Anomaly Detection in Networking Logs Using Unsupervised Autoencoder Learning

Modern cloud-based infrastructures frequently operate across multilayered, multi-OS environments supported by numerous vendors. Diagnosing anomalies in such complex systems is a time-consuming task that often results in inaccurate root cause attribution, harming the credibility of otherwise reliable...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ICFAI journal of computer sciences Ročník 19; číslo 3; s. 47 - 60
Hlavný autor: Bar, Kaushik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hyderabad IUP Publications 10.07.2025
Predmet:
ISSN:0973-9904
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modern cloud-based infrastructures frequently operate across multilayered, multi-OS environments supported by numerous vendors. Diagnosing anomalies in such complex systems is a time-consuming task that often results in inaccurate root cause attribution, harming the credibility of otherwise reliable service components. The paper addresses the critical challenge of anomaly detection in networking logs and subsequent root cause analysis through hardware status data in such virtualized infrastructures. It identifies the limitations of traditional anomaly detection methods, including clustering-based (LOF SOF), statistical (Gaussian-based), rule-based and supervised approaches, which often fail under noisy, high-dimensional, or sparsely labeled settings. To overcome these limitations, the paper proposes a two-stage architecture: (1) an autoencoder-based anomaly detector trained on textual networking logs; and (2) a self-supervised long short-term memory (LSTM) autoencoder trained on hardware metrics augmented by log-derived anomaly flags. This hybrid approach captures temporal dependencies, reduces false positives, and improves root cause traceability. Evaluated on a proprietary dataset comprising over 200K entries, the proposed method outperformed traditional baselines, achieving an F1 score of 0.87, surpassing others by a margin of at least 12%. This solution offers a scalable and automated diagnostic tool for distributed systems with minimal human intervention.
AbstractList Modern cloud-based infrastructures frequently operate across multilayered, multi-OS environments supported by numerous vendors. Diagnosing anomalies in such complex systems is a time-consuming task that often results in inaccurate root cause attribution, harming the credibility of otherwise reliable service components. The paper addresses the critical challenge of anomaly detection in networking logs and subsequent root cause analysis through hardware status data in such virtualized infrastructures. It identifies the limitations of traditional anomaly detection methods, including clustering-based (LOF SOF), statistical (Gaussian-based), rule-based and supervised approaches, which often fail under noisy, high-dimensional, or sparsely labeled settings. To overcome these limitations, the paper proposes a two-stage architecture: (1) an autoencoder-based anomaly detector trained on textual networking logs; and (2) a self-supervised long short-term memory (LSTM) autoencoder trained on hardware metrics augmented by log-derived anomaly flags. This hybrid approach captures temporal dependencies, reduces false positives, and improves root cause traceability. Evaluated on a proprietary dataset comprising over 200K entries, the proposed method outperformed traditional baselines, achieving an F1 score of 0.87, surpassing others by a margin of at least 12%. This solution offers a scalable and automated diagnostic tool for distributed systems with minimal human intervention.
Author Bar, Kaushik
Author_xml – sequence: 1
  givenname: Kaushik
  surname: Bar
  fullname: Bar, Kaushik
BookMark eNotjctOwzAURL0oEqX0G7DEOqlf8U2WUXkVRYBEs67s-KZKKXaJExB_TxDM5sziaOaCzHzwSMgVZylwKYrVpn55XL-uBBNZyotUpgoSzWZkzgqQSVEwdU6WMR7YlFxkisOcVKUP7-b4TW9wwGbogqedp084fIX-rfN7WoV9pHX8rbWP4wn7zy6io-U4BPRNcNjTCk3vJ-OSnLXmGHH5zwXZ3t1u1w9J9Xy_WZdV0oDOE7SucIDOOS3BWTCgWtOgy7AF4MoJIxBBtFY3kyqYbpjNrGxB20yBMXJBrv9mT334GDEOu0MYez897qSQSgrO81z-ADG4U-M
ContentType Journal Article
Copyright Copyright IUP Publications 2025
Copyright_xml – notice: Copyright IUP Publications 2025
DBID 04Q
04S
04W
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.71329/IUPJCS/2025.19.3.47-60
DatabaseName India Database (ProQuest)
India Database: Business
India Database: Science & Technology
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ProQuest Indian Journals
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Indian Journals: Business
ProQuest One Academic UKI Edition
Indian Journals: Science & Technology
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 60
GroupedDBID .4S
.DC
04Q
04S
04W
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
EDO
EOJEC
GNUQQ
HCIFZ
JQ2
K7-
M0N
OBODZ
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
TUS
ID FETCH-LOGICAL-c768-ebd9d7eddd637db7a74faced5ef7714d2a2ee72fb6cebd206c0b5b3f76b547aa3
IEDL.DBID 04Q
ISSN 0973-9904
IngestDate Tue Jul 29 19:24:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c768-ebd9d7eddd637db7a74faced5ef7714d2a2ee72fb6cebd206c0b5b3f76b547aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3234321188
PQPubID 2029993
PageCount 14
ParticipantIDs proquest_journals_3234321188
PublicationCentury 2000
PublicationDate 2025-07-10
PublicationDateYYYYMMDD 2025-07-10
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-10
  day: 10
PublicationDecade 2020
PublicationPlace Hyderabad
PublicationPlace_xml – name: Hyderabad
PublicationTitle ICFAI journal of computer sciences
PublicationYear 2025
Publisher IUP Publications
Publisher_xml – name: IUP Publications
SSID ssj0000825417
Score 2.2970753
Snippet Modern cloud-based infrastructures frequently operate across multilayered, multi-OS environments supported by numerous vendors. Diagnosing anomalies in such...
SourceID proquest
SourceType Aggregation Database
StartPage 47
SubjectTerms Algorithms
Anomalies
Automation
Cloud computing
Clustering
Complex systems
Deep learning
Hardware
Neural networks
Root cause analysis
Time series
Title Anomaly Detection in Networking Logs Using Unsupervised Autoencoder Learning
URI https://www.proquest.com/docview/3234321188
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPMWjIA-sbp04jpMJldKKRxUFaKWKpXJsp6oESWlSJP49duoCEwtLpChWZNm-u-8uX-4D4FJIwgQOFBKpI5GG1BglLEiQo1JMuUtCGopKbIJFUTAeh7EtuBWWVrn2iZWjlrkwNfI2cc0vkBoOB1fzd2RUo8zXVSuhsQnqJk4Zw8Te43eNpUp_KtFd05QG6Yl4K4oXM_Lq7btRfN99Nuk_bTlhi7Q8hmyryt9OuYo0_cZ_57gLdizGhJ3VodgDGyrbB421fgO05nwABjr3f-Ovn_BGlRUjK4OzDEYrYrgOaXCQTwtYkQrgKCuWc-NXCiVhZ1nmpgGm1G-zDVqnh2DY7w27t8iqKyChUwykEhlKpqSUPmEyYZx5KRdKUpUy5njS5a5SzE0TX-ihLvYFTmhCUuYn1GOckyNQy_JMHQOoUZ8IHOJLSoQXyCBIPZdzrEiq4RXF4gQ018s1sRZSTH7W6vTvx2dg2-yQqac6uAlq5WKpzsGW-ChnxeKi2vALUL_uRfGTvntgSF9j-vIFCkm4YQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VhwQL5SneeIDRbWInsTMgVLWglpaqEkXqVjm2UyFBAqQF8aP4j9hpAkxsDMyOLDl3vvt8_nwfwKlUlEmHayxjV2EDqR0cMR5hV8eOLwgN_VDmYhOs3-ejUTiowEf5FsbSKsuYmAdqlUpbI69TYp9AGjjML56esVWNsrerpYTG3C26-v3NHNmy807L2PeMkKvLYbONC1UBLA20xjpSoWJaKRVQpiImmBcLqZWvY8ZcTxFBtGYkjgJpPiVOIJ3Ij2jMgsj3mBDUTLsASx7lgd1QXYa_Sjr5aSvX-LU9cLBZtzdnlDGr5l7v3A2um7e22uDX3LBGax7DRWfMnzkgT2xX1X_2S9ZhrUDQqDF3-Q2o6GQTqqU6BSqC1Rb0Gkn6KB7eUUtPc75Zgu4T1J_T3k3CRr10kqGcMoHukmz2ZKNmphVqzKapbe-pzGxF-9nJNgz_Ykk7sJikid4FZDCt5C4NlE-lxxXnsUeEcDSNDXj0HbkHh6V1xsX-z8bfptn_ffgEVtrDm9641-l3D2DVOoetHLvOISxOX2b6CJbl6_Q-eznOfQ3B-I8N-QnMixaO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYgLZRVLAR_g6Daxkzg5IFQoFYUqqlgkbpXjpUKCBEgL4tP4O-w0AU7cOHBOZCme8cybyfM8gAMhKRNOqLDQrsQGUjs4YWGCXaUdnxMa-ZEoxCZYHId3d9FgBj6quzCWVlnFxCJQy0zYHnmLEnsF0sDhsKVLWsSg0z1-esZWQcr-aa3kNKYucqne30z5lh_1OsbWh4R0z25Oz3GpMICFgdlYJTKSTEkpA8pkwjjzNBdK-koz5nqScKIUIzoJhHmVOIFwEj-hmgWJ7zHOqVl2FuYYNTVPDeZOzuLB1VeDp6i9CsVfOxEHm13wpvwyZrXdW73bwcXpte09-E03atKmx3A5J_NnRijSXLf-jzdoGZZKbI3a08OwAjMqXYV6pVuByjC2Bv12mj3yh3fUUeOCiZai-xTFU0K8SeWon41yVJAp0G2aT55sPM2VRO3JOLODP6VZrRxMO1qHm7_4pA2opVmqNgEZtCtClwbSp8ILZRhqj3DuKKoNrPQdsQWNylLDMjLkw28zbf_-eB8WjP2G_V58uQOL1k9sS9l1GlAbv0zULsyL1_F9_rJXOh6C4R9b8hMoLCDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+in+Networking+Logs+Using+Unsupervised+Autoencoder+Learning&rft.jtitle=ICFAI+journal+of+computer+sciences&rft.au=Bar%2C+Kaushik&rft.date=2025-07-10&rft.pub=IUP+Publications&rft.issn=0973-9904&rft.volume=19&rft.issue=3&rft.spage=47&rft.epage=60&rft_id=info:doi/10.71329%2FIUPJCS%2F2025.19.3.47-60&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-9904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-9904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-9904&client=summon