Quantification of ortholog losses in insects and vertebrates
The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-...
Uloženo v:
| Vydáno v: | Genome biology Ročník 8; číslo 11; s. R242 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
BioMed Central
16.11.2007
|
| Témata: | |
| ISSN: | 1474-760X, 1465-6906, 1474-760X, 1465-6914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits.
To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes.
Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution. |
|---|---|
| AbstractList | Comparison of the gene repertoires of 5 vertebrates and 5 insects showed that the rate of losses correlates well with the species' rates of molecular evolution and radiation times and suggests that the Urbilateria genome contained more than 7,000 genes. The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits.BACKGROUNDThe increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits.To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes.RESULTSTo consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes.Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.CONCLUSIONOur results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution. Comparison of the gene repertoires of 5 vertebrates and 5 insects showed that the rate of losses correlates well with the species' rates of molecular evolution and radiation times and suggests that the Urbilateria genome contained more than 7,000 genes. Background The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. Results To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. Conclusion Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution. BACKGROUND: The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. RESULTS: To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. CONCLUSION: Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution. The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution. |
| ArticleNumber | R242 |
| Author | Kadowaki, Tatsuhiko Schröder, Reinhard Wyder, Stefan Zdobnov, Evgeny M Kriventseva, Evgenia V |
| AuthorAffiliation | 2 Swiss Institute of Bioinformatics, rue Michel-Servet, 1211 Geneva, Switzerland 1 Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland 4 Interf. Institut für Zellbiologie, Abt. Genetik der Tiere, Universität Tübingen, 72076 Tübingen, Germany 6 Imperial College London, South Kensington Campus, London SW7 2AZ, UK 3 Department of Structural Biology and Bioinformatics, University of Geneva Medical School, rue Michel-Servet, 1211 Geneva, Switzerland 5 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan |
| AuthorAffiliation_xml | – name: 1 Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland – name: 5 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan – name: 2 Swiss Institute of Bioinformatics, rue Michel-Servet, 1211 Geneva, Switzerland – name: 4 Interf. Institut für Zellbiologie, Abt. Genetik der Tiere, Universität Tübingen, 72076 Tübingen, Germany – name: 3 Department of Structural Biology and Bioinformatics, University of Geneva Medical School, rue Michel-Servet, 1211 Geneva, Switzerland – name: 6 Imperial College London, South Kensington Campus, London SW7 2AZ, UK |
| Author_xml | – sequence: 1 givenname: Stefan surname: Wyder fullname: Wyder, Stefan – sequence: 2 givenname: Evgenia V surname: Kriventseva fullname: Kriventseva, Evgenia V – sequence: 3 givenname: Reinhard surname: Schröder fullname: Schröder, Reinhard – sequence: 4 givenname: Tatsuhiko surname: Kadowaki fullname: Kadowaki, Tatsuhiko – sequence: 5 givenname: Evgeny M surname: Zdobnov fullname: Zdobnov, Evgeny M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18021399$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkVtLHTEUhUNR6qX-gL7IPElfpmZnMrlAEeTQGwgitOBbSDLJMTInsUmO0H_fnGrFCioEkpBvr72y1x7aiik6hN4D_ggg2PHS9ARj3oseoM-EkjdoFyinPWf4cuvReQftlXKNMUhK2Fu0AwITGKTcRZ8u1jrW4IPVNaTYJd-lXK_SnJbdnEpxpQuxreJsLZ2OU3frcnUm6-rKO7Tt9Vzcwf2-j35--fxj8a0_O__6fXF61lvOZO2pIxS8NnJgjDIqjBktx9JgZgyAFdJoz_wkvWbNsJ5Ic-aHBmgyTuOgh310cqd7szYrN1kXa9azuslhpfNvlXRQ_7_EcKWW6VYRMgqQYxM4uhfI6dfalapWoVg3zzq6tC6KY8BcYNzADy-CbdwYOCeSvqoJkjHJBW_g4WP3D7b_hdAAfgfY3CaenVc21L9xtM-EWQFWm7jV0mz6cyXaVW3ibpXwpPJB_NmaP3cdrrY |
| CitedBy_id | crossref_primary_10_1098_rspb_2010_0647 crossref_primary_10_1016_j_ygcen_2014_09_004 crossref_primary_10_1007_s00427_008_0214_3 crossref_primary_10_1007_s00427_008_0215_2 crossref_primary_10_1186_s12864_017_3540_x crossref_primary_10_1038_nature06784 crossref_primary_10_1111_j_1365_2583_2008_00772_x crossref_primary_10_1371_journal_pone_0007465 crossref_primary_10_1073_pnas_1603142113 crossref_primary_10_1093_nar_gku983 crossref_primary_10_1093_nar_gky1009 crossref_primary_10_1128_JVI_00694_18 crossref_primary_10_1111_j_1461_0248_2012_01830_x crossref_primary_10_1186_1471_2164_10_504 crossref_primary_10_1186_s13059_025_03699_z crossref_primary_10_1016_j_cub_2012_08_023 crossref_primary_10_1371_journal_pone_0092220 crossref_primary_10_3389_fnmol_2017_00223 crossref_primary_10_1016_j_ympev_2015_10_014 crossref_primary_10_1093_molbev_msp167 crossref_primary_10_1371_journal_pone_0130347 crossref_primary_10_1155_2012_846421 crossref_primary_10_1186_s12862_015_0499_6 crossref_primary_10_1038_s41559_024_02398_5 crossref_primary_10_3390_ijms26083498 crossref_primary_10_1016_j_resp_2019_05_012 crossref_primary_10_1159_000499664 crossref_primary_10_3389_fimmu_2020_00758 crossref_primary_10_1038_nrg_2016_39 crossref_primary_10_1093_nar_gkq930 crossref_primary_10_1111_jnc_13967 crossref_primary_10_1016_j_molp_2018_07_003 crossref_primary_10_3389_fnmol_2019_00251 crossref_primary_10_1038_nrg2413 crossref_primary_10_1186_1741_7007_7_21 crossref_primary_10_1038_s41598_017_11543_z crossref_primary_10_1016_j_ygcen_2014_05_003 crossref_primary_10_1186_s12864_015_1507_3 crossref_primary_10_1016_j_mce_2008_06_011 crossref_primary_10_1186_s12862_017_0940_0 crossref_primary_10_1186_s12864_018_4755_1 crossref_primary_10_1186_1471_2164_10_17 crossref_primary_10_3389_fphys_2019_00319 crossref_primary_10_1186_1471_2148_11_337 crossref_primary_10_1093_molbev_msq183 |
| Cites_doi | 10.1073/pnas.0404656101 10.1093/emboj/19.17.4543 10.1016/j.cub.2005.10.036 10.1126/science.1077061 10.1038/nature01198 10.1038/nature01278 10.1101/gr.5204306 10.1093/molbev/msj045 10.1016/S0169-5347(03)00033-8 10.1126/science.287.5461.2185 10.1073/pnas.0403400101 10.1101/gr.5094806 10.1126/science.1135213 10.1016/j.tig.2006.10.004 10.1093/oxfordjournals.molbev.a025634 10.1098/rsbl.2003.0124 10.1523/JNEUROSCI.3882-05.2006 10.1186/gb-2004-5-3-r15 10.1093/bioinformatics/18.3.502 10.1038/nrg705 10.1093/nar/gkj109 10.1371/journal.pbio.0020005 10.1073/pnas.94.7.3151 10.1016/j.febslet.2005.04.006 10.1073/pnas.96.8.4285 10.1093/bioinformatics/btl158 10.1038/nrg929 10.1038/246096a0 10.1515/BC.2005.084 10.1093/nar/gkl996 10.1038/nrg1838 10.1093/nar/gkl929 10.1038/nature05260 10.1093/nar/28.1.27 10.1016/j.devcel.2005.01.003 10.1186/gb-2006-7-5-r43 10.1093/oxfordjournals.molbev.a026334 10.1128/MCB.24.13.5887-5899.2004 10.1146/annurev.biochem.71.110601.135425 10.1086/302219 10.1093/nar/gkh340 10.1101/gr.5085606 10.1017/S0033583500004765 10.1093/nar/gkl827 10.1074/jbc.M404950200 10.1080/10635150390235520 10.1371/journal.pbio.0040052 10.1007/s10038-006-0391-8 10.1093/nar/gki475 10.1016/S0378-1119(99)00227-9 10.1074/jbc.M313436200 10.1073/pnas.200346997 10.1371/journal.pcbi.0010003 10.2307/2410642 10.1038/ni0202-121 10.1093/nar/gkl556 10.1093/emboj/19.17.4533 10.1073/pnas.80.4.1048 10.1126/science.278.5338.631 10.1038/nrg1659 10.1038/ncb1397 10.1038/31927 10.1371/journal.pone.0000085 10.1093/nar/gki423 10.1038/sj.emboj.7600775 10.1261/rna.259207 10.1038/35017029 10.1038/nature03154 10.1186/gb-2004-5-2-r7 10.1016/0896-6273(94)90437-5 |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 Wyder et al.; licensee BioMed Central Ltd. 2007 Wyder et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2007 Wyder et al.; licensee BioMed Central Ltd. 2007 Wyder et al.; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7S9 L.6 7X8 5PM |
| DOI | 10.1186/gb-2007-8-11-r242 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1474-760X 1465-6914 |
| EndPage | R242 |
| ExternalDocumentID | PMC2258195 18021399 10_1186_gb_2007_8_11_r242 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 123 29H 4.4 53G 5GY 5VS 7X7 AAFWJ AAHBH AAJSJ AASML AAYXX ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFPKN AHBYD AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION EBLON EBS GROUPED_DOAJ GX1 HYE IAO IGS IHR ISR ITC KPI ROL RPM RSV SJN SOJ 88E 8FE 8FH 8FI 8FJ 8R4 8R5 ABUWG AFKRA ALIPV BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF EBD ECM EIF EMOBN FYUFA H13 HCIFZ HMCUK LK8 M1P M7P NPM PHGZT PIMPY PQQKQ PROAC PSQYO SV3 UKHRP 2WC 8FD AENEX C1A CS3 E3Z EJD F5P FR3 HZ~ KQ8 O5R O5S O9- OK1 P64 RBZ RC3 SBL TR2 WOQ 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c769t-4e241fab93664648bb5c709b06bb11c89baf6fd9fa6474ad2399f309ba25d53a3 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252101100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-760X 1465-6906 |
| IngestDate | Thu Aug 21 18:10:26 EDT 2025 Thu Sep 04 18:21:57 EDT 2025 Thu Oct 02 06:51:28 EDT 2025 Fri Jul 11 14:54:06 EDT 2025 Thu Apr 03 07:01:55 EDT 2025 Sat Nov 29 05:33:07 EST 2025 Tue Nov 18 21:48:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c769t-4e241fab93664648bb5c709b06bb11c89baf6fd9fa6474ad2399f309ba25d53a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2258195 |
| PMID | 18021399 |
| PQID | 19669787 |
| PQPubID | 23462 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2258195 proquest_miscellaneous_70107800 proquest_miscellaneous_2000177294 proquest_miscellaneous_19669787 pubmed_primary_18021399 crossref_citationtrail_10_1186_gb_2007_8_11_r242 crossref_primary_10_1186_gb_2007_8_11_r242 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-11-16 |
| PublicationDateYYYYMMDD | 2007-11-16 |
| PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Genome biology |
| PublicationTitleAlternate | Genome Biol |
| PublicationYear | 2007 |
| Publisher | BioMed Central |
| Publisher_xml | – name: BioMed Central |
| References | C Pál (1722_CR53) 2006; 7 SB Hedges (1722_CR69) 2002; 3 PE Saebo (1722_CR61) 2005; 33 Y Wang (1722_CR16) 2006; 314 RC Edgar (1722_CR64) 2004; 32 Y Gilad (1722_CR5) 2004; 2 DR Foltz (1722_CR42) 2006; 8 L Aravind (1722_CR26) 2000; 97 CA Meyer (1722_CR47) 2000; 19 M Kanehisa (1722_CR71) 2000; 28 RV Samonte (1722_CR1) 2002; 3 JM Hsu (1722_CR44) 2004; 279 DJ Earl (1722_CR58) 2004; 101 SA Datar (1722_CR46) 2000; 19 R Spoelgen (1722_CR35) 2006; 26 W Li (1722_CR63) 2006; 22 S Kumar (1722_CR68) 1998; 392 CL Will (1722_CR30) 2005; 386 1722_CR10 EB Rubin (1722_CR17) 2006; 16 RS Kamath (1722_CR49) 2003; 421 JP Demuth (1722_CR12) 2006; 1 EV Koonin (1722_CR14) 2004; 5 EM Zdobnov (1722_CR18) 2005; 579 Y Niimura (1722_CR4) 2006; 51 AL Hughes (1722_CR15) 2004; 271 Y Munehira (1722_CR41) 2004; 279 CFJ Hardy (1722_CR38) 1997; 94 C Stark (1722_CR28) 2006; 34 DM Rand (1722_CR54) 1996; 13 EM Zdobnov (1722_CR60) 2007; 23 T Blomme (1722_CR13) 2006; 7 SM Mount (1722_CR33) 2007; 13 B Glise (1722_CR20) 2005; 8 X Wang (1722_CR7) 2006; 4 1722_CR22 HA Schmidt (1722_CR67) 2002; 18 Z Gu (1722_CR50) 2003; 421 DE Kohne (1722_CR55) 1970; 3 B Zhang (1722_CR29) 2005; 33 N Sheth (1722_CR34) 2006; 34 A Bairoch (1722_CR73) 2007; 35 Y Hamon (1722_CR39) 2000; 2 EM Zdobnov (1722_CR23) 2002; 298 J Castresana (1722_CR65) 2000; 17 A Wagner (1722_CR57) 1996; 50 X Mu (1722_CR37) 2003; 24 HM Robertson (1722_CR24) 2006; 16 GM Weinstock (1722_CR9) 2006; 443 J Savard (1722_CR19) 2006; 16 M Pellegrini (1722_CR25) 1999; 96 1722_CR75 D Grimaldi (1722_CR11) 2005 C Schneider (1722_CR32) 2004; 101 J Zhang (1722_CR2) 2003; 18 D Barker (1722_CR27) 2005; 1 1722_CR70 T Ohta (1722_CR52) 1973; 246 H Laman (1722_CR45) 2005; 24 RL Tatusov (1722_CR62) 1997; 278 M Kernan (1722_CR21) 1994; 12 MV Olson (1722_CR6) 1999; 64 JA Sheps (1722_CR40) 2004; 5 M Kimura (1722_CR51) 1983; 80 J Brosius (1722_CR3) 1999; 238 AJ Greenberg (1722_CR8) 2006; 23 MA Crosby (1722_CR74) 2007; 35 M Schoppmeier (1722_CR76) 2005; 15 JA Hoffmann (1722_CR43) 2002; 3 TJP Hubbard (1722_CR72) 2007; 35 MD Adams (1722_CR31) 2000; 287 SP Bell (1722_CR36) 2002; 71 EV Kriventseva (1722_CR59) 2007 LW Hillier (1722_CR48) 2004; 432 S Guindon (1722_CR66) 2003; 52 S Kumar (1722_CR56) 2005; 6 |
| References_xml | – volume: 101 start-page: 11531 year: 2004 ident: 1722_CR58 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404656101 – volume: 19 start-page: 4543 year: 2000 ident: 1722_CR46 publication-title: EMBO J doi: 10.1093/emboj/19.17.4543 – volume: 15 start-page: 2131 year: 2005 ident: 1722_CR76 publication-title: Curr Biol doi: 10.1016/j.cub.2005.10.036 – volume: 298 start-page: 149 year: 2002 ident: 1722_CR23 publication-title: Science doi: 10.1126/science.1077061 – volume: 421 start-page: 63 year: 2003 ident: 1722_CR50 publication-title: Nature doi: 10.1038/nature01198 – volume: 421 start-page: 231 year: 2003 ident: 1722_CR49 publication-title: Nature doi: 10.1038/nature01278 – volume: 16 start-page: 1334 year: 2006 ident: 1722_CR19 publication-title: Genome Res doi: 10.1101/gr.5204306 – volume: 23 start-page: 401 year: 2006 ident: 1722_CR8 publication-title: Mol Biol Evol doi: 10.1093/molbev/msj045 – volume: 18 start-page: 292 year: 2003 ident: 1722_CR2 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(03)00033-8 – volume: 287 start-page: 2185 year: 2000 ident: 1722_CR31 publication-title: Science doi: 10.1126/science.287.5461.2185 – volume: 101 start-page: 9584 year: 2004 ident: 1722_CR32 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403400101 – volume: 16 start-page: 1352 year: 2006 ident: 1722_CR17 publication-title: Genome Res doi: 10.1101/gr.5094806 – volume: 314 start-page: 645 year: 2006 ident: 1722_CR16 publication-title: Science doi: 10.1126/science.1135213 – volume: 23 start-page: 16 year: 2007 ident: 1722_CR60 publication-title: Trends Genet doi: 10.1016/j.tig.2006.10.004 – volume: 13 start-page: 735 year: 1996 ident: 1722_CR54 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025634 – volume: 271 start-page: S107 issue: Suppl 3 year: 2004 ident: 1722_CR15 publication-title: Proc Biol Sci doi: 10.1098/rsbl.2003.0124 – volume: 26 start-page: 418 year: 2006 ident: 1722_CR35 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3882-05.2006 – volume: 5 start-page: R15 year: 2004 ident: 1722_CR40 publication-title: Genome Biol doi: 10.1186/gb-2004-5-3-r15 – volume: 18 start-page: 502 year: 2002 ident: 1722_CR67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.502 – volume: 3 start-page: 65 year: 2002 ident: 1722_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg705 – volume: 34 start-page: D535 year: 2006 ident: 1722_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj109 – volume: 2 start-page: E5 year: 2004 ident: 1722_CR5 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020005 – volume: 94 start-page: 3151 year: 1997 ident: 1722_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.7.3151 – volume: 579 start-page: 3355 year: 2005 ident: 1722_CR18 publication-title: FEBS Lett doi: 10.1016/j.febslet.2005.04.006 – volume: 96 start-page: 4285 year: 1999 ident: 1722_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.8.4285 – volume: 22 start-page: 1658 year: 2006 ident: 1722_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 3 start-page: 838 year: 2002 ident: 1722_CR69 publication-title: Nat Rev Genet doi: 10.1038/nrg929 – volume: 246 start-page: 96 year: 1973 ident: 1722_CR52 publication-title: Nature doi: 10.1038/246096a0 – volume: 386 start-page: 713 year: 2005 ident: 1722_CR30 publication-title: Biol Chem doi: 10.1515/BC.2005.084 – volume: 35 start-page: D610 year: 2007 ident: 1722_CR72 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl996 – volume: 7 start-page: 337 year: 2006 ident: 1722_CR53 publication-title: Nat Rev Genet doi: 10.1038/nrg1838 – volume: 35 start-page: D193 year: 2007 ident: 1722_CR73 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl929 – ident: 1722_CR70 – volume: 443 start-page: 931 year: 2006 ident: 1722_CR9 publication-title: Nature doi: 10.1038/nature05260 – volume: 28 start-page: 27 year: 2000 ident: 1722_CR71 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 8 start-page: 255 year: 2005 ident: 1722_CR20 publication-title: Dev Cell doi: 10.1016/j.devcel.2005.01.003 – volume: 7 start-page: R43 year: 2006 ident: 1722_CR13 publication-title: Genome Biol doi: 10.1186/gb-2006-7-5-r43 – ident: 1722_CR22 – volume: 17 start-page: 540 year: 2000 ident: 1722_CR65 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026334 – volume: 24 start-page: 5887 year: 2003 ident: 1722_CR37 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.13.5887-5899.2004 – volume: 71 start-page: 333 year: 2002 ident: 1722_CR36 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.71.110601.135425 – volume: 64 start-page: 18 year: 1999 ident: 1722_CR6 publication-title: Am Human Genet doi: 10.1086/302219 – volume: 32 start-page: 1792 year: 2004 ident: 1722_CR64 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh340 – volume: 16 start-page: 1345 year: 2006 ident: 1722_CR24 publication-title: Genome Res doi: 10.1101/gr.5085606 – volume: 3 start-page: 327 year: 1970 ident: 1722_CR55 publication-title: Quart Rev Biophys doi: 10.1017/S0033583500004765 – volume: 35 start-page: D486 year: 2007 ident: 1722_CR74 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl827 – volume: 279 start-page: 32592 year: 2004 ident: 1722_CR44 publication-title: Biol Chem doi: 10.1074/jbc.M404950200 – volume: 52 start-page: 696 year: 2003 ident: 1722_CR66 publication-title: Syst Biol doi: 10.1080/10635150390235520 – volume: 4 start-page: e52 year: 2006 ident: 1722_CR7 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040052 – volume: 51 start-page: 505 year: 2006 ident: 1722_CR4 publication-title: J Human Genet doi: 10.1007/s10038-006-0391-8 – volume-title: Evolution of the Insects year: 2005 ident: 1722_CR11 – ident: 1722_CR75 – volume: 33 start-page: W741 year: 2005 ident: 1722_CR29 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki475 – volume: 238 start-page: 115 year: 1999 ident: 1722_CR3 publication-title: Gene doi: 10.1016/S0378-1119(99)00227-9 – volume: 279 start-page: 15091 year: 2004 ident: 1722_CR41 publication-title: Biol Chem doi: 10.1074/jbc.M313436200 – volume: 97 start-page: 11319 year: 2000 ident: 1722_CR26 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.200346997 – volume: 1 start-page: 24 year: 2005 ident: 1722_CR27 publication-title: Plos Comput Biol doi: 10.1371/journal.pcbi.0010003 – volume: 50 start-page: 1008 year: 1996 ident: 1722_CR57 publication-title: Evolution doi: 10.2307/2410642 – volume: 3 start-page: 121 year: 2002 ident: 1722_CR43 publication-title: Nat Immunol doi: 10.1038/ni0202-121 – volume: 34 start-page: 3955 year: 2006 ident: 1722_CR34 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl556 – volume: 19 start-page: 4533 year: 2000 ident: 1722_CR47 publication-title: EMBO J doi: 10.1093/emboj/19.17.4533 – volume: 80 start-page: 1048 year: 1983 ident: 1722_CR51 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.80.4.1048 – volume: 278 start-page: 631 year: 1997 ident: 1722_CR62 publication-title: Science doi: 10.1126/science.278.5338.631 – volume: 6 start-page: 654 year: 2005 ident: 1722_CR56 publication-title: Nat Rev Genet doi: 10.1038/nrg1659 – ident: 1722_CR10 – volume: 8 start-page: 458 year: 2006 ident: 1722_CR42 publication-title: Nat Cell Biol doi: 10.1038/ncb1397 – volume: 392 start-page: 917 year: 1998 ident: 1722_CR68 publication-title: Nature doi: 10.1038/31927 – volume-title: Nucleic Acids Res year: 2007 ident: 1722_CR59 – volume: 1 start-page: e85 year: 2006 ident: 1722_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000085 – volume: 33 start-page: W535 year: 2005 ident: 1722_CR61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki423 – volume: 24 start-page: 3104 year: 2005 ident: 1722_CR45 publication-title: EMBO J doi: 10.1038/sj.emboj.7600775 – volume: 13 start-page: 5 year: 2007 ident: 1722_CR33 publication-title: RNA doi: 10.1261/rna.259207 – volume: 2 start-page: 399 year: 2000 ident: 1722_CR39 publication-title: Nat Cell Biol doi: 10.1038/35017029 – volume: 432 start-page: 695 year: 2004 ident: 1722_CR48 publication-title: Nature doi: 10.1038/nature03154 – volume: 5 start-page: R7 year: 2004 ident: 1722_CR14 publication-title: Genome Biol doi: 10.1186/gb-2004-5-2-r7 – volume: 12 start-page: 1195 year: 1994 ident: 1722_CR21 publication-title: Neuron doi: 10.1016/0896-6273(94)90437-5 |
| SSID | ssj0019426 ssj0017866 |
| Score | 2.1462572 |
| Snippet | The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of... Comparison of the gene repertoires of 5 vertebrates and 5 insects showed that the rate of losses correlates well with the species' rates of molecular evolution... BACKGROUND: The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | R242 |
| SubjectTerms | Animals Coleoptera Diptera Evolution, Molecular genes Genetic Variation honey bees Humans Insecta - genetics Likelihood Functions Models, Genetic Phylogeny vertebrates Vertebrates - genetics |
| Title | Quantification of ortholog losses in insects and vertebrates |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18021399 https://www.proquest.com/docview/19669787 https://www.proquest.com/docview/2000177294 https://www.proquest.com/docview/70107800 https://pubmed.ncbi.nlm.nih.gov/PMC2258195 |
| Volume | 8 |
| WOSCitedRecordID | wos000252101100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017866 issn: 1474-760X databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: RSV dateStart: 20000201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LjtMw0OouIHFBvCmPEiTEASkibVI_JC6AunCoFuh2UcUlchKnjShJadOye-HbmbGdNKVaHgcuVuLYieMZz4w9L0KeeiLiSqIpDlA-NwhY4Erg024gUqVEQgGvdcj8ITs-5pOJ-NBq_ah8YTZzluf87Ews_iuooQ6Aja6z_wDu-qVQAdcAdCgB7FD-FeA_rqUxAKqFQVTN6IyT8wJVvHjEkeUrbcaBx-aYkRnVx6U1J7Si6luVF1-VyVV5Xo1U0-_zxGbrKlW6RS4gF2g7CZxWy6ODzRTt-LZGtCfxbFko23Wksrxy6NedZVJ8lyaF9liWq_Us-1LsnEgwdM0zDpOWiAa072IAZMNjmnXGYbSivLyJYN0GGR31TMgty5Kr231yr7VP08icuHIcyLLu2gytffw-PDodDsPxYDJ-tvjmYtYx1M7bFCwH5FKP9QVSxdHrz7UWinFqvdPM_1itOHz1xd43d-Wavc3Krza3DSFmfJ1cs7sP55XBmhukpfKb5IqF8S3ychd3nCJ1KtxxDO44We5Y3HEAd5wG7twmp0eD8Zt3rk2v4caMitINFEhvqYyET2lAAx5F_ZjB2vVoFHW7MReRTGmaiFRSWMIyQS_o1IcGstdP-r7075DDvMjVPeJ4iRJ-kmIwPB5I0eWS-bFUqPNNMOBmm3jV5ISxjT2PKVDmod6DchpOI0yIykIOtyHOZ5s8r7ssTOCV3zV-XM14COQRdV4yV8V6FQKDoQKYUps8uaBFT8eMgj1mcPFbmNcFUdrz2uSugeJ2SByEZJiYNmE78K0bYPj23Sd5NtNh3IGTohL7_h_H_oBc3S6zh-SwXK7VI3I53pTZatkhB2zCO_osqaPRF8uTTz8Bksi-GA |
| linkProvider | BioMedCentral |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+ortholog+losses+in+insects+and+vertebrates&rft.jtitle=GenomeBiology.com&rft.au=Wyder%2C+Stefan&rft.au=Kriventseva%2C+Evgenia+V&rft.au=Schroeder%2C+Reinhard&rft.au=Kadowaki%2C+Tatsuhiko&rft.date=2007-11-16&rft.issn=1465-6906&rft.eissn=1465-6914&rft.volume=8&rft.issue=11&rft.spage=R242&rft.epage=R242&rft_id=info:doi/10.1186%2Fgb-2007-8-11-r242&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |