequence: 1
  givenname: Stefan
  surname: Wyder
  fullname: Wyder, Stefan
– sequence: 2
  givenname: Evgenia V
  surname: Kriventseva
  fullname: Kriventseva, Evgenia V
– sequence: 3
  givenname: Reinhard
  surname: Schröder
  fullname: Schröder, Reinhard
– sequence: 4
  givenname: Tatsuhiko
  surname: Kadowaki
  fullname: Kadowaki, Tatsuhiko
– sequence: 5
  givenname: Evgeny M
  surname: Zdobnov
  fullname: Zdobnov, Evgeny M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18021399$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtLHTEUhUNR6qX-gL7IPElfpmZnMrlAEeTQGwgitOBbSDLJMTInsUmO0H_fnGrFCioEkpBvr72y1x7aiik6hN4D_ggg2PHS9ARj3oseoM-EkjdoFyinPWf4cuvReQftlXKNMUhK2Fu0AwITGKTcRZ8u1jrW4IPVNaTYJd-lXK_SnJbdnEpxpQuxreJsLZ2OU3frcnUm6-rKO7Tt9Vzcwf2-j35--fxj8a0_O__6fXF61lvOZO2pIxS8NnJgjDIqjBktx9JgZgyAFdJoz_wkvWbNsJ5Ic-aHBmgyTuOgh310cqd7szYrN1kXa9azuslhpfNvlXRQ_7_EcKWW6VYRMgqQYxM4uhfI6dfalapWoVg3zzq6tC6KY8BcYNzADy-CbdwYOCeSvqoJkjHJBW_g4WP3D7b_hdAAfgfY3CaenVc21L9xtM-EWQFWm7jV0mz6cyXaVW3ibpXwpPJB_NmaP3cdrrY
CitedBy_id crossref_primary_10_1098_rspb_2010_0647
crossref_primary_10_1016_j_ygcen_2014_09_004
crossref_primary_10_1007_s00427_008_0214_3
crossref_primary_10_1007_s00427_008_0215_2
crossref_primary_10_1186_s12864_017_3540_x
crossref_primary_10_1038_nature06784
crossref_primary_10_1111_j_1365_2583_2008_00772_x
crossref_primary_10_1371_journal_pone_0007465
crossref_primary_10_1073_pnas_1603142113
crossref_primary_10_1093_nar_gku983
crossref_primary_10_1093_nar_gky1009
crossref_primary_10_1128_JVI_00694_18
crossref_primary_10_1111_j_1461_0248_2012_01830_x
crossref_primary_10_1186_1471_2164_10_504
crossref_primary_10_1186_s13059_025_03699_z
crossref_primary_10_1016_j_cub_2012_08_023
crossref_primary_10_1371_journal_pone_0092220
crossref_primary_10_3389_fnmol_2017_00223
crossref_primary_10_1016_j_ympev_2015_10_014
crossref_primary_10_1093_molbev_msp167
crossref_primary_10_1371_journal_pone_0130347
crossref_primary_10_1155_2012_846421
crossref_primary_10_1186_s12862_015_0499_6
crossref_primary_10_1038_s41559_024_02398_5
crossref_primary_10_3390_ijms26083498
crossref_primary_10_1016_j_resp_2019_05_012
crossref_primary_10_1159_000499664
crossref_primary_10_3389_fimmu_2020_00758
crossref_primary_10_1038_nrg_2016_39
crossref_primary_10_1093_nar_gkq930
crossref_primary_10_1111_jnc_13967
crossref_primary_10_1016_j_molp_2018_07_003
crossref_primary_10_3389_fnmol_2019_00251
crossref_primary_10_1038_nrg2413
crossref_primary_10_1186_1741_7007_7_21
crossref_primary_10_1038_s41598_017_11543_z
crossref_primary_10_1016_j_ygcen_2014_05_003
crossref_primary_10_1186_s12864_015_1507_3
crossref_primary_10_1016_j_mce_2008_06_011
crossref_primary_10_1186_s12862_017_0940_0
crossref_primary_10_1186_s12864_018_4755_1
crossref_primary_10_1186_1471_2164_10_17
crossref_primary_10_3389_fphys_2019_00319
crossref_primary_10_1186_1471_2148_11_337
crossref_primary_10_1093_molbev_msq183
Cites_doi 10.1073/pnas.0404656101
10.1093/emboj/19.17.4543
10.1016/j.cub.2005.10.036
10.1126/science.1077061
10.1038/nature01198
10.1038/nature01278
10.1101/gr.5204306
10.1093/molbev/msj045
10.1016/S0169-5347(03)00033-8
10.1126/science.287.5461.2185
10.1073/pnas.0403400101
10.1101/gr.5094806
10.1126/science.1135213
10.1016/j.tig.2006.10.004
10.1093/oxfordjournals.molbev.a025634
10.1098/rsbl.2003.0124
10.1523/JNEUROSCI.3882-05.2006
10.1186/gb-2004-5-3-r15
10.1093/bioinformatics/18.3.502
10.1038/nrg705
10.1093/nar/gkj109
10.1371/journal.pbio.0020005
10.1073/pnas.94.7.3151
10.1016/j.febslet.2005.04.006
10.1073/pnas.96.8.4285
10.1093/bioinformatics/btl158
10.1038/nrg929
10.1038/246096a0
10.1515/BC.2005.084
10.1093/nar/gkl996
10.1038/nrg1838
10.1093/nar/gkl929
10.1038/nature05260
10.1093/nar/28.1.27
10.1016/j.devcel.2005.01.003
10.1186/gb-2006-7-5-r43
10.1093/oxfordjournals.molbev.a026334
10.1128/MCB.24.13.5887-5899.2004
10.1146/annurev.biochem.71.110601.135425
10.1086/302219
10.1093/nar/gkh340
10.1101/gr.5085606
10.1017/S0033583500004765
10.1093/nar/gkl827
10.1074/jbc.M404950200
10.1080/10635150390235520
10.1371/journal.pbio.0040052
10.1007/s10038-006-0391-8
10.1093/nar/gki475
10.1016/S0378-1119(99)00227-9
10.1074/jbc.M313436200
10.1073/pnas.200346997
10.1371/journal.pcbi.0010003
10.2307/2410642
10.1038/ni0202-121
10.1093/nar/gkl556
10.1093/emboj/19.17.4533
10.1073/pnas.80.4.1048
10.1126/science.278.5338.631
10.1038/nrg1659
10.1038/ncb1397
10.1038/31927
10.1371/journal.pone.0000085
10.1093/nar/gki423
10.1038/sj.emboj.7600775
10.1261/rna.259207
10.1038/35017029
10.1038/nature03154
10.1186/gb-2004-5-2-r7
10.1016/0896-6273(94)90437-5
ContentType Journal Article
Copyright Copyright © 2007 Wyder et al.; licensee BioMed Central Ltd. 2007 Wyder et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2007 Wyder et al.; licensee BioMed Central Ltd. 2007 Wyder et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1186/gb-2007-8-11-r242
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
1465-6914
EndPage R242
ExternalDocumentID PMC2258195
18021399
10_1186_gb_2007_8_11_r242
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29H
4.4
53G
5GY
5VS
7X7
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
CITATION
EBLON
EBS
GROUPED_DOAJ
GX1
HYE
IAO
IGS
IHR
ISR
ITC
KPI
ROL
RPM
RSV
SJN
SOJ
88E
8FE
8FH
8FI
8FJ
8R4
8R5
ABUWG
AFKRA
ALIPV
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
EBD
ECM
EIF
EMOBN
FYUFA
H13
HCIFZ
HMCUK
LK8
M1P
M7P
NPM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
SV3
UKHRP
2WC
8FD
AENEX
C1A
CS3
E3Z
EJD
F5P
FR3
HZ~
KQ8
O5R
O5S
O9-
OK1
P64
RBZ
RC3
SBL
TR2
WOQ
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c769t-4e241fab93664648bb5c709b06bb11c89baf6fd9fa6474ad2399f309ba25d53a3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252101100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1465-6906
IngestDate Thu Aug 21 18:10:26 EDT 2025
Thu Sep 04 18:21:57 EDT 2025
Thu Oct 02 06:51:28 EDT 2025
Fri Jul 11 14:54:06 EDT 2025
Thu Apr 03 07:01:55 EDT 2025
Sat Nov 29 05:33:07 EST 2025
Tue Nov 18 21:48:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c769t-4e241fab93664648bb5c709b06bb11c89baf6fd9fa6474ad2399f309ba25d53a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2258195
PMID 18021399
PQID 19669787
PQPubID 23462
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2258195
proquest_miscellaneous_70107800
proquest_miscellaneous_2000177294
proquest_miscellaneous_19669787
pubmed_primary_18021399
crossref_citationtrail_10_1186_gb_2007_8_11_r242
crossref_primary_10_1186_gb_2007_8_11_r242
PublicationCentury 2000
PublicationDate 2007-11-16
PublicationDateYYYYMMDD 2007-11-16
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-16
  day: 16
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Genome biology
PublicationTitleAlternate Genome Biol
PublicationYear 2007
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References C Pál (1722_CR53) 2006; 7
SB Hedges (1722_CR69) 2002; 3
PE Saebo (1722_CR61) 2005; 33
Y Wang (1722_CR16) 2006; 314
RC Edgar (1722_CR64) 2004; 32
Y Gilad (1722_CR5) 2004; 2
DR Foltz (1722_CR42) 2006; 8
L Aravind (1722_CR26) 2000; 97
CA Meyer (1722_CR47) 2000; 19
M Kanehisa (1722_CR71) 2000; 28
RV Samonte (1722_CR1) 2002; 3
JM Hsu (1722_CR44) 2004; 279
DJ Earl (1722_CR58) 2004; 101
SA Datar (1722_CR46) 2000; 19
R Spoelgen (1722_CR35) 2006; 26
W Li (1722_CR63) 2006; 22
S Kumar (1722_CR68) 1998; 392
CL Will (1722_CR30) 2005; 386
1722_CR10
EB Rubin (1722_CR17) 2006; 16
RS Kamath (1722_CR49) 2003; 421
JP Demuth (1722_CR12) 2006; 1
EV Koonin (1722_CR14) 2004; 5
EM Zdobnov (1722_CR18) 2005; 579
Y Niimura (1722_CR4) 2006; 51
AL Hughes (1722_CR15) 2004; 271
Y Munehira (1722_CR41) 2004; 279
CFJ Hardy (1722_CR38) 1997; 94
C Stark (1722_CR28) 2006; 34
DM Rand (1722_CR54) 1996; 13
EM Zdobnov (1722_CR60) 2007; 23
T Blomme (1722_CR13) 2006; 7
SM Mount (1722_CR33) 2007; 13
B Glise (1722_CR20) 2005; 8
X Wang (1722_CR7) 2006; 4
1722_CR22
HA Schmidt (1722_CR67) 2002; 18
Z Gu (1722_CR50) 2003; 421
DE Kohne (1722_CR55) 1970; 3
B Zhang (1722_CR29) 2005; 33
N Sheth (1722_CR34) 2006; 34
A Bairoch (1722_CR73) 2007; 35
Y Hamon (1722_CR39) 2000; 2
EM Zdobnov (1722_CR23) 2002; 298
J Castresana (1722_CR65) 2000; 17
A Wagner (1722_CR57) 1996; 50
X Mu (1722_CR37) 2003; 24
HM Robertson (1722_CR24) 2006; 16
GM Weinstock (1722_CR9) 2006; 443
J Savard (1722_CR19) 2006; 16
M Pellegrini (1722_CR25) 1999; 96
1722_CR75
D Grimaldi (1722_CR11) 2005
C Schneider (1722_CR32) 2004; 101
J Zhang (1722_CR2) 2003; 18
D Barker (1722_CR27) 2005; 1
1722_CR70
T Ohta (1722_CR52) 1973; 246
H Laman (1722_CR45) 2005; 24
RL Tatusov (1722_CR62) 1997; 278
M Kernan (1722_CR21) 1994; 12
MV Olson (1722_CR6) 1999; 64
JA Sheps (1722_CR40) 2004; 5
M Kimura (1722_CR51) 1983; 80
J Brosius (1722_CR3) 1999; 238
AJ Greenberg (1722_CR8) 2006; 23
MA Crosby (1722_CR74) 2007; 35
M Schoppmeier (1722_CR76) 2005; 15
JA Hoffmann (1722_CR43) 2002; 3
TJP Hubbard (1722_CR72) 2007; 35
MD Adams (1722_CR31) 2000; 287
SP Bell (1722_CR36) 2002; 71
EV Kriventseva (1722_CR59) 2007
LW Hillier (1722_CR48) 2004; 432
S Guindon (1722_CR66) 2003; 52
S Kumar (1722_CR56) 2005; 6
References_xml – volume: 101
  start-page: 11531
  year: 2004
  ident: 1722_CR58
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404656101
– volume: 19
  start-page: 4543
  year: 2000
  ident: 1722_CR46
  publication-title: EMBO J
  doi: 10.1093/emboj/19.17.4543
– volume: 15
  start-page: 2131
  year: 2005
  ident: 1722_CR76
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.10.036
– volume: 298
  start-page: 149
  year: 2002
  ident: 1722_CR23
  publication-title: Science
  doi: 10.1126/science.1077061
– volume: 421
  start-page: 63
  year: 2003
  ident: 1722_CR50
  publication-title: Nature
  doi: 10.1038/nature01198
– volume: 421
  start-page: 231
  year: 2003
  ident: 1722_CR49
  publication-title: Nature
  doi: 10.1038/nature01278
– volume: 16
  start-page: 1334
  year: 2006
  ident: 1722_CR19
  publication-title: Genome Res
  doi: 10.1101/gr.5204306
– volume: 23
  start-page: 401
  year: 2006
  ident: 1722_CR8
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj045
– volume: 18
  start-page: 292
  year: 2003
  ident: 1722_CR2
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(03)00033-8
– volume: 287
  start-page: 2185
  year: 2000
  ident: 1722_CR31
  publication-title: Science
  doi: 10.1126/science.287.5461.2185
– volume: 101
  start-page: 9584
  year: 2004
  ident: 1722_CR32
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0403400101
– volume: 16
  start-page: 1352
  year: 2006
  ident: 1722_CR17
  publication-title: Genome Res
  doi: 10.1101/gr.5094806
– volume: 314
  start-page: 645
  year: 2006
  ident: 1722_CR16
  publication-title: Science
  doi: 10.1126/science.1135213
– volume: 23
  start-page: 16
  year: 2007
  ident: 1722_CR60
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2006.10.004
– volume: 13
  start-page: 735
  year: 1996
  ident: 1722_CR54
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025634
– volume: 271
  start-page: S107
  issue: Suppl 3
  year: 2004
  ident: 1722_CR15
  publication-title: Proc Biol Sci
  doi: 10.1098/rsbl.2003.0124
– volume: 26
  start-page: 418
  year: 2006
  ident: 1722_CR35
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3882-05.2006
– volume: 5
  start-page: R15
  year: 2004
  ident: 1722_CR40
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-3-r15
– volume: 18
  start-page: 502
  year: 2002
  ident: 1722_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.502
– volume: 3
  start-page: 65
  year: 2002
  ident: 1722_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg705
– volume: 34
  start-page: D535
  year: 2006
  ident: 1722_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj109
– volume: 2
  start-page: E5
  year: 2004
  ident: 1722_CR5
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020005
– volume: 94
  start-page: 3151
  year: 1997
  ident: 1722_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.7.3151
– volume: 579
  start-page: 3355
  year: 2005
  ident: 1722_CR18
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.04.006
– volume: 96
  start-page: 4285
  year: 1999
  ident: 1722_CR25
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.8.4285
– volume: 22
  start-page: 1658
  year: 2006
  ident: 1722_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 3
  start-page: 838
  year: 2002
  ident: 1722_CR69
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg929
– volume: 246
  start-page: 96
  year: 1973
  ident: 1722_CR52
  publication-title: Nature
  doi: 10.1038/246096a0
– volume: 386
  start-page: 713
  year: 2005
  ident: 1722_CR30
  publication-title: Biol Chem
  doi: 10.1515/BC.2005.084
– volume: 35
  start-page: D610
  year: 2007
  ident: 1722_CR72
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl996
– volume: 7
  start-page: 337
  year: 2006
  ident: 1722_CR53
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1838
– volume: 35
  start-page: D193
  year: 2007
  ident: 1722_CR73
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl929
– ident: 1722_CR70
– volume: 443
  start-page: 931
  year: 2006
  ident: 1722_CR9
  publication-title: Nature
  doi: 10.1038/nature05260
– volume: 28
  start-page: 27
  year: 2000
  ident: 1722_CR71
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 8
  start-page: 255
  year: 2005
  ident: 1722_CR20
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2005.01.003
– volume: 7
  start-page: R43
  year: 2006
  ident: 1722_CR13
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-5-r43
– ident: 1722_CR22
– volume: 17
  start-page: 540
  year: 2000
  ident: 1722_CR65
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026334
– volume: 24
  start-page: 5887
  year: 2003
  ident: 1722_CR37
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.13.5887-5899.2004
– volume: 71
  start-page: 333
  year: 2002
  ident: 1722_CR36
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.71.110601.135425
– volume: 64
  start-page: 18
  year: 1999
  ident: 1722_CR6
  publication-title: Am Human Genet
  doi: 10.1086/302219
– volume: 32
  start-page: 1792
  year: 2004
  ident: 1722_CR64
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh340
– volume: 16
  start-page: 1345
  year: 2006
  ident: 1722_CR24
  publication-title: Genome Res
  doi: 10.1101/gr.5085606
– volume: 3
  start-page: 327
  year: 1970
  ident: 1722_CR55
  publication-title: Quart Rev Biophys
  doi: 10.1017/S0033583500004765
– volume: 35
  start-page: D486
  year: 2007
  ident: 1722_CR74
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl827
– volume: 279
  start-page: 32592
  year: 2004
  ident: 1722_CR44
  publication-title: Biol Chem
  doi: 10.1074/jbc.M404950200
– volume: 52
  start-page: 696
  year: 2003
  ident: 1722_CR66
  publication-title: Syst Biol
  doi: 10.1080/10635150390235520
– volume: 4
  start-page: e52
  year: 2006
  ident: 1722_CR7
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040052
– volume: 51
  start-page: 505
  year: 2006
  ident: 1722_CR4
  publication-title: J Human Genet
  doi: 10.1007/s10038-006-0391-8
– volume-title: Evolution of the Insects
  year: 2005
  ident: 1722_CR11
– ident: 1722_CR75
– volume: 33
  start-page: W741
  year: 2005
  ident: 1722_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki475
– volume: 238
  start-page: 115
  year: 1999
  ident: 1722_CR3
  publication-title: Gene
  doi: 10.1016/S0378-1119(99)00227-9
– volume: 279
  start-page: 15091
  year: 2004
  ident: 1722_CR41
  publication-title: Biol Chem
  doi: 10.1074/jbc.M313436200
– volume: 97
  start-page: 11319
  year: 2000
  ident: 1722_CR26
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.200346997
– volume: 1
  start-page: 24
  year: 2005
  ident: 1722_CR27
  publication-title: Plos Comput Biol
  doi: 10.1371/journal.pcbi.0010003
– volume: 50
  start-page: 1008
  year: 1996
  ident: 1722_CR57
  publication-title: Evolution
  doi: 10.2307/2410642
– volume: 3
  start-page: 121
  year: 2002
  ident: 1722_CR43
  publication-title: Nat Immunol
  doi: 10.1038/ni0202-121
– volume: 34
  start-page: 3955
  year: 2006
  ident: 1722_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl556
– volume: 19
  start-page: 4533
  year: 2000
  ident: 1722_CR47
  publication-title: EMBO J
  doi: 10.1093/emboj/19.17.4533
– volume: 80
  start-page: 1048
  year: 1983
  ident: 1722_CR51
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.80.4.1048
– volume: 278
  start-page: 631
  year: 1997
  ident: 1722_CR62
  publication-title: Science
  doi: 10.1126/science.278.5338.631
– volume: 6
  start-page: 654
  year: 2005
  ident: 1722_CR56
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1659
– ident: 1722_CR10
– volume: 8
  start-page: 458
  year: 2006
  ident: 1722_CR42
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1397
– volume: 392
  start-page: 917
  year: 1998
  ident: 1722_CR68
  publication-title: Nature
  doi: 10.1038/31927
– volume-title: Nucleic Acids Res
  year: 2007
  ident: 1722_CR59
– volume: 1
  start-page: e85
  year: 2006
  ident: 1722_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000085
– volume: 33
  start-page: W535
  year: 2005
  ident: 1722_CR61
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki423
– volume: 24
  start-page: 3104
  year: 2005
  ident: 1722_CR45
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600775
– volume: 13
  start-page: 5
  year: 2007
  ident: 1722_CR33
  publication-title: RNA
  doi: 10.1261/rna.259207
– volume: 2
  start-page: 399
  year: 2000
  ident: 1722_CR39
  publication-title: Nat Cell Biol
  doi: 10.1038/35017029
– volume: 432
  start-page: 695
  year: 2004
  ident: 1722_CR48
  publication-title: Nature
  doi: 10.1038/nature03154
– volume: 5
  start-page: R7
  year: 2004
  ident: 1722_CR14
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-2-r7
– volume: 12
  start-page: 1195
  year: 1994
  ident: 1722_CR21
  publication-title: Neuron
  doi: 10.1016/0896-6273(94)90437-5
SSID ssj0019426
ssj0017866
Score 2.1462572
Snippet The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of...
Comparison of the gene repertoires of 5 vertebrates and 5 insects showed that the rate of losses correlates well with the species' rates of molecular evolution...
BACKGROUND: The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage R242
SubjectTerms Animals
Coleoptera
Diptera
Evolution, Molecular
genes
Genetic Variation
honey bees
Humans
Insecta - genetics
Likelihood Functions
Models, Genetic
Phylogeny
vertebrates
Vertebrates - genetics
Title Quantification of ortholog losses in insects and vertebrates
URI https://www.ncbi.nlm.nih.gov/pubmed/18021399
https://www.proquest.com/docview/19669787
https://www.proquest.com/docview/2000177294
https://www.proquest.com/docview/70107800
https://pubmed.ncbi.nlm.nih.gov/PMC2258195
Volume 8
WOSCitedRecordID wos000252101100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LjtMw0OouIHFBvCmPEiTEASkibVI_JC6AunCoFuh2UcUlchKnjShJadOye-HbmbGdNKVaHgcuVuLYieMZz4w9L0KeeiLiSqIpDlA-NwhY4Erg024gUqVEQgGvdcj8ITs-5pOJ-NBq_ah8YTZzluf87Ews_iuooQ6Aja6z_wDu-qVQAdcAdCgB7FD-FeA_rqUxAKqFQVTN6IyT8wJVvHjEkeUrbcaBx-aYkRnVx6U1J7Si6luVF1-VyVV5Xo1U0-_zxGbrKlW6RS4gF2g7CZxWy6ODzRTt-LZGtCfxbFko23Wksrxy6NedZVJ8lyaF9liWq_Us-1LsnEgwdM0zDpOWiAa072IAZMNjmnXGYbSivLyJYN0GGR31TMgty5Kr231yr7VP08icuHIcyLLu2gytffw-PDodDsPxYDJ-tvjmYtYx1M7bFCwH5FKP9QVSxdHrz7UWinFqvdPM_1itOHz1xd43d-Wavc3Krza3DSFmfJ1cs7sP55XBmhukpfKb5IqF8S3ychd3nCJ1KtxxDO44We5Y3HEAd5wG7twmp0eD8Zt3rk2v4caMitINFEhvqYyET2lAAx5F_ZjB2vVoFHW7MReRTGmaiFRSWMIyQS_o1IcGstdP-r7075DDvMjVPeJ4iRJ-kmIwPB5I0eWS-bFUqPNNMOBmm3jV5ISxjT2PKVDmod6DchpOI0yIykIOtyHOZ5s8r7ssTOCV3zV-XM14COQRdV4yV8V6FQKDoQKYUps8uaBFT8eMgj1mcPFbmNcFUdrz2uSugeJ2SByEZJiYNmE78K0bYPj23Sd5NtNh3IGTohL7_h_H_oBc3S6zh-SwXK7VI3I53pTZatkhB2zCO_osqaPRF8uTTz8Bksi-GA
linkProvider BioMedCentral
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+ortholog+losses+in+insects+and+vertebrates&rft.jtitle=GenomeBiology.com&rft.au=Wyder%2C+Stefan&rft.au=Kriventseva%2C+Evgenia+V&rft.au=Schroeder%2C+Reinhard&rft.au=Kadowaki%2C+Tatsuhiko&rft.date=2007-11-16&rft.issn=1465-6906&rft.eissn=1465-6914&rft.volume=8&rft.issue=11&rft.spage=R242&rft.epage=R242&rft_id=info:doi/10.1186%2Fgb-2007-8-11-r242&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon