Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises t...
Saved in:
| Published in: | PLoS genetics Vol. 12; no. 2; p. e1005767 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
01.02.2016
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. |
|---|---|
| AbstractList | False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. Genome-Wide Association Studies (GWAS) can reveal genetic-phenotypic relationships, but have limitations. To control false positives, population structure and kinship are incorporated in a fixed and random effect Mixed Linear Model (MLM). However, because of the confounding between population structure, kinship, and quantitative trait nucleotides (QTNs), MLM leads to false negatives, missing some potentially important discoveries. Here, we present a new method, Fixed and random model Circulating Probability Unification (FarmCPU). FarmCPU performs marker tests with associated markers as covariates in a fixed effect model and optimization on the associated covariate markers in a random effect model separately. This process enables efficient computation, removes the confounding, prevents model over-fitting, and controls false positives simultaneously. FarmCPU controls false positives as well as MLM with reductions in both false negatives and computing times. Researchers will not only be able to analyze big data, but will also have greater success with fewer mistakes when mapping genes of interest. False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. |
| Audience | Academic |
| Author | Buckler, Edward S. Huang, Meng Zhang, Zhiwu Liu, Xiaolei Fan, Bin |
| AuthorAffiliation | 5 Department of Animal Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China 4 United States Department of Agriculture (USDA)–Agricultural Research Service (ARS), Ithaca, New York, United States of America Microsoft Research, UNITED STATES 2 Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America 3 Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China |
| AuthorAffiliation_xml | – name: 4 United States Department of Agriculture (USDA)–Agricultural Research Service (ARS), Ithaca, New York, United States of America – name: Microsoft Research, UNITED STATES – name: 5 Department of Animal Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China – name: 2 Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America – name: 3 Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America – name: 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China |
| Author_xml | – sequence: 1 givenname: Xiaolei surname: Liu fullname: Liu, Xiaolei – sequence: 2 givenname: Meng surname: Huang fullname: Huang, Meng – sequence: 3 givenname: Bin surname: Fan fullname: Fan, Bin – sequence: 4 givenname: Edward S. surname: Buckler fullname: Buckler, Edward S. – sequence: 5 givenname: Zhiwu surname: Zhang fullname: Zhang, Zhiwu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26828793$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk-9r1DAYx4tM3A_9D0QDguiLO9MmTdq9EI6xzYPpZHP6MqTpk7scaXM26Zz_vbkfG1cRUQppST7fb598eZ7DZK91LSTJ8xSPU8LTdwvXd6204-UM2nGKcc4Zf5QcpHlORpxiurfzvZ8cer_AmORFyZ8k-xkrsoKX5CCx0wCdDOYW0I2XM0BOozNzBzWSbY2u4uIadKo1qIA-uhqsR9p16LP7AZ3u7ZqKx0YZaAM6h9Y1MPpmakAT750y0dq16Dr0tQH_NHmspfXwbPs-Sm7OTr-cfBhdXJ5PTyYXI8UZDSOgQBWhnLEilzJNKSc5riqtcy4JruucFCrPMhYJntaEZUVFiFIV1qzgUpbkKHm58V1a58U2KC9SzglnZc6LSEw3RO3kQiw708jup3DSiPWG62ZCdsEoC0JLSgitSAEFo5hDLIjITGMlCyVLXUWv99u_9VUDtYpBdNIOTIcnrZmLmbsV8V6UsTQavNkadO57Dz6IxngF1soWXL-qm2UxjoxnEX21QWcylmZa7aKjWuFiQnkZkylpHqnxH6j41NAYFdtIm7g_ELwdCCIT4C7MZO-9mF5f_Qf76d_Zy69D9vUOOwdpw9w7268ayA_BF7t5PwR939QRoBtAdc77DvQDkmKxmp37lhCr2RHb2Ymy499kyoR1_8b0jP27-BfJhB61 |
| CitedBy_id | crossref_primary_10_3390_ani14131944 crossref_primary_10_3390_ijms22030982 crossref_primary_10_1111_ppa_70059 crossref_primary_10_1016_j_stress_2025_100954 crossref_primary_10_3389_fpls_2023_1236576 crossref_primary_10_1016_j_ygeno_2020_08_006 crossref_primary_10_1007_s10722_023_01793_4 crossref_primary_10_1002_advs_202505181 crossref_primary_10_1038_s41467_023_42608_5 crossref_primary_10_1038_s41598_024_64161_x crossref_primary_10_1007_s00122_022_04167_z crossref_primary_10_3389_fgene_2021_749675 crossref_primary_10_3389_fpls_2023_1123631 crossref_primary_10_3389_fpls_2022_927673 crossref_primary_10_1093_plcell_koae007 crossref_primary_10_1002_leg3_70036 crossref_primary_10_3390_agronomy11030508 crossref_primary_10_3390_genes14061189 crossref_primary_10_1093_hr_uhad191 crossref_primary_10_1007_s00122_022_04045_8 crossref_primary_10_1016_j_jcs_2021_103214 crossref_primary_10_3389_fpls_2022_1026581 crossref_primary_10_3389_fpls_2023_1274823 crossref_primary_10_1002_csc2_21079 crossref_primary_10_1007_s10681_017_1971_8 crossref_primary_10_1093_g3journal_jkad216 crossref_primary_10_3390_agriculture13101882 crossref_primary_10_1016_j_plantsci_2022_111539 crossref_primary_10_1016_j_xplc_2025_101385 crossref_primary_10_1111_age_13162 crossref_primary_10_3390_agronomy14122894 crossref_primary_10_1002_tpg2_20208 crossref_primary_10_3389_fpls_2021_691211 crossref_primary_10_1002_tpg2_20443 crossref_primary_10_1002_tpg2_20444 crossref_primary_10_1002_tpg2_20200 crossref_primary_10_1371_journal_pone_0225979 crossref_primary_10_1007_s00122_019_03426_w crossref_primary_10_3390_genes15060740 crossref_primary_10_1038_s41598_019_39448_z crossref_primary_10_1093_g3journal_jkab269 crossref_primary_10_1111_pce_70027 crossref_primary_10_1186_s12864_024_11153_w crossref_primary_10_1007_s10681_018_2282_4 crossref_primary_10_1007_s00344_024_11492_8 crossref_primary_10_1007_s11104_022_05790_x crossref_primary_10_1186_s12284_025_00784_6 crossref_primary_10_3389_fpls_2020_00012 crossref_primary_10_3389_fpls_2024_1342359 crossref_primary_10_1007_s00122_017_2957_6 crossref_primary_10_1007_s10681_022_02986_1 crossref_primary_10_3389_fpls_2022_847234 crossref_primary_10_1007_s11032_023_01400_5 crossref_primary_10_1038_s41598_024_72319_w crossref_primary_10_1007_s11032_018_0810_5 crossref_primary_10_3390_agronomy11122528 crossref_primary_10_3390_agronomy11122527 crossref_primary_10_1002_agj2_21488 crossref_primary_10_1016_j_cj_2020_04_008 crossref_primary_10_1007_s00299_023_03127_1 crossref_primary_10_3389_fgene_2022_961009 crossref_primary_10_1186_s12870_022_03616_7 crossref_primary_10_1016_j_fcr_2023_109165 crossref_primary_10_1093_g3journal_jkab204 crossref_primary_10_1016_j_scienta_2024_113867 crossref_primary_10_3389_fpls_2021_635914 crossref_primary_10_2135_cropsci2017_11_0675 crossref_primary_10_1016_j_plantsci_2023_111624 crossref_primary_10_1186_s12870_021_03380_0 crossref_primary_10_3389_fpls_2020_00474 crossref_primary_10_1038_s41598_024_83516_y crossref_primary_10_1270_jsbbs_24087 crossref_primary_10_3390_v15071568 crossref_primary_10_1007_s13253_020_00396_1 crossref_primary_10_1002_aps3_11558 crossref_primary_10_3390_microorganisms12101936 crossref_primary_10_1007_s00122_022_04134_8 crossref_primary_10_1038_s41586_023_05791_5 crossref_primary_10_1093_jxb_erab467 crossref_primary_10_1093_hr_uhae070 crossref_primary_10_1093_plcell_koad164 crossref_primary_10_3389_fgene_2021_634986 crossref_primary_10_1002_tpg2_20408 crossref_primary_10_34133_2020_4216373 crossref_primary_10_1007_s11240_022_02284_7 crossref_primary_10_1002_tpg2_20401 crossref_primary_10_1186_s12870_024_04761_x crossref_primary_10_1007_s13353_024_00865_0 crossref_primary_10_1007_s12042_022_09317_7 crossref_primary_10_3390_ijms25179745 crossref_primary_10_3389_fagro_2024_1451281 crossref_primary_10_3390_vaccines8040608 crossref_primary_10_1016_j_stress_2025_100760 crossref_primary_10_1094_PHYTO_10_22_0397_R crossref_primary_10_3389_fpls_2023_1109116 crossref_primary_10_3389_fgene_2022_953833 crossref_primary_10_1186_s12870_023_04215_w crossref_primary_10_3389_fpls_2024_1472675 crossref_primary_10_1016_j_plaphy_2025_110281 crossref_primary_10_1016_j_stress_2025_100764 crossref_primary_10_1111_tpj_14650 crossref_primary_10_3389_fpls_2022_1090072 crossref_primary_10_3389_fpls_2023_1239635 crossref_primary_10_3389_fpls_2020_01309 crossref_primary_10_1038_s41598_025_00096_1 crossref_primary_10_1002_csc2_20824 crossref_primary_10_3389_fpls_2018_00332 crossref_primary_10_3390_genes15081032 crossref_primary_10_1186_s40104_023_00944_y crossref_primary_10_3390_plants12142705 crossref_primary_10_1007_s00122_023_04360_8 crossref_primary_10_1111_ppl_14404 crossref_primary_10_3389_fpls_2024_1426321 crossref_primary_10_1094_PHYTO_02_23_0043_R crossref_primary_10_3389_fgene_2018_00229 crossref_primary_10_1021_acs_jafc_5c01334 crossref_primary_10_1007_s10681_019_2550_y crossref_primary_10_1111_age_13347 crossref_primary_10_1016_j_jgg_2024_10_011 crossref_primary_10_1038_s41438_021_00638_4 crossref_primary_10_1093_pcp_pcae079 crossref_primary_10_1002_csc2_20810 crossref_primary_10_3390_plants13243501 crossref_primary_10_1002_pld3_70010 crossref_primary_10_1007_s12042_020_09258_z crossref_primary_10_3390_agronomy12010132 crossref_primary_10_3389_fpls_2021_772907 crossref_primary_10_1038_s41598_024_67059_w crossref_primary_10_3390_biology14091199 crossref_primary_10_3390_genes14040861 crossref_primary_10_3389_fgene_2023_1282620 crossref_primary_10_3389_fpls_2023_1189662 crossref_primary_10_1038_s41598_024_67035_4 crossref_primary_10_1002_csc2_70085 crossref_primary_10_1017_S1751731120001111 crossref_primary_10_3389_fpls_2020_570204 crossref_primary_10_1186_s12870_025_06077_w crossref_primary_10_3389_fpls_2018_01405 crossref_primary_10_1038_s41598_024_79014_w crossref_primary_10_1186_s12870_025_06813_2 crossref_primary_10_1007_s00122_022_04210_z crossref_primary_10_1534_g3_119_401016 crossref_primary_10_3389_fpls_2021_629221 crossref_primary_10_3390_horticulturae9111204 crossref_primary_10_1093_gigascience_giac080 crossref_primary_10_1007_s11295_025_01701_0 crossref_primary_10_1093_aob_mcy221 crossref_primary_10_3390_agronomy13041078 crossref_primary_10_1007_s00122_024_04642_9 crossref_primary_10_3390_agronomy11010027 crossref_primary_10_1016_j_plantsci_2024_112382 crossref_primary_10_1093_g3journal_jkae145 crossref_primary_10_1186_s12870_025_07018_3 crossref_primary_10_1186_s13059_017_1289_9 crossref_primary_10_3389_fpls_2021_758631 crossref_primary_10_1038_s41598_024_82932_4 crossref_primary_10_3390_nu11102509 crossref_primary_10_1534_g3_120_401580 crossref_primary_10_1016_j_egg_2025_100384 crossref_primary_10_1094_PHYTO_02_22_0051_R crossref_primary_10_1016_j_fbio_2024_103919 crossref_primary_10_1007_s00122_022_04065_4 crossref_primary_10_1016_j_gpb_2020_10_007 crossref_primary_10_1007_s11032_020_01163_3 crossref_primary_10_3389_fgene_2022_876522 crossref_primary_10_3390_ani14131904 crossref_primary_10_1016_j_cj_2023_02_006 crossref_primary_10_1094_PDIS_09_22_2228_RE crossref_primary_10_1007_s00122_020_03569_1 crossref_primary_10_3390_agronomy10091444 crossref_primary_10_1007_s10722_023_01723_4 crossref_primary_10_3389_fpls_2019_00100 crossref_primary_10_1002_pld3_70040 crossref_primary_10_1111_tpj_15910 crossref_primary_10_3389_fgene_2021_661742 crossref_primary_10_1007_s00122_024_04666_1 crossref_primary_10_1111_tpj_17092 crossref_primary_10_3389_fpls_2021_665745 crossref_primary_10_1111_pbr_13280 crossref_primary_10_1111_ppl_13992 crossref_primary_10_1186_s12870_024_05897_6 crossref_primary_10_1002_tpg2_70100 crossref_primary_10_3390_plants13172484 crossref_primary_10_1093_jxb_eraa500 crossref_primary_10_3389_fgene_2021_667038 crossref_primary_10_1093_jxb_eraf198 crossref_primary_10_3389_fpls_2018_01690 crossref_primary_10_3389_fpls_2021_697615 crossref_primary_10_3390_agronomy15081889 crossref_primary_10_1038_s41598_021_95116_1 crossref_primary_10_3389_fpls_2024_1448961 crossref_primary_10_1007_s00122_020_03745_3 crossref_primary_10_3389_fpls_2017_02232 crossref_primary_10_1371_journal_pone_0318815 crossref_primary_10_1007_s00122_021_03897_w crossref_primary_10_3390_ijms25073600 crossref_primary_10_1371_journal_pone_0308818 crossref_primary_10_1002_tpg2_70111 crossref_primary_10_1002_pld3_70064 crossref_primary_10_1093_g3journal_jkae108 crossref_primary_10_3390_ijms241713304 crossref_primary_10_3390_ijms241612801 crossref_primary_10_1002_tpg2_70113 crossref_primary_10_1534_genetics_120_303459 crossref_primary_10_3390_plants12142722 crossref_primary_10_1111_nph_19262 crossref_primary_10_1007_s00122_025_04871_6 crossref_primary_10_1186_s43170_024_00237_y crossref_primary_10_1111_age_13122 crossref_primary_10_1371_journal_pone_0260907 crossref_primary_10_3389_fgene_2020_00163 crossref_primary_10_3389_fpls_2022_823250 crossref_primary_10_3390_plants12223864 crossref_primary_10_3390_agronomy10091231 crossref_primary_10_1007_s11032_023_01357_5 crossref_primary_10_1038_s41477_021_00925_x crossref_primary_10_3389_fpls_2018_00141 crossref_primary_10_3390_ani12141855 crossref_primary_10_3390_ijms231810611 crossref_primary_10_1371_journal_pone_0231144 crossref_primary_10_1371_journal_pone_0208386 crossref_primary_10_3389_fpls_2022_847435 crossref_primary_10_3390_genes14071315 crossref_primary_10_1007_s10681_019_2489_z crossref_primary_10_1186_s13059_022_02807_7 crossref_primary_10_3389_fpls_2022_1024543 crossref_primary_10_3390_agriculture14091627 crossref_primary_10_1002_ppj2_70040 crossref_primary_10_1186_s13068_021_02064_z crossref_primary_10_1002_tpg2_70014 crossref_primary_10_1007_s13721_025_00558_6 crossref_primary_10_1038_hdy_2017_8 crossref_primary_10_3389_fpls_2021_705006 crossref_primary_10_3390_microorganisms9040692 crossref_primary_10_1016_j_scienta_2023_112838 crossref_primary_10_1111_pbr_13120 crossref_primary_10_1186_s13059_025_03693_5 crossref_primary_10_1111_nph_20190 crossref_primary_10_3390_plants12112206 crossref_primary_10_3390_ani15010026 crossref_primary_10_1038_s41598_025_92168_5 crossref_primary_10_3390_ani14192795 crossref_primary_10_3390_genes12050765 crossref_primary_10_1007_s00122_025_04980_2 crossref_primary_10_1016_j_cj_2019_11_004 crossref_primary_10_3389_fgene_2019_00954 crossref_primary_10_3389_fpls_2017_00886 crossref_primary_10_3389_fgene_2023_1306519 crossref_primary_10_3390_ijms21051577 crossref_primary_10_1016_j_jgg_2024_12_019 crossref_primary_10_1371_journal_pone_0176932 crossref_primary_10_1186_s40104_024_01027_2 crossref_primary_10_3390_plants12162970 crossref_primary_10_1111_nph_70439 crossref_primary_10_1093_gpbjnl_qzae020 crossref_primary_10_1016_j_ygeno_2020_12_014 crossref_primary_10_1186_s12864_025_11932_z crossref_primary_10_1038_s41598_023_33250_8 crossref_primary_10_1186_s12864_024_10655_x crossref_primary_10_1007_s13353_019_00533_8 crossref_primary_10_1007_s00122_025_04991_z crossref_primary_10_1007_s00438_025_02235_9 crossref_primary_10_3390_agronomy14050961 crossref_primary_10_3390_ani13152414 crossref_primary_10_1016_j_jplph_2022_153854 crossref_primary_10_1111_ppa_13963 crossref_primary_10_3390_ani10112048 crossref_primary_10_3390_biology13040261 crossref_primary_10_3390_genes11070759 crossref_primary_10_1186_s40529_022_00334_z crossref_primary_10_1007_s00299_024_03404_7 crossref_primary_10_1007_s00122_025_04949_1 crossref_primary_10_1186_s12870_025_06822_1 crossref_primary_10_1007_s13353_017_0417_2 crossref_primary_10_1002_csc2_20332 crossref_primary_10_7554_eLife_79238 crossref_primary_10_1007_s10722_024_02138_5 crossref_primary_10_3389_fgene_2023_1143395 crossref_primary_10_1002_tpg2_70047 crossref_primary_10_1186_s12284_024_00703_1 crossref_primary_10_3389_fgene_2024_1435474 crossref_primary_10_3389_fpls_2023_1221644 crossref_primary_10_1038_s41598_019_45919_0 crossref_primary_10_1186_s40529_020_00309_y crossref_primary_10_3390_life14091057 crossref_primary_10_1186_s12864_023_09504_0 crossref_primary_10_3389_fpls_2022_921230 crossref_primary_10_1093_aob_mcz047 crossref_primary_10_1094_PHYTO_01_24_0043_R crossref_primary_10_1111_pbr_13156 crossref_primary_10_1186_s12864_022_08325_x crossref_primary_10_1186_s12864_025_11580_3 crossref_primary_10_1002_csc2_20349 crossref_primary_10_1002_tpg2_70055 crossref_primary_10_1007_s12355_020_00852_9 crossref_primary_10_3390_ani14202995 crossref_primary_10_1093_jhered_esz050 crossref_primary_10_1093_jxb_erae391 crossref_primary_10_1007_s11032_021_01240_1 crossref_primary_10_3390_plants10071440 crossref_primary_10_1038_s41598_022_14568_1 crossref_primary_10_1002_ppj2_70008 crossref_primary_10_1038_s41598_023_48758_2 crossref_primary_10_3390_plants11233277 crossref_primary_10_1007_s12355_021_01056_5 crossref_primary_10_3390_genes15040412 crossref_primary_10_1007_s10681_025_03466_y crossref_primary_10_3390_agriculture14101704 crossref_primary_10_1002_tpg2_20063 crossref_primary_10_3390_plants13091275 crossref_primary_10_1002_ppj2_70013 crossref_primary_10_1007_s00122_022_04160_6 crossref_primary_10_7554_eLife_80009 crossref_primary_10_1007_s00122_021_03930_y crossref_primary_10_1016_j_envexpbot_2025_106220 crossref_primary_10_3389_fpls_2020_551305 crossref_primary_10_3389_fpls_2025_1536981 crossref_primary_10_1007_s00122_022_04040_z crossref_primary_10_3390_ani14182713 crossref_primary_10_3390_genes12050718 crossref_primary_10_1002_tpg2_20096 crossref_primary_10_1002_tpg2_70071 crossref_primary_10_1111_tpj_17111 crossref_primary_10_1111_tpj_70300 crossref_primary_10_3389_fmars_2020_00694 crossref_primary_10_3390_agronomy13051286 crossref_primary_10_3389_fpls_2023_1218042 crossref_primary_10_1002_tpg2_70075 crossref_primary_10_1007_s00122_024_04700_2 crossref_primary_10_3390_ani12192542 crossref_primary_10_3389_fpls_2022_946700 crossref_primary_10_3390_plants14030357 crossref_primary_10_3390_plants12051041 crossref_primary_10_3389_fpls_2025_1595339 crossref_primary_10_3390_ani13060992 crossref_primary_10_1007_s00122_020_03639_4 crossref_primary_10_1007_s00122_023_04397_9 crossref_primary_10_1007_s00122_019_03485_z crossref_primary_10_1093_jxb_eraf012 crossref_primary_10_1093_bib_bbae290 crossref_primary_10_1186_s12870_025_06135_3 crossref_primary_10_1371_journal_pone_0310390 crossref_primary_10_1111_pbr_13111 crossref_primary_10_1371_journal_pone_0199539 crossref_primary_10_3390_agronomy12112839 crossref_primary_10_3390_agriculture14020257 crossref_primary_10_1002_tpg2_20077 crossref_primary_10_1002_tpg2_70091 crossref_primary_10_1111_tpj_14097 crossref_primary_10_3390_agronomy14102214 crossref_primary_10_1002_tpg2_70096 crossref_primary_10_1186_s12864_019_5662_9 crossref_primary_10_1002_tpg2_70099 crossref_primary_10_1111_pbi_14236 crossref_primary_10_3389_fpls_2024_1460353 crossref_primary_10_3390_genes14122133 crossref_primary_10_1093_forestry_cpaf009 crossref_primary_10_1038_s41467_023_39534_x crossref_primary_10_1186_s12863_021_00995_y crossref_primary_10_3389_fpls_2022_1106164 crossref_primary_10_1007_s11103_022_01302_8 crossref_primary_10_3389_fpls_2023_1125672 crossref_primary_10_3389_fvets_2022_862414 crossref_primary_10_1093_hr_uhad243 crossref_primary_10_3389_fpls_2024_1486736 crossref_primary_10_1002_tpg2_20269 crossref_primary_10_3390_agronomy10030368 crossref_primary_10_3389_fpls_2022_999692 crossref_primary_10_3390_ijms232012520 crossref_primary_10_1007_s00122_021_03780_8 crossref_primary_10_1094_PDIS_11_19_2402_RE crossref_primary_10_3389_fpls_2024_1481282 crossref_primary_10_3390_cimb47030151 crossref_primary_10_1007_s00122_018_3077_7 crossref_primary_10_3390_genes15070950 crossref_primary_10_1007_s10681_022_03082_0 crossref_primary_10_1186_s12870_025_06646_z crossref_primary_10_3390_ijms26031126 crossref_primary_10_1111_pbi_14254 crossref_primary_10_1038_s41598_025_94175_y crossref_primary_10_3389_fpls_2023_1252777 crossref_primary_10_1007_s00122_024_04617_w crossref_primary_10_3390_plants11030364 crossref_primary_10_1093_pcp_pcaa166 crossref_primary_10_3389_fpls_2022_1014282 crossref_primary_10_1038_s41598_021_89276_3 crossref_primary_10_1002_csc2_21261 crossref_primary_10_3390_ijms23063341 crossref_primary_10_1111_pce_14135 crossref_primary_10_1007_s00438_019_01610_7 crossref_primary_10_1111_pbi_13171 crossref_primary_10_1016_j_gpb_2021_08_005 crossref_primary_10_1186_s12870_021_03127_x crossref_primary_10_1002_tpg2_20284 crossref_primary_10_1111_nph_15890 crossref_primary_10_3389_fgene_2021_664343 crossref_primary_10_3389_fpls_2022_1066752 crossref_primary_10_3835_plantgenome2017_09_0083 crossref_primary_10_1007_s00122_017_2987_0 crossref_primary_10_1371_journal_pcbi_1005357 crossref_primary_10_1016_j_biocon_2023_110377 crossref_primary_10_1093_hr_uhad212 crossref_primary_10_1111_pbi_13188 crossref_primary_10_3390_ani12091057 crossref_primary_10_1093_hr_uhac124 crossref_primary_10_1007_s00122_024_04596_y crossref_primary_10_1093_jxb_erad222 crossref_primary_10_3390_agronomy15040792 crossref_primary_10_1186_s12864_022_08676_5 crossref_primary_10_1007_s11032_023_01360_w crossref_primary_10_3390_plants13081084 crossref_primary_10_1038_s41598_021_83107_1 crossref_primary_10_1371_journal_pone_0219843 crossref_primary_10_3390_ani14192901 crossref_primary_10_3390_genes11111286 crossref_primary_10_1007_s10681_022_03129_2 crossref_primary_10_1016_j_molp_2022_03_009 crossref_primary_10_1094_PDIS_09_18_1669_RE crossref_primary_10_1094_PHYTO_06_22_0217_FI crossref_primary_10_1002_tpg2_20222 crossref_primary_10_1111_nph_18980 crossref_primary_10_1111_pbi_14447 crossref_primary_10_1111_tpj_15364 crossref_primary_10_3389_fpls_2022_1036064 crossref_primary_10_1007_s00122_025_04858_3 crossref_primary_10_1007_s00122_021_03956_2 crossref_primary_10_1093_hr_uhad270 crossref_primary_10_1186_s12870_022_03479_y crossref_primary_10_1038_s41467_020_18404_w crossref_primary_10_1016_j_stress_2025_100900 crossref_primary_10_1186_s12870_025_06620_9 crossref_primary_10_3390_genes11111298 crossref_primary_10_1002_tpg2_20456 crossref_primary_10_1111_ppl_13087 crossref_primary_10_1002_tpg2_20211 crossref_primary_10_1093_plcell_koab022 crossref_primary_10_1016_j_cpb_2020_100145 crossref_primary_10_1002_tpg2_20493 crossref_primary_10_2135_cropsci2015_10_0632 crossref_primary_10_1093_jxb_erad481 crossref_primary_10_1002_pld3_53 crossref_primary_10_1038_s41598_024_53462_w crossref_primary_10_1186_s13059_017_1328_6 crossref_primary_10_1093_hr_uhad021 crossref_primary_10_3389_fpls_2020_590740 crossref_primary_10_3390_ijms23126524 crossref_primary_10_1371_journal_pone_0223094 crossref_primary_10_1038_s41598_021_92837_1 crossref_primary_10_3390_ijms21239148 crossref_primary_10_1007_s10681_023_03215_z crossref_primary_10_1002_tpg2_20003 crossref_primary_10_1016_j_jgg_2022_12_001 crossref_primary_10_1038_s41437_023_00647_0 crossref_primary_10_1371_journal_pone_0262888 crossref_primary_10_1016_j_indcrop_2019_111877 crossref_primary_10_1002_tpg2_20243 crossref_primary_10_1002_tpg2_20485 crossref_primary_10_1038_s41598_020_69442_9 crossref_primary_10_1093_jxb_erab297 crossref_primary_10_1093_plphys_kiac593 crossref_primary_10_3389_fgene_2021_614087 crossref_primary_10_3390_genes14091815 crossref_primary_10_1016_j_jcs_2018_11_006 crossref_primary_10_1016_j_plantsci_2017_07_011 crossref_primary_10_3389_fpls_2017_01913 crossref_primary_10_1186_s12870_025_06775_5 crossref_primary_10_1534_g3_119_400811 crossref_primary_10_3390_genes13020225 crossref_primary_10_3390_plants13050588 crossref_primary_10_1038_s41598_017_11318_6 crossref_primary_10_1007_s11032_021_01257_6 crossref_primary_10_1038_s41588_021_00866_3 crossref_primary_10_3390_plants10030559 crossref_primary_10_1002_csc2_21058 crossref_primary_10_1007_s00122_023_04442_7 crossref_primary_10_1016_j_jafr_2025_102167 crossref_primary_10_1186_s12864_019_6275_z crossref_primary_10_1007_s00299_024_03269_w crossref_primary_10_1111_tpj_16760 crossref_primary_10_3390_plants13070940 crossref_primary_10_1186_s12864_023_09684_9 crossref_primary_10_3389_fpls_2022_939544 crossref_primary_10_3168_jds_2023_23462 crossref_primary_10_1111_tpj_16524 crossref_primary_10_1111_tpj_15437 crossref_primary_10_1016_j_psj_2019_12_068 crossref_primary_10_1007_s11032_022_01287_8 crossref_primary_10_1038_s41598_021_80996_0 crossref_primary_10_1038_s41598_024_71593_y crossref_primary_10_3389_fpls_2021_713667 crossref_primary_10_3390_su142114339 crossref_primary_10_1002_tpg2_20300 crossref_primary_10_1186_s12870_025_07039_y crossref_primary_10_1007_s00122_023_04281_6 crossref_primary_10_1016_j_postharvbio_2023_112577 crossref_primary_10_1016_j_ygeno_2023_110699 crossref_primary_10_1007_s00122_024_04815_6 crossref_primary_10_1038_s41598_021_01272_9 crossref_primary_10_1186_s12864_024_11174_5 crossref_primary_10_1186_s12870_017_1167_3 crossref_primary_10_1186_s12864_020_6717_7 crossref_primary_10_3390_plants12142659 crossref_primary_10_1186_s12915_025_02179_x crossref_primary_10_1186_s12864_024_11043_1 crossref_primary_10_1038_s41467_024_51032_2 crossref_primary_10_1016_j_jia_2024_07_026 crossref_primary_10_1038_s41598_021_93170_3 crossref_primary_10_1111_ppl_13606 crossref_primary_10_1007_s00122_024_04728_4 crossref_primary_10_1007_s11816_025_00969_x crossref_primary_10_3389_fgene_2021_715529 crossref_primary_10_1007_s00122_023_04424_9 crossref_primary_10_1002_ppp3_10513 crossref_primary_10_1038_s41598_024_55403_z crossref_primary_10_1093_nsr_nwaa277 crossref_primary_10_1093_genetics_iyac128 crossref_primary_10_1093_plcell_koad244 crossref_primary_10_1111_pbi_13206 crossref_primary_10_1186_s12711_023_00820_3 crossref_primary_10_1186_s12864_024_10156_x crossref_primary_10_3390_genes14061271 crossref_primary_10_1007_s11250_019_02170_z crossref_primary_10_1002_csc2_70107 crossref_primary_10_1186_s12864_020_6489_0 crossref_primary_10_1093_hr_uhae153 crossref_primary_10_3390_genes11121512 crossref_primary_10_3390_ijms21020394 crossref_primary_10_1007_s00122_020_03731_9 crossref_primary_10_3390_ijms21061928 crossref_primary_10_1007_s00122_024_04685_y crossref_primary_10_3390_plants11151989 crossref_primary_10_1016_j_indcrop_2022_115294 crossref_primary_10_3389_fvets_2022_1045589 crossref_primary_10_3389_fpls_2024_1356619 crossref_primary_10_1186_s12870_021_03183_3 crossref_primary_10_1007_s10722_024_02209_7 crossref_primary_10_3390_plants14121803 crossref_primary_10_1007_s11295_024_01660_y crossref_primary_10_3390_ani14131839 crossref_primary_10_1007_s00122_022_04168_y crossref_primary_10_3390_genes12122020 crossref_primary_10_3389_fpls_2019_01140 crossref_primary_10_3389_fpls_2019_00054 crossref_primary_10_3389_fpls_2024_1461631 crossref_primary_10_3390_agriculture11070667 crossref_primary_10_3389_fpls_2017_01039 crossref_primary_10_3389_fgene_2021_713575 crossref_primary_10_3389_fpls_2018_00611 crossref_primary_10_1111_pce_13577 crossref_primary_10_3389_fgene_2020_613217 crossref_primary_10_3389_fpls_2018_00610 crossref_primary_10_1186_s12864_025_11796_3 crossref_primary_10_1016_j_xplc_2024_101199 crossref_primary_10_1093_g3journal_jkab382 crossref_primary_10_1186_s12864_021_07391_x crossref_primary_10_3390_ani11071992 crossref_primary_10_3389_fpls_2021_644799 crossref_primary_10_3389_fgene_2025_1593395 crossref_primary_10_3389_fpls_2023_1270166 crossref_primary_10_1111_tpj_16967 crossref_primary_10_3389_fpls_2018_01982 crossref_primary_10_1016_j_scienta_2024_112882 crossref_primary_10_1093_jxb_eraa471 crossref_primary_10_3390_plants13192775 crossref_primary_10_1002_agg2_20437 crossref_primary_10_1002_bimj_202300130 crossref_primary_10_1534_g3_120_401602 crossref_primary_10_3390_jof10010086 crossref_primary_10_3390_plants13172520 crossref_primary_10_1186_s12864_022_08529_1 crossref_primary_10_1016_j_gene_2024_148801 crossref_primary_10_1002_csc2_70158 crossref_primary_10_1186_s12284_019_0309_7 crossref_primary_10_3389_fpls_2021_692205 crossref_primary_10_1007_s00122_021_03926_8 crossref_primary_10_3389_fpls_2021_768589 crossref_primary_10_3390_ijms23094960 crossref_primary_10_3390_math12131944 crossref_primary_10_3389_fpls_2021_673072 crossref_primary_10_1016_j_envexpbot_2023_105252 crossref_primary_10_1016_S2095_3119_19_62773_5 crossref_primary_10_1186_s13068_024_02489_2 crossref_primary_10_3389_fgene_2019_00189 crossref_primary_10_1038_s41598_021_83581_7 crossref_primary_10_1007_s00122_022_04111_1 crossref_primary_10_1007_s00122_023_04326_w crossref_primary_10_1038_s41598_021_91515_6 crossref_primary_10_3389_fgene_2022_849016 crossref_primary_10_1093_jxb_eraa490 crossref_primary_10_3389_fpls_2024_1412614 crossref_primary_10_1002_tpg2_20528 crossref_primary_10_1002_tpg2_20529 crossref_primary_10_1007_s11295_022_01570_x crossref_primary_10_1007_s11427_022_2198_5 crossref_primary_10_1016_j_plantsci_2025_112542 crossref_primary_10_1186_s12870_022_03617_6 crossref_primary_10_1007_s00122_023_04315_z crossref_primary_10_2135_cropsci2017_07_0423 crossref_primary_10_3389_fgene_2022_940650 crossref_primary_10_1007_s10681_021_02933_6 crossref_primary_10_3389_fpls_2022_883209 crossref_primary_10_3389_fpls_2021_632788 crossref_primary_10_3390_agriculture13020267 crossref_primary_10_1093_jxb_eraa480 crossref_primary_10_34133_2022_9768502 crossref_primary_10_3390_ijms22116119 crossref_primary_10_1007_s44187_024_00160_1 crossref_primary_10_1002_tpg2_20518 crossref_primary_10_1093_gigascience_giy154 crossref_primary_10_3390_ijms231810575 crossref_primary_10_3390_agronomy12081814 crossref_primary_10_1002_tpg2_20515 crossref_primary_10_1007_s11033_023_08309_4 crossref_primary_10_1007_s00122_024_04708_8 crossref_primary_10_1007_s10681_021_02922_9 crossref_primary_10_1007_s00122_022_04075_2 crossref_primary_10_1002_ppj2_20062 crossref_primary_10_1016_j_animal_2022_100672 crossref_primary_10_3389_fpls_2025_1660789 crossref_primary_10_3390_plants10081722 crossref_primary_10_1007_s12298_021_01060_9 crossref_primary_10_1007_s12042_019_09245_z crossref_primary_10_3390_ijms231911432 crossref_primary_10_3389_fpls_2021_690059 crossref_primary_10_3389_fpls_2022_931423 crossref_primary_10_1186_s12870_023_04489_0 crossref_primary_10_1038_s41598_019_42940_1 crossref_primary_10_3389_fpls_2023_1271849 crossref_primary_10_1093_g3journal_jkae240 crossref_primary_10_3390_agronomy13071863 crossref_primary_10_1007_s00122_022_04109_9 crossref_primary_10_1002_pei3_70016 crossref_primary_10_1007_s00425_024_04465_4 crossref_primary_10_1016_j_pbi_2024_102670 crossref_primary_10_1111_age_13468 crossref_primary_10_1007_s00122_021_03841_y crossref_primary_10_1007_s10681_017_2077_z crossref_primary_10_1016_j_pbi_2023_102399 crossref_primary_10_3389_fpls_2022_844450 crossref_primary_10_1007_s00299_024_03230_x crossref_primary_10_1016_j_envexpbot_2022_104973 crossref_primary_10_1007_s10681_024_03296_4 crossref_primary_10_1093_g3journal_jkac294 crossref_primary_10_3389_fgene_2020_00213 crossref_primary_10_2135_cropsci2017_03_0160 crossref_primary_10_3389_fpls_2021_568995 crossref_primary_10_3390_plants10102063 crossref_primary_10_1007_s10722_022_01515_2 crossref_primary_10_3389_fgene_2023_1195566 crossref_primary_10_1038_s41598_023_44046_1 crossref_primary_10_3389_fsufs_2024_1389970 crossref_primary_10_3389_fgene_2019_00302 crossref_primary_10_3390_genes16020193 crossref_primary_10_1016_j_plaphy_2025_110539 crossref_primary_10_3390_plants11172289 crossref_primary_10_1007_s10681_018_2176_5 crossref_primary_10_1016_j_ygeno_2022_110358 crossref_primary_10_3389_fpls_2023_1294507 crossref_primary_10_1007_s00122_024_04665_2 crossref_primary_10_1093_g3journal_jkad174 crossref_primary_10_3390_ijms20215470 crossref_primary_10_3390_plants8100432 crossref_primary_10_3390_agronomy13092345 crossref_primary_10_3390_genes13081430 crossref_primary_10_1111_gcb_16560 crossref_primary_10_1093_g3journal_jkaf113 crossref_primary_10_1371_journal_pone_0208217 crossref_primary_10_1111_eea_13296 crossref_primary_10_1371_journal_pone_0218263 crossref_primary_10_1186_s12284_019_0351_5 crossref_primary_10_1007_s00438_025_02228_8 crossref_primary_10_1099_mgen_0_001179 crossref_primary_10_3389_fpls_2018_01311 crossref_primary_10_3389_fpls_2023_1051994 crossref_primary_10_3390_genes15091177 crossref_primary_10_3389_fpls_2020_609209 crossref_primary_10_1007_s00122_023_04274_5 crossref_primary_10_3389_fpls_2023_1230068 crossref_primary_10_3389_fpls_2022_1009244 crossref_primary_10_1093_molbev_msz158 crossref_primary_10_3390_genes16060682 crossref_primary_10_3389_fpls_2021_777028 crossref_primary_10_1111_ppa_14031 crossref_primary_10_1007_s00425_022_03827_0 crossref_primary_10_1007_s10681_017_1970_9 crossref_primary_10_1016_j_cj_2024_10_004 crossref_primary_10_1016_j_jcs_2025_104189 crossref_primary_10_3389_fpls_2019_01794 crossref_primary_10_1093_genetics_iyab087 crossref_primary_10_1016_j_cpb_2024_100401 crossref_primary_10_1186_s12864_021_07874_x crossref_primary_10_3390_agronomy12102289 crossref_primary_10_3390_ani13223516 crossref_primary_10_3390_ani11071927 crossref_primary_10_3389_fpls_2023_1090163 crossref_primary_10_1002_agj2_21528 crossref_primary_10_1007_s00122_025_04983_z crossref_primary_10_3389_fpls_2020_607213 crossref_primary_10_1016_j_gene_2024_148891 crossref_primary_10_1016_j_molp_2020_03_003 crossref_primary_10_1002_ppj2_20092 crossref_primary_10_1007_s00122_024_04569_1 crossref_primary_10_1038_s41477_025_02007_8 crossref_primary_10_3389_fpls_2023_1340767 crossref_primary_10_1007_s00438_022_01986_z crossref_primary_10_1038_s41598_021_87182_2 crossref_primary_10_1186_s13059_020_02052_w crossref_primary_10_3389_fgene_2025_1650836 crossref_primary_10_1111_age_13032 crossref_primary_10_1126_science_ads5999 crossref_primary_10_1093_g3journal_jkac016 crossref_primary_10_1186_s12864_019_6224_x crossref_primary_10_1111_jipb_13202 crossref_primary_10_1111_asj_13850 crossref_primary_10_3390_genes11060689 crossref_primary_10_1111_pbr_13172 crossref_primary_10_1038_s41438_020_00398_7 crossref_primary_10_3389_fpls_2018_00271 crossref_primary_10_3390_plants9091056 crossref_primary_10_1111_tpj_13828 crossref_primary_10_1016_j_vas_2024_100382 crossref_primary_10_1186_s12870_024_05754_6 crossref_primary_10_3389_fpls_2022_1048860 crossref_primary_10_1111_age_13001 crossref_primary_10_1007_s11105_025_01596_0 crossref_primary_10_3389_fpls_2021_696423 crossref_primary_10_3389_fgene_2022_853114 crossref_primary_10_3390_genes14071447 crossref_primary_10_1007_s11427_024_2578_6 crossref_primary_10_1016_j_scienta_2022_111389 crossref_primary_10_1094_PDIS_05_24_0990_RE crossref_primary_10_1002_tpg2_70005 crossref_primary_10_1007_s11105_025_01574_6 crossref_primary_10_1016_j_aquaculture_2022_738630 crossref_primary_10_3389_fpls_2023_1092584 crossref_primary_10_3390_plants13070975 crossref_primary_10_3390_plants13070977 crossref_primary_10_1007_s11032_021_01272_7 crossref_primary_10_3389_fgene_2023_1221148 crossref_primary_10_1111_age_13493 crossref_primary_10_1002_csc2_20762 crossref_primary_10_1139_gen_2019_0098 crossref_primary_10_1002_aro2_14 crossref_primary_10_1038_s41437_020_00372_y crossref_primary_10_3389_fpls_2019_01337 crossref_primary_10_1016_j_phytochem_2023_113957 crossref_primary_10_3389_fpls_2023_1196486 crossref_primary_10_1002_jsfa_12721 crossref_primary_10_1371_journal_pone_0221603 crossref_primary_10_3390_ijms21062129 crossref_primary_10_3389_fpls_2023_1255763 crossref_primary_10_1186_s12284_024_00739_3 crossref_primary_10_1007_s00122_019_03431_z crossref_primary_10_3389_fpls_2018_00052 crossref_primary_10_1534_genetics_118_301487 crossref_primary_10_3389_fpls_2018_01146 crossref_primary_10_1111_nph_70570 crossref_primary_10_1111_pbr_13247 crossref_primary_10_1186_s12920_020_0667_4 crossref_primary_10_3389_fpls_2021_624156 crossref_primary_10_3390_cells11152457 crossref_primary_10_1016_j_gene_2024_149140 crossref_primary_10_3389_fgene_2025_1596192 crossref_primary_10_1017_S0960258521000064 crossref_primary_10_1093_evolut_qpad004 crossref_primary_10_1007_s00018_021_03868_w crossref_primary_10_1186_s12870_025_06614_7 crossref_primary_10_1007_s42976_024_00538_y crossref_primary_10_1111_age_13503 crossref_primary_10_1007_s11427_022_2158_7 crossref_primary_10_1007_s00122_023_04352_8 crossref_primary_10_3390_plants12081610 crossref_primary_10_1186_s13040_021_00247_w crossref_primary_10_3389_fagro_2020_590374 crossref_primary_10_3390_genes15121521 crossref_primary_10_1534_g3_118_200700 crossref_primary_10_3390_agronomy11081646 crossref_primary_10_3390_plants9040503 crossref_primary_10_1371_journal_pgen_1010437 crossref_primary_10_3389_fpls_2021_647043 crossref_primary_10_1186_s12870_021_03155_7 crossref_primary_10_1111_pbr_13010 crossref_primary_10_1016_j_hpj_2023_12_015 crossref_primary_10_3389_fpls_2023_1107718 crossref_primary_10_3390_agronomy9090479 crossref_primary_10_1111_pbr_70032 crossref_primary_10_1111_ppl_14255 crossref_primary_10_3389_fpls_2024_1463121 crossref_primary_10_1007_s11032_020_01179_9 crossref_primary_10_1111_eea_13202 crossref_primary_10_1038_s41598_024_83007_0 crossref_primary_10_3389_fpls_2023_1163683 crossref_primary_10_3389_fpls_2025_1621916 crossref_primary_10_3835_plantgenome2017_12_0114 crossref_primary_10_1007_s00122_023_04245_w crossref_primary_10_1186_s12864_020_6538_8 crossref_primary_10_3390_agronomy8060095 crossref_primary_10_1007_s00122_022_04050_x crossref_primary_10_1111_pce_15186 crossref_primary_10_3389_fpls_2023_1229495 crossref_primary_10_3390_genes11111387 crossref_primary_10_1111_pbr_13262 crossref_primary_10_1007_s12042_024_09370_4 crossref_primary_10_3389_fpls_2022_866300 crossref_primary_10_1186_s12864_022_08793_1 crossref_primary_10_3389_fpls_2023_1251157 crossref_primary_10_1007_s00438_022_01882_6 crossref_primary_10_3389_fpls_2022_1064059 crossref_primary_10_1111_ppl_13180 crossref_primary_10_3390_ijms26178205 crossref_primary_10_3390_f13020332 crossref_primary_10_3168_jds_2020_18725 crossref_primary_10_1534_g3_118_200913 crossref_primary_10_1128_mSphere_00128_20 crossref_primary_10_1007_s11032_023_01378_0 crossref_primary_10_3389_fpls_2022_838088 crossref_primary_10_3390_ijms25116234 crossref_primary_10_1007_s13237_025_00584_9 crossref_primary_10_1073_pnas_2012087118 crossref_primary_10_1186_s12870_024_05151_z crossref_primary_10_1094_PDIS_01_24_0162_RE crossref_primary_10_3390_ijms19103011 crossref_primary_10_3389_fpls_2022_995609 crossref_primary_10_3390_ijms23179755 crossref_primary_10_3390_cancers17060982 crossref_primary_10_1093_g3journal_jkae161 crossref_primary_10_1007_s00425_021_03814_x crossref_primary_10_1111_ppl_14440 crossref_primary_10_1016_j_jgg_2023_01_011 crossref_primary_10_3389_fgene_2021_799681 crossref_primary_10_1007_s00438_020_01690_w crossref_primary_10_1186_s12870_019_2000_y crossref_primary_10_3390_agronomy13051396 crossref_primary_10_1186_s12870_021_03146_8 crossref_primary_10_1094_PHYTO_04_21_0160_R crossref_primary_10_1186_s12864_024_10545_2 crossref_primary_10_1371_journal_pgen_1009495 crossref_primary_10_1111_pbi_13080 crossref_primary_10_1186_s12870_018_1293_6 crossref_primary_10_1002_advs_202412587 crossref_primary_10_1007_s00122_017_2951_z crossref_primary_10_3390_ijms19103237 crossref_primary_10_1038_s41598_020_62034_7 crossref_primary_10_1002_tpg2_20179 crossref_primary_10_1186_s12870_021_03111_5 crossref_primary_10_1016_j_plaphy_2025_109759 crossref_primary_10_1016_j_ygeno_2022_110406 crossref_primary_10_3389_fpls_2024_1319938 crossref_primary_10_3390_ijms242015300 crossref_primary_10_3390_ijms20153667 crossref_primary_10_1111_tpj_16387 crossref_primary_10_3389_fgene_2021_799664 crossref_primary_10_3390_genes11121395 crossref_primary_10_1093_jxb_eraf142 crossref_primary_10_1186_s12870_024_04976_y crossref_primary_10_3389_fpls_2020_598509 crossref_primary_10_3389_fpls_2021_671323 crossref_primary_10_3389_fgene_2022_1060304 crossref_primary_10_1007_s00122_021_03820_3 crossref_primary_10_1007_s42729_025_02504_x crossref_primary_10_1038_s41477_017_0007_7 crossref_primary_10_1007_s13205_024_03985_w crossref_primary_10_1016_j_jia_2024_11_014 crossref_primary_10_3389_fgene_2024_1377223 crossref_primary_10_3389_fpls_2024_1297096 crossref_primary_10_1007_s10722_022_01488_2 crossref_primary_10_3390_agriculture15020124 crossref_primary_10_1007_s00122_021_03988_8 crossref_primary_10_1016_j_cpb_2025_100464 crossref_primary_10_1093_g3journal_jkaf024 crossref_primary_10_1093_hr_uhac205 crossref_primary_10_1002_tpg2_20391 crossref_primary_10_3389_fpls_2024_1442008 crossref_primary_10_1007_s00122_022_04090_3 crossref_primary_10_1371_journal_pone_0261461 crossref_primary_10_1186_s13059_025_03768_3 crossref_primary_10_1007_s00122_024_04701_1 crossref_primary_10_3390_genes13112002 crossref_primary_10_1002_csc2_21360 crossref_primary_10_1007_s00122_025_04924_w crossref_primary_10_1111_pce_13189 crossref_primary_10_1002_tpg2_20146 crossref_primary_10_1007_s13353_022_00696_x crossref_primary_10_1038_s41588_019_0401_3 crossref_primary_10_1007_s00122_020_03762_2 crossref_primary_10_1093_plcell_koab134 crossref_primary_10_1093_plcell_koad314 crossref_primary_10_1007_s10722_024_02050_y crossref_primary_10_3389_fvets_2022_932034 crossref_primary_10_1186_s12284_024_00700_4 crossref_primary_10_1111_tpj_17229 crossref_primary_10_3389_fgene_2022_819849 crossref_primary_10_1094_PHYTO_11_21_0465_R crossref_primary_10_3389_fgene_2022_934757 crossref_primary_10_3389_fpls_2021_698116 crossref_primary_10_1016_j_lwt_2024_116301 crossref_primary_10_1002_tpg2_20136 crossref_primary_10_1007_s10681_025_03494_8 crossref_primary_10_1093_hr_uhad117 crossref_primary_10_1007_s00122_023_04421_y crossref_primary_10_1016_j_envexpbot_2022_105034 crossref_primary_10_1111_pbi_13284 crossref_primary_10_1002_tpg2_20373 crossref_primary_10_3390_ijms20020359 crossref_primary_10_1111_tpj_16583 crossref_primary_10_1093_jxb_erac236 crossref_primary_10_3168_jds_2022_21923 crossref_primary_10_1016_j_gpb_2020_06_006 crossref_primary_10_1007_s00122_020_03709_7 crossref_primary_10_3390_nu15204398 crossref_primary_10_1016_j_jia_2025_06_016 crossref_primary_10_34133_plantphenomics_0270 crossref_primary_10_1007_s10681_020_02707_6 crossref_primary_10_3389_fpls_2024_1458179 crossref_primary_10_1002_tpg2_20161 crossref_primary_10_1007_s10142_023_01261_3 crossref_primary_10_1186_s12870_020_02804_7 crossref_primary_10_3390_plants12234044 crossref_primary_10_1016_j_jplph_2025_154494 crossref_primary_10_3389_fgene_2023_1168150 crossref_primary_10_1186_s12870_024_05805_y crossref_primary_10_3390_ijms23105538 crossref_primary_10_1007_s11295_018_1305_6 crossref_primary_10_1007_s11103_024_01489_y crossref_primary_10_1093_plphys_kiae611 crossref_primary_10_1016_j_plantsci_2017_12_004 crossref_primary_10_1007_s00184_020_00784_0 crossref_primary_10_1111_pbi_13062 crossref_primary_10_3390_ijms252111836 crossref_primary_10_1093_jas_skab210 crossref_primary_10_1016_j_smallrumres_2023_107053 crossref_primary_10_3390_ani11082259 crossref_primary_10_1186_s40104_019_0322_0 crossref_primary_10_1186_s12864_019_5992_7 crossref_primary_10_1007_s11104_017_3479_3 crossref_primary_10_1111_pce_15322 crossref_primary_10_1186_s12870_023_04306_8 crossref_primary_10_1002_tpg2_20102 crossref_primary_10_1111_tpj_70250 crossref_primary_10_1093_hr_uhad169 crossref_primary_10_1002_tpg2_20105 crossref_primary_10_1111_age_12851 crossref_primary_10_3390_agronomy13102538 crossref_primary_10_1111_pbi_70011 crossref_primary_10_1016_j_pce_2025_104037 crossref_primary_10_1007_s10722_021_01293_3 crossref_primary_10_7717_peerj_13128 crossref_primary_10_1093_g3journal_jkaf090 crossref_primary_10_1111_tpj_16337 crossref_primary_10_1007_s00122_023_04256_7 crossref_primary_10_1007_s00122_023_04487_8 crossref_primary_10_1007_s11105_023_01408_3 crossref_primary_10_1007_s00122_020_03640_x crossref_primary_10_1093_hr_uhac069 crossref_primary_10_1111_rssb_12495 crossref_primary_10_1038_ng_3975 crossref_primary_10_3389_fpls_2021_699486 crossref_primary_10_1007_s42976_023_00472_5 crossref_primary_10_1093_plphys_kiab390 crossref_primary_10_3389_fpls_2023_1229457 crossref_primary_10_1002_bies_202100109 crossref_primary_10_1007_s10681_018_2215_2 crossref_primary_10_1007_s00122_020_03707_9 crossref_primary_10_1016_j_jia_2023_02_040 crossref_primary_10_3390_genes13020351 crossref_primary_10_3390_plants12030419 crossref_primary_10_1007_s00438_019_01631_2 crossref_primary_10_1007_s10681_021_02783_2 crossref_primary_10_3389_fpls_2021_763618 crossref_primary_10_3389_fpls_2023_1179357 crossref_primary_10_3389_fpls_2020_00861 crossref_primary_10_3389_fpls_2022_883280 crossref_primary_10_1186_s12864_017_3843_y crossref_primary_10_1002_tpg2_20363 crossref_primary_10_1186_s12864_020_6616_y crossref_primary_10_3389_fvets_2024_1506471 crossref_primary_10_1007_s11105_025_01559_5 crossref_primary_10_3390_genes13122297 crossref_primary_10_1038_s41467_022_35621_7 crossref_primary_10_1007_s00122_022_04104_0 crossref_primary_10_1007_s00122_025_04857_4 crossref_primary_10_1093_jxb_eraa084 crossref_primary_10_1007_s11103_020_01111_x crossref_primary_10_3835_plantgenome2017_01_0001 crossref_primary_10_1007_s00122_018_3108_4 crossref_primary_10_1111_pbi_13023 crossref_primary_10_1002_tpg2_20115 crossref_primary_10_1002_tpg2_20110 crossref_primary_10_1007_s10658_020_02172_w crossref_primary_10_1093_pcp_pcaa019 crossref_primary_10_3389_fgene_2021_724533 crossref_primary_10_1007_s11816_025_00983_z |
| Cites_doi | 10.1038/ng.2876 10.1105/tpc.11.5.949 10.1086/519795 10.1093/nar/gkl913 10.1186/gb-2013-14-6-r55 10.1375/twin.13.6.517 10.1186/1471-2156-13-100 10.1038/nrg2813 10.1534/genetics.114.164285 10.1371/journal.pgen.0030004 10.1371/journal.pgen.0020190 10.1371/journal.pgen.1000686 10.1038/ng.548 10.1371/journal.pgen.1003246 10.3168/jds.2007-0980 10.1038/nmeth.1681 10.1186/s12915-014-0073-5 10.1038/ng.746 10.1534/genetics.107.080101 10.1038/ng.608 10.1038/nrg2554 10.1038/ng1847 10.1038/ng.2410 10.1038/srep06874 10.1038/nature08800 10.1038/90135 10.1038/ng.2310 10.1038/ng1702 10.1038/ng.2314 10.1038/nmeth.2037 10.1093/bioinformatics/bts444 10.1038/ng0508-491 10.1038/ng.546 10.1038/ng1337 10.1038/ng.2456 10.1038/ng.3190 10.1093/bioinformatics/btm108 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2016 Public Library of Science 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet 12(2): e1005767. doi:10.1371/journal.pgen.1005767 |
| Copyright_xml | – notice: COPYRIGHT 2016 Public Library of Science – notice: 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet 12(2): e1005767. doi:10.1371/journal.pgen.1005767 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1005767 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Canada (Gale in Context) Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Iterative Usage of Fixed and Random Effect Models for GWAS |
| EISSN | 1553-7404 |
| ExternalDocumentID | 1773769578 oai_doaj_org_article_fa4334b38e86407ea113a2f0ca8ca9fb PMC4734661 A479538945 26828793 10_1371_journal_pgen_1005767 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ 7X8 PUEGO 5PM AAPBV ABPTK PQEST PQUKI |
| ID | FETCH-LOGICAL-c764t-e4e4c3476685aa1147350bbff57a30dd538c522647671d3628b33ccb0f687aa93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 852 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372554100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Sun Jul 02 11:04:36 EDT 2023 Tue Oct 14 18:56:03 EDT 2025 Tue Nov 04 01:40:44 EST 2025 Fri Sep 05 12:59:27 EDT 2025 Tue Nov 11 10:14:25 EST 2025 Tue Nov 04 17:46:57 EST 2025 Thu Nov 13 14:50:14 EST 2025 Thu Nov 13 15:46:33 EST 2025 Thu Nov 13 15:52:13 EST 2025 Thu May 22 21:23:39 EDT 2025 Wed Feb 19 02:33:57 EST 2025 Sat Nov 29 01:34:19 EST 2025 Tue Nov 18 21:46:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c764t-e4e4c3476685aa1147350bbff57a30dd538c522647671d3628b33ccb0f687aa93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: ZZ BF ESB. Performed the experiments: XL. Analyzed the data: XL MH. Contributed reagents/materials/analysis tools: XL ZZ. Wrote the paper: ZZ XL. Supervised the design of the study: ZZ BF ESB. The authors have declared that no competing interests exist. |
| OpenAccessLink | https://doaj.org/article/fa4334b38e86407ea113a2f0ca8ca9fb |
| PMID | 26828793 |
| PQID | 1762347272 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1773769578 doaj_primary_oai_doaj_org_article_fa4334b38e86407ea113a2f0ca8ca9fb pubmedcentral_primary_oai_pubmedcentral_nih_gov_4734661 proquest_miscellaneous_1762347272 gale_infotracmisc_A479538945 gale_infotracacademiconefile_A479538945 gale_incontextgauss_ISR_A479538945 gale_incontextgauss_ISN_A479538945 gale_incontextgauss_IOV_A479538945 gale_healthsolutions_A479538945 pubmed_primary_26828793 crossref_primary_10_1371_journal_pgen_1005767 crossref_citationtrail_10_1371_journal_pgen_1005767 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-2-1 2016-Feb 20160201 2016-02-01 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-2-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2016 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | D Reich (ref12) 2008 PM Visscher (ref4) 2010; 13 J Marchini (ref5) 2004; 36 Q Wang (ref24) 2014 HHR Neves (ref30) 2012; 13 AL Price (ref8) 2006; 38 J Yang (ref1) 2010; 42 C Widmer (ref37) 2014; 4 Q Lan (ref27) 2012; 44 G McVean (ref13) 2009; 5 MC Romay (ref29) 2013; 14 PM VanRaden (ref26) 2008; 91 V Segura (ref25) 2012 D Altshuler (ref41) 2010; 476 M Li (ref22) 2014; 12 SJ Larsson (ref11) 2013; 9 HM Kang (ref16) 2010; 42 J Listgarten (ref23) 2012 SD Michaels (ref32) 1999; 11 GR Svishcheva (ref20) 2012 B Fan (ref31) 2011; 6 F Tian (ref2) 2011; 43 AE Lipka (ref42) 2012; 28 D Welter (ref28) 2014 AL Price (ref7) 2010; 11 HM Kang (ref15) 2008; 178 X Zhou (ref18) 2012 B Bulik-Sullivan (ref36) 2015 S Atwell (ref21) 2010; 465 J Yu (ref9) 2006; 38 Z Zhang (ref17) 2010; 42 S Purcell (ref39) 2007; 81 P Loh (ref35) 2014; 47 C Lippert (ref19) 2011 J Yang (ref6) 2014; 46 N Patterson (ref34) 2006; 2 G Tucker (ref33) 2014 K Zhao (ref14) 2007; 3 KA Frazer (ref3) 2009; 10 JM Thornsberry (ref10) 2001; 28 YS Aulchenko (ref40) 2007; 23 T Kulikova (ref38) 2007; 35 26991120 - PLoS Genet. 2016 Mar;12(3):e1005957 |
| References_xml | – volume: 46 start-page: 100 year: 2014 ident: ref6 article-title: Advantages and pitfalls in the application of mixed-model association methods publication-title: Nat Genet doi: 10.1038/ng.2876 – volume: 11 start-page: 949 year: 1999 ident: ref32 article-title: FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering publication-title: Plant Cell doi: 10.1105/tpc.11.5.949 – volume: 6 year: 2011 ident: ref31 article-title: Genome-wide association study identifies loci for body composition and structural soundness traits in pigs publication-title: PLoS One – volume: 81 start-page: 559 year: 2007 ident: ref39 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 35 year: 2007 ident: ref38 article-title: EMBL Nucleotide Sequence Database in 2006 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl913 – volume: 14 start-page: R55 year: 2013 ident: ref29 article-title: Comprehensive genotyping of the USA national maize inbred seed bank publication-title: Genome Biol doi: 10.1186/gb-2013-14-6-r55 – volume: 13 start-page: 517 year: 2010 ident: ref4 article-title: A commentary on “common SNPs explain a large proportion of the heritability for human height” by Yang publication-title: Twin Res Hum Genet doi: 10.1375/twin.13.6.517 – volume: 13 start-page: 100 year: 2012 ident: ref30 article-title: Queiroz S a. A comparison of statistical methods for genomic selection in a mice population publication-title: BMC Genet doi: 10.1186/1471-2156-13-100 – volume: 11 start-page: 459 year: 2010 ident: ref7 article-title: New approaches to population stratification in genome-wide association studies publication-title: Nat Rev Genet doi: 10.1038/nrg2813 – start-page: 1045 year: 2014 ident: ref33 article-title: Improving the power of GWAS and avoiding confounding from population stratification with PC-select publication-title: Genetics doi: 10.1534/genetics.114.164285 – volume: 3 start-page: 0071 year: 2007 ident: ref14 article-title: An Arabidopsis example of association mapping in structured samples publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030004 – volume: 2 start-page: 2074 year: 2006 ident: ref34 article-title: Population structure and eigenanalysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020190 – volume: 5 year: 2009 ident: ref13 article-title: A genealogical interpretation of principal components analysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000686 – volume: 42 start-page: 348 year: 2010 ident: ref16 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng.548 – volume: 476 start-page: 1061 year: 2010 ident: ref41 article-title: A map of human genome variation from population scale sequencing publication-title: Nature – volume: 9 year: 2013 ident: ref11 article-title: Lessons from Dwarf8 on the Strengths and Weaknesses of Structured Association Mapping publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003246 – volume: 91 start-page: 4414 year: 2008 ident: ref26 article-title: Efficient methods to compute genomic predictions publication-title: J Dairy Sci doi: 10.3168/jds.2007-0980 – start-page: 42 year: 2014 ident: ref28 article-title: The NHGRI GWAS Catalog, a curated resource of SNP-trait associations publication-title: Nucleic Acids Res – start-page: 833 year: 2011 ident: ref19 article-title: FaST linear mixed models for genome-wide association studies publication-title: Nature Methods doi: 10.1038/nmeth.1681 – year: 2015 ident: ref36 article-title: LD Score Regression Distinguishes Confounding from Polygenicity in Genome-Wide Association Studies [Internet] publication-title: Nature Genetics – volume: 12 start-page: 73 year: 2014 ident: ref22 article-title: Enrichment of statistical power for genome-wide association studies publication-title: BMC Biol doi: 10.1186/s12915-014-0073-5 – volume: 43 start-page: 159 year: 2011 ident: ref2 article-title: Genome-wide association study of leaf architecture in the maize nested association mapping population publication-title: Nat Genet doi: 10.1038/ng.746 – volume: 178 start-page: 1709 year: 2008 ident: ref15 article-title: Efficient control of population structure in model organism association mapping publication-title: Genetics doi: 10.1534/genetics.107.080101 – volume: 42 start-page: 565 year: 2010 ident: ref1 article-title: Common {SNPs} explain a large proportion of the heritability for human height publication-title: Nat Gen doi: 10.1038/ng.608 – volume: 10 start-page: 241 year: 2009 ident: ref3 article-title: Human genetic variation and its contribution to complex traits publication-title: Nat Rev Genet doi: 10.1038/nrg2554 – volume: 38 start-page: 904 year: 2006 ident: ref8 article-title: Principal components analysis corrects for stratification in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng1847 – start-page: 1166 year: 2012 ident: ref20 article-title: Rapid variance components–based method for whole-genome association analysis publication-title: Nature Genetics doi: 10.1038/ng.2410 – volume: 4 start-page: 6874 year: 2014 ident: ref37 article-title: Further improvements to linear mixed models for genome-wide association studies publication-title: Sci Rep doi: 10.1038/srep06874 – volume: 465 start-page: 627 year: 2010 ident: ref21 article-title: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines publication-title: Nature doi: 10.1038/nature08800 – volume: 28 start-page: 286 year: 2001 ident: ref10 article-title: Dwarf8 polymorphisms associate with variation in flowering time publication-title: Nat Genet doi: 10.1038/90135 – year: 2014 ident: ref24 article-title: A super powerful method for genome wide association study publication-title: PLoS One – start-page: 821 year: 2012 ident: ref18 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nature Genetics doi: 10.1038/ng.2310 – volume: 38 start-page: 203 year: 2006 ident: ref9 article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness publication-title: Nat Genet doi: 10.1038/ng1702 – start-page: 825 year: 2012 ident: ref25 article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations publication-title: Nature Genetics doi: 10.1038/ng.2314 – start-page: 525 year: 2012 ident: ref23 article-title: Improved linear mixed models for genome-wide association studies publication-title: Nature Methods doi: 10.1038/nmeth.2037 – volume: 28 start-page: 2397 year: 2012 ident: ref42 article-title: GAPIT: genome association and prediction integrated tool publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts444 – start-page: 491 year: 2008 ident: ref12 article-title: Principal component analysis of genetic data publication-title: Nature genetics doi: 10.1038/ng0508-491 – volume: 42 start-page: 355 year: 2010 ident: ref17 article-title: Mixed linear model approach adapted for genome-wide association studies publication-title: Nat Genet. Nature Publishing Group doi: 10.1038/ng.546 – volume: 36 start-page: 512 year: 2004 ident: ref5 article-title: The effects of human population structure on large genetic association studies publication-title: Nat Genet doi: 10.1038/ng1337 – volume: 44 start-page: 1330 year: 2012 ident: ref27 article-title: Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia publication-title: Nat Genet doi: 10.1038/ng.2456 – volume: 47 start-page: 284 year: 2014 ident: ref35 article-title: Efficient Bayesian mixed model analysis increases association power in large cohorts publication-title: Nat Genet doi: 10.1038/ng.3190 – volume: 23 start-page: 1294 year: 2007 ident: ref40 article-title: GenABEL: an R library for genome-wide association analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm108 – reference: 26991120 - PLoS Genet. 2016 Mar;12(3):e1005957 |
| SSID | ssj0035897 |
| Score | 2.6736739 |
| Snippet | False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that... False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1005767 |
| SubjectTerms | Arabidopsis - genetics Big Data Biology and Life Sciences Datasets Flowers - genetics Flowers - physiology Genes, Plant Genetic Loci Genome-wide association studies Genome-Wide Association Study Genomes Genotype & phenotype Humans Linear models (Statistics) Lung cancer Medicine and Health Sciences Models, Genetic Physical Sciences Population Power Quantitative Trait, Heritable Research and Analysis Methods Software Species Specificity Statistical methods Studies |
| SummonAdditionalLinks | – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgAYkL39BAAYOQOAWysRPHx4K6UKlaVoWW3ix_wkppsmp2Efx7xo53aSoqyiWH5Fly3tjjsTx-g9Crgti8zCVLjRmrlBaZTSvY9KQq58aUzOVZENM52mfTaXV8zGd_NornTvAJG7-NnL5ZAKH-TB8CZHYVXctJWfoUrslsf-15SVFxFq_HXdRysPwElf6NLx4t6rb7W6B5Pl_yzAI0uf2_Xb-DbsVQE-_0Y-MuumKbe-hGX3zy131U7wVBZfB2-NBnl-HW4cn8pzVYNgYfwKM9wb24MfYV0-oOQ4CLZ76smlvVAbUbBCigv_iDbdoTm36dG4vPmBzHPMUH6HCy--X9xzTWXkg1K-kytdRSTSgDkgspYdPESJEp5VzBJMmMAT-pfegGCDY2sApWihCtVebKiknJyUM0atrGbiGsnIKtqitUxTUlOVdOM62UAj9cstyQBJG1SYSOwuS-PkYtwmkbgw1KT5jwPIrIY4LSTatFL8zxD_w7b-0N1stqhxdgMBFnqXCSEkIVqWzlDzgt_DiRucu0rLTkTiXouR8ror-junEOYocyDoxwWiToZUB4aY3G5-58k6uuE3ufji4B-jy9DOhgAHodQa4FzrSMlyqAea_rNUBuD5DgRfTg85Yf_mvqOjFmDNYeDg49QS_WU0L4Vj4rr7HtymMgeKb-KD9Bj_opsuE3L30pBQ7WZYPJMzDA8Esz_x70zWGsUQgbH1_cpSfoJgSuMXt-G42Wpyv7FF3XP5bz7vRZcAq_AUBCYWw priority: 102 providerName: Public Library of Science |
| Title | Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26828793 https://www.proquest.com/docview/1762347272 https://pubmed.ncbi.nlm.nih.gov/PMC4734661 https://doaj.org/article/fa4334b38e86407ea113a2f0ca8ca9fb http://dx.doi.org/10.1371/journal.pgen.1005767 |
| Volume | 12 |
| WOSCitedRecordID | wos000372554100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BAIkL4rM1lLAgJE6mtnfttY8tSiBSCVagpZys_YRIqR3VCYJ_z4ztRDFCag9c9pB9luV5k9lZ7ewbQl7HzEZJJIVvTKh8HgfWT2HT46soMyYRLgoaMZ2zEzGdpufnWb7T6gtrwlp54NZwh05yxrhiqU3xzMnKMGQycoGWqZaZUxh9IevZbKbaGMzitG2rEsfMF7Ct7y7NMREedhy9XQJBWCMACbfoLUqNdv82Qg-Wi6r-V_r5dxXlzrI0vk_udfkkPWq_4wG5YcuH5E7bYfL3I7KYNKrJENLoKZaQ0crR8fyXNVSWhs5gqC5oq2BMsS3aoqaQxdIce6e59aJBjRqVCXg9fW_L6sL6X-fG0h1eaVeM-Jicjkdf3n3wuwYLvhYJX_mWW64ZF0mSxhIMi22IA6Wci4VkgTEQDDXmZ4AQoYGlLlWMaa0Cl6RCyow9IYOyKu0-ocop2I-6WKWZ5izKlNNCK6Ug2CYiMswjbGPhQnfq49gEY1E0R2oCdiGtwQrkpeh48Yi_fWrZqm9cgT9G8rZY1M5ufgCPKjqPKq7yKI-8QOqL9iLqNgIUR1xkYJGMxx551SBQP6PEAp3vcl3XxeTT2TVAn6fXAc16oDcdyFVgMy27mxNgeRTv6iEPekgIFbo3vY_evDFdXYRCwAKTQdT2yMuNhxf4FJbelbZaIwYyZI7n9R7Zaz1-a98owX4JGbArev-FHgH9mXL-oxExB1_jkBs-_R-MPSN3IY_tiukPyGB1ubbPyW39czWvL4fkpjgXzZgOya3j0TSfDZtoAeM4PxliuW8OM_nkY_7tD1MWbqs |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggOCF37DAYAYh8ZSRxE6cPA60sopSqrFfb5bt2FCpS6alRfDfc5e41YKY2AMvVdR8luLP9vlOPn9HyJuU2SRLlAjLMtYhTyMb5hD0hDopyjITLolaMZ2jsZhM8pOTYuolhfAujGcQYsR53bQn-fhQV_adZ7I7ON2OmYhX4O0z4BqP-8F3FtfJDVHEOWZ3DafjlVFmaV4If3Puspa9nakV8F-b6QF-xN980D9TKS_sTcN7_7FX98ld76DSna7FA3LNVg_Jra5k5a9HZD5qZZjBRtJDzEmjtaPD2U9bUlWVdB9-6lPaSSJTrLM2byi4xXSKxdjcct6idlvZCugK_Wir-tSGx7PS0gsThfrsxsfkcLh78GEv9BUbQiMyvggtt9wwLrIsT5WCUEuwNNLauVQoFpUlWFeDDh8gRFzC3plrxozRkctyoVTBnpBBBbRsEKqdhgDXpTovDGdJoZ0RRmsN1jsTSckCwlajJY2XM8eqGnPZntEJCGs6wiTyKD2PAQnXrc46OY9_4N_jRFhjUYy7_QPGUPqxk05xxrhmuc3xWNRCx5lKXGRUblThdEC2cBrJ7mbr2qTIHS4KYKTgaUBetwgU5Kgw4-ebWjaNHH05ugLo6-QqoP0e6K0HuRo4M8pfxQDmUQ2sh9zsIcH2mN7rDZzIK-oaGQsBO1YB20BAXq1Wi8RWmMtX2XqJGHC5OSYABORpt3rW_CYZFmAoYHRFb131BqD_ppp9b1XRYa5xcDafXf5JW-T23sHnsRyPJp-ekzvg-vr8-00yWJwv7Qty0_xYzJrzl63t-A30LXpa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGuYgX7rDCYAYheMqWxE6cPA5YoWIq1WCXF2TZjg2VumRaWgT_nnOcpFoQE3vhpaqaL1H82T4-pz7-DiEvE2bjNFYiKIpIBzwJbZBB0BPoOC-KVLg49GI6h3tiMsmOj_PpGvnanYVpGYQYcV7Vficfv1Sl3W6Z3Ea9omb3dCtiIuru2DoFwnHPHxxo8corDuE_Yws8gHSFXBV5lGFsNprudYaaJVku2tN0Fz2ot1p5Uf-V6R7gi_3NL_0zvfLcejW6_Z9beofcah1ZutM85S5Zs-U9cr0pbfnrPpmPvVwz2FJ6gLlrtHJ0NPtpC6rKgu7DR3VCG-lkivXY5jUF95lOsWibW849atfLW0Dz6HtbVic2OJoVlp4bULTNgnxADka7X95-CNrKDoERKV8ElltuGBdpmiVKQUgmWBJq7VwiFAuLAqywQccQECIqYI3NNGPG6NClmVAqZw_JoASq1gnVTkMg7BKd5YazONfOCKO1BiufirhgQ8K6HpSmlT3H6htz6ffyBIQ_DWESaZUtrUMSrO46bWQ__oF_g4NjhUXRbv8D9Kts-1M6xRnjmmU2w-1TCw1nKnahUZlRudNDsolDSzYnYFemR-5wkQMjOU-G5IVHoHBHiZlB39SyruX40-ElQJ8nlwHt90CvW5CrgDOj2iMbwDyOzR5yo4cEG2V6l9dxcHfU1TISAla2HJaLIXnezSCJd2HOX2mrJWLANeeYKDAkj5oZteI3TrFQQw69K3pzrdcB_Svl7LtXT4exxsEpfXzxK22SG9N3I7k3nnx8Qm6Ch9ym6W-QweJsaZ-Sa-bHYlafPfPm5DeLB4mP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Usage+of+Fixed+and+Random+Effect+Models+for+Powerful+and+Efficient+Genome-Wide+Association+Studies&rft.jtitle=PLoS+genetics&rft.au=Liu%2C+Xiaolei&rft.au=Huang%2C+Meng&rft.au=Fan%2C+Bin&rft.au=Buckler%2C+Edward+S.&rft.date=2016-02-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pgen.1005767&rft_id=info%3Apmid%2F26828793&rft.externalDocID=PMC4734661 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |