Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies

False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics Jg. 12; H. 2; S. e1005767
Hauptverfasser: Liu, Xiaolei, Huang, Meng, Fan, Bin, Buckler, Edward S., Zhang, Zhiwu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.02.2016
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7404, 1553-7390, 1553-7404
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.
AbstractList   False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. Genome-Wide Association Studies (GWAS) can reveal genetic-phenotypic relationships, but have limitations. To control false positives, population structure and kinship are incorporated in a fixed and random effect Mixed Linear Model (MLM). However, because of the confounding between population structure, kinship, and quantitative trait nucleotides (QTNs), MLM leads to false negatives, missing some potentially important discoveries. Here, we present a new method, Fixed and random model Circulating Probability Unification (FarmCPU). FarmCPU performs marker tests with associated markers as covariates in a fixed effect model and optimization on the associated covariate markers in a random effect model separately. This process enables efficient computation, removes the confounding, prevents model over-fitting, and controls false positives simultaneously. FarmCPU controls false positives as well as MLM with reductions in both false negatives and computing times. Researchers will not only be able to analyze big data, but will also have greater success with fewer mistakes when mapping genes of interest.
Audience Academic
Author Buckler, Edward S.
Huang, Meng
Zhang, Zhiwu
Liu, Xiaolei
Fan, Bin
AuthorAffiliation 5 Department of Animal Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
4 United States Department of Agriculture (USDA)–Agricultural Research Service (ARS), Ithaca, New York, United States of America
Microsoft Research, UNITED STATES
2 Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
3 Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
AuthorAffiliation_xml – name: 4 United States Department of Agriculture (USDA)–Agricultural Research Service (ARS), Ithaca, New York, United States of America
– name: Microsoft Research, UNITED STATES
– name: 5 Department of Animal Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
– name: 2 Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
– name: 3 Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
– name: 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Author_xml – sequence: 1
  givenname: Xiaolei
  surname: Liu
  fullname: Liu, Xiaolei
– sequence: 2
  givenname: Meng
  surname: Huang
  fullname: Huang, Meng
– sequence: 3
  givenname: Bin
  surname: Fan
  fullname: Fan, Bin
– sequence: 4
  givenname: Edward S.
  surname: Buckler
  fullname: Buckler, Edward S.
– sequence: 5
  givenname: Zhiwu
  surname: Zhang
  fullname: Zhang, Zhiwu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26828793$$D View this record in MEDLINE/PubMed
BookMark eNqVk-9r1DAYx4tM3A_9D0QDguiLO9MmTdq9EI6xzYPpZHP6MqTpk7scaXM26Zz_vbkfG1cRUQppST7fb598eZ7DZK91LSTJ8xSPU8LTdwvXd6204-UM2nGKcc4Zf5QcpHlORpxiurfzvZ8cer_AmORFyZ8k-xkrsoKX5CCx0wCdDOYW0I2XM0BOozNzBzWSbY2u4uIadKo1qIA-uhqsR9p16LP7AZ3u7ZqKx0YZaAM6h9Y1MPpmakAT750y0dq16Dr0tQH_NHmspfXwbPs-Sm7OTr-cfBhdXJ5PTyYXI8UZDSOgQBWhnLEilzJNKSc5riqtcy4JruucFCrPMhYJntaEZUVFiFIV1qzgUpbkKHm58V1a58U2KC9SzglnZc6LSEw3RO3kQiw708jup3DSiPWG62ZCdsEoC0JLSgitSAEFo5hDLIjITGMlCyVLXUWv99u_9VUDtYpBdNIOTIcnrZmLmbsV8V6UsTQavNkadO57Dz6IxngF1soWXL-qm2UxjoxnEX21QWcylmZa7aKjWuFiQnkZkylpHqnxH6j41NAYFdtIm7g_ELwdCCIT4C7MZO-9mF5f_Qf76d_Zy69D9vUOOwdpw9w7268ayA_BF7t5PwR939QRoBtAdc77DvQDkmKxmp37lhCr2RHb2Ymy499kyoR1_8b0jP27-BfJhB61
CitedBy_id crossref_primary_10_3390_ani14131944
crossref_primary_10_3390_ijms22030982
crossref_primary_10_1111_ppa_70059
crossref_primary_10_1016_j_stress_2025_100954
crossref_primary_10_3389_fpls_2023_1236576
crossref_primary_10_1016_j_ygeno_2020_08_006
crossref_primary_10_1007_s10722_023_01793_4
crossref_primary_10_1002_advs_202505181
crossref_primary_10_1038_s41467_023_42608_5
crossref_primary_10_1038_s41598_024_64161_x
crossref_primary_10_1007_s00122_022_04167_z
crossref_primary_10_3389_fgene_2021_749675
crossref_primary_10_3389_fpls_2023_1123631
crossref_primary_10_3389_fpls_2022_927673
crossref_primary_10_1093_plcell_koae007
crossref_primary_10_1002_leg3_70036
crossref_primary_10_3390_agronomy11030508
crossref_primary_10_3390_genes14061189
crossref_primary_10_1093_hr_uhad191
crossref_primary_10_1007_s00122_022_04045_8
crossref_primary_10_1016_j_jcs_2021_103214
crossref_primary_10_3389_fpls_2022_1026581
crossref_primary_10_3389_fpls_2023_1274823
crossref_primary_10_1002_csc2_21079
crossref_primary_10_1007_s10681_017_1971_8
crossref_primary_10_1093_g3journal_jkad216
crossref_primary_10_3390_agriculture13101882
crossref_primary_10_1016_j_plantsci_2022_111539
crossref_primary_10_1016_j_xplc_2025_101385
crossref_primary_10_1111_age_13162
crossref_primary_10_3390_agronomy14122894
crossref_primary_10_1002_tpg2_20208
crossref_primary_10_3389_fpls_2021_691211
crossref_primary_10_1002_tpg2_20443
crossref_primary_10_1002_tpg2_20444
crossref_primary_10_1002_tpg2_20200
crossref_primary_10_1371_journal_pone_0225979
crossref_primary_10_1007_s00122_019_03426_w
crossref_primary_10_3390_genes15060740
crossref_primary_10_1038_s41598_019_39448_z
crossref_primary_10_1093_g3journal_jkab269
crossref_primary_10_1111_pce_70027
crossref_primary_10_1186_s12864_024_11153_w
crossref_primary_10_1007_s10681_018_2282_4
crossref_primary_10_1007_s00344_024_11492_8
crossref_primary_10_1007_s11104_022_05790_x
crossref_primary_10_1186_s12284_025_00784_6
crossref_primary_10_3389_fpls_2020_00012
crossref_primary_10_3389_fpls_2024_1342359
crossref_primary_10_1007_s00122_017_2957_6
crossref_primary_10_1007_s10681_022_02986_1
crossref_primary_10_3389_fpls_2022_847234
crossref_primary_10_1007_s11032_023_01400_5
crossref_primary_10_1038_s41598_024_72319_w
crossref_primary_10_1007_s11032_018_0810_5
crossref_primary_10_3390_agronomy11122528
crossref_primary_10_3390_agronomy11122527
crossref_primary_10_1002_agj2_21488
crossref_primary_10_1016_j_cj_2020_04_008
crossref_primary_10_1007_s00299_023_03127_1
crossref_primary_10_3389_fgene_2022_961009
crossref_primary_10_1186_s12870_022_03616_7
crossref_primary_10_1016_j_fcr_2023_109165
crossref_primary_10_1093_g3journal_jkab204
crossref_primary_10_1016_j_scienta_2024_113867
crossref_primary_10_3389_fpls_2021_635914
crossref_primary_10_2135_cropsci2017_11_0675
crossref_primary_10_1016_j_plantsci_2023_111624
crossref_primary_10_1186_s12870_021_03380_0
crossref_primary_10_3389_fpls_2020_00474
crossref_primary_10_1038_s41598_024_83516_y
crossref_primary_10_1270_jsbbs_24087
crossref_primary_10_3390_v15071568
crossref_primary_10_1007_s13253_020_00396_1
crossref_primary_10_1002_aps3_11558
crossref_primary_10_3390_microorganisms12101936
crossref_primary_10_1007_s00122_022_04134_8
crossref_primary_10_1038_s41586_023_05791_5
crossref_primary_10_1093_jxb_erab467
crossref_primary_10_1093_hr_uhae070
crossref_primary_10_1093_plcell_koad164
crossref_primary_10_3389_fgene_2021_634986
crossref_primary_10_1002_tpg2_20408
crossref_primary_10_34133_2020_4216373
crossref_primary_10_1007_s11240_022_02284_7
crossref_primary_10_1002_tpg2_20401
crossref_primary_10_1186_s12870_024_04761_x
crossref_primary_10_1007_s13353_024_00865_0
crossref_primary_10_1007_s12042_022_09317_7
crossref_primary_10_3390_ijms25179745
crossref_primary_10_3389_fagro_2024_1451281
crossref_primary_10_3390_vaccines8040608
crossref_primary_10_1016_j_stress_2025_100760
crossref_primary_10_1094_PHYTO_10_22_0397_R
crossref_primary_10_3389_fpls_2023_1109116
crossref_primary_10_3389_fgene_2022_953833
crossref_primary_10_1186_s12870_023_04215_w
crossref_primary_10_3389_fpls_2024_1472675
crossref_primary_10_1016_j_plaphy_2025_110281
crossref_primary_10_1016_j_stress_2025_100764
crossref_primary_10_1111_tpj_14650
crossref_primary_10_3389_fpls_2022_1090072
crossref_primary_10_3389_fpls_2023_1239635
crossref_primary_10_3389_fpls_2020_01309
crossref_primary_10_1038_s41598_025_00096_1
crossref_primary_10_1002_csc2_20824
crossref_primary_10_3389_fpls_2018_00332
crossref_primary_10_3390_genes15081032
crossref_primary_10_1186_s40104_023_00944_y
crossref_primary_10_3390_plants12142705
crossref_primary_10_1007_s00122_023_04360_8
crossref_primary_10_1111_ppl_14404
crossref_primary_10_3389_fpls_2024_1426321
crossref_primary_10_1094_PHYTO_02_23_0043_R
crossref_primary_10_3389_fgene_2018_00229
crossref_primary_10_1021_acs_jafc_5c01334
crossref_primary_10_1007_s10681_019_2550_y
crossref_primary_10_1111_age_13347
crossref_primary_10_1016_j_jgg_2024_10_011
crossref_primary_10_1038_s41438_021_00638_4
crossref_primary_10_1093_pcp_pcae079
crossref_primary_10_1002_csc2_20810
crossref_primary_10_3390_plants13243501
crossref_primary_10_1002_pld3_70010
crossref_primary_10_1007_s12042_020_09258_z
crossref_primary_10_3390_agronomy12010132
crossref_primary_10_3389_fpls_2021_772907
crossref_primary_10_1038_s41598_024_67059_w
crossref_primary_10_3390_biology14091199
crossref_primary_10_3390_genes14040861
crossref_primary_10_3389_fgene_2023_1282620
crossref_primary_10_3389_fpls_2023_1189662
crossref_primary_10_1038_s41598_024_67035_4
crossref_primary_10_1002_csc2_70085
crossref_primary_10_1017_S1751731120001111
crossref_primary_10_3389_fpls_2020_570204
crossref_primary_10_1186_s12870_025_06077_w
crossref_primary_10_3389_fpls_2018_01405
crossref_primary_10_1038_s41598_024_79014_w
crossref_primary_10_1186_s12870_025_06813_2
crossref_primary_10_1007_s00122_022_04210_z
crossref_primary_10_1534_g3_119_401016
crossref_primary_10_3389_fpls_2021_629221
crossref_primary_10_3390_horticulturae9111204
crossref_primary_10_1093_gigascience_giac080
crossref_primary_10_1007_s11295_025_01701_0
crossref_primary_10_1093_aob_mcy221
crossref_primary_10_3390_agronomy13041078
crossref_primary_10_1007_s00122_024_04642_9
crossref_primary_10_3390_agronomy11010027
crossref_primary_10_1016_j_plantsci_2024_112382
crossref_primary_10_1093_g3journal_jkae145
crossref_primary_10_1186_s12870_025_07018_3
crossref_primary_10_1186_s13059_017_1289_9
crossref_primary_10_3389_fpls_2021_758631
crossref_primary_10_1038_s41598_024_82932_4
crossref_primary_10_3390_nu11102509
crossref_primary_10_1534_g3_120_401580
crossref_primary_10_1016_j_egg_2025_100384
crossref_primary_10_1094_PHYTO_02_22_0051_R
crossref_primary_10_1016_j_fbio_2024_103919
crossref_primary_10_1007_s00122_022_04065_4
crossref_primary_10_1016_j_gpb_2020_10_007
crossref_primary_10_1007_s11032_020_01163_3
crossref_primary_10_3389_fgene_2022_876522
crossref_primary_10_3390_ani14131904
crossref_primary_10_1016_j_cj_2023_02_006
crossref_primary_10_1094_PDIS_09_22_2228_RE
crossref_primary_10_1007_s00122_020_03569_1
crossref_primary_10_3390_agronomy10091444
crossref_primary_10_1007_s10722_023_01723_4
crossref_primary_10_3389_fpls_2019_00100
crossref_primary_10_1002_pld3_70040
crossref_primary_10_1111_tpj_15910
crossref_primary_10_3389_fgene_2021_661742
crossref_primary_10_1007_s00122_024_04666_1
crossref_primary_10_1111_tpj_17092
crossref_primary_10_3389_fpls_2021_665745
crossref_primary_10_1111_pbr_13280
crossref_primary_10_1111_ppl_13992
crossref_primary_10_1186_s12870_024_05897_6
crossref_primary_10_1002_tpg2_70100
crossref_primary_10_3390_plants13172484
crossref_primary_10_1093_jxb_eraa500
crossref_primary_10_3389_fgene_2021_667038
crossref_primary_10_1093_jxb_eraf198
crossref_primary_10_3389_fpls_2018_01690
crossref_primary_10_3389_fpls_2021_697615
crossref_primary_10_3390_agronomy15081889
crossref_primary_10_1038_s41598_021_95116_1
crossref_primary_10_3389_fpls_2024_1448961
crossref_primary_10_1007_s00122_020_03745_3
crossref_primary_10_3389_fpls_2017_02232
crossref_primary_10_1371_journal_pone_0318815
crossref_primary_10_1007_s00122_021_03897_w
crossref_primary_10_3390_ijms25073600
crossref_primary_10_1371_journal_pone_0308818
crossref_primary_10_1002_tpg2_70111
crossref_primary_10_1002_pld3_70064
crossref_primary_10_1093_g3journal_jkae108
crossref_primary_10_3390_ijms241713304
crossref_primary_10_3390_ijms241612801
crossref_primary_10_1002_tpg2_70113
crossref_primary_10_1534_genetics_120_303459
crossref_primary_10_3390_plants12142722
crossref_primary_10_1111_nph_19262
crossref_primary_10_1007_s00122_025_04871_6
crossref_primary_10_1186_s43170_024_00237_y
crossref_primary_10_1111_age_13122
crossref_primary_10_1371_journal_pone_0260907
crossref_primary_10_3389_fgene_2020_00163
crossref_primary_10_3389_fpls_2022_823250
crossref_primary_10_3390_plants12223864
crossref_primary_10_3390_agronomy10091231
crossref_primary_10_1007_s11032_023_01357_5
crossref_primary_10_1038_s41477_021_00925_x
crossref_primary_10_3389_fpls_2018_00141
crossref_primary_10_3390_ani12141855
crossref_primary_10_3390_ijms231810611
crossref_primary_10_1371_journal_pone_0231144
crossref_primary_10_1371_journal_pone_0208386
crossref_primary_10_3389_fpls_2022_847435
crossref_primary_10_3390_genes14071315
crossref_primary_10_1007_s10681_019_2489_z
crossref_primary_10_1186_s13059_022_02807_7
crossref_primary_10_3389_fpls_2022_1024543
crossref_primary_10_3390_agriculture14091627
crossref_primary_10_1002_ppj2_70040
crossref_primary_10_1186_s13068_021_02064_z
crossref_primary_10_1002_tpg2_70014
crossref_primary_10_1007_s13721_025_00558_6
crossref_primary_10_1038_hdy_2017_8
crossref_primary_10_3389_fpls_2021_705006
crossref_primary_10_3390_microorganisms9040692
crossref_primary_10_1016_j_scienta_2023_112838
crossref_primary_10_1111_pbr_13120
crossref_primary_10_1186_s13059_025_03693_5
crossref_primary_10_1111_nph_20190
crossref_primary_10_3390_plants12112206
crossref_primary_10_3390_ani15010026
crossref_primary_10_1038_s41598_025_92168_5
crossref_primary_10_3390_ani14192795
crossref_primary_10_3390_genes12050765
crossref_primary_10_1007_s00122_025_04980_2
crossref_primary_10_1016_j_cj_2019_11_004
crossref_primary_10_3389_fgene_2019_00954
crossref_primary_10_3389_fpls_2017_00886
crossref_primary_10_3389_fgene_2023_1306519
crossref_primary_10_3390_ijms21051577
crossref_primary_10_1016_j_jgg_2024_12_019
crossref_primary_10_1371_journal_pone_0176932
crossref_primary_10_1186_s40104_024_01027_2
crossref_primary_10_3390_plants12162970
crossref_primary_10_1111_nph_70439
crossref_primary_10_1093_gpbjnl_qzae020
crossref_primary_10_1016_j_ygeno_2020_12_014
crossref_primary_10_1186_s12864_025_11932_z
crossref_primary_10_1038_s41598_023_33250_8
crossref_primary_10_1186_s12864_024_10655_x
crossref_primary_10_1007_s13353_019_00533_8
crossref_primary_10_1007_s00122_025_04991_z
crossref_primary_10_1007_s00438_025_02235_9
crossref_primary_10_3390_agronomy14050961
crossref_primary_10_3390_ani13152414
crossref_primary_10_1016_j_jplph_2022_153854
crossref_primary_10_1111_ppa_13963
crossref_primary_10_3390_ani10112048
crossref_primary_10_3390_biology13040261
crossref_primary_10_3390_genes11070759
crossref_primary_10_1186_s40529_022_00334_z
crossref_primary_10_1007_s00299_024_03404_7
crossref_primary_10_1007_s00122_025_04949_1
crossref_primary_10_1186_s12870_025_06822_1
crossref_primary_10_1007_s13353_017_0417_2
crossref_primary_10_1002_csc2_20332
crossref_primary_10_7554_eLife_79238
crossref_primary_10_1007_s10722_024_02138_5
crossref_primary_10_3389_fgene_2023_1143395
crossref_primary_10_1002_tpg2_70047
crossref_primary_10_1186_s12284_024_00703_1
crossref_primary_10_3389_fgene_2024_1435474
crossref_primary_10_3389_fpls_2023_1221644
crossref_primary_10_1038_s41598_019_45919_0
crossref_primary_10_1186_s40529_020_00309_y
crossref_primary_10_3390_life14091057
crossref_primary_10_1186_s12864_023_09504_0
crossref_primary_10_3389_fpls_2022_921230
crossref_primary_10_1093_aob_mcz047
crossref_primary_10_1094_PHYTO_01_24_0043_R
crossref_primary_10_1111_pbr_13156
crossref_primary_10_1186_s12864_022_08325_x
crossref_primary_10_1186_s12864_025_11580_3
crossref_primary_10_1002_csc2_20349
crossref_primary_10_1002_tpg2_70055
crossref_primary_10_1007_s12355_020_00852_9
crossref_primary_10_3390_ani14202995
crossref_primary_10_1093_jhered_esz050
crossref_primary_10_1093_jxb_erae391
crossref_primary_10_1007_s11032_021_01240_1
crossref_primary_10_3390_plants10071440
crossref_primary_10_1038_s41598_022_14568_1
crossref_primary_10_1002_ppj2_70008
crossref_primary_10_1038_s41598_023_48758_2
crossref_primary_10_3390_plants11233277
crossref_primary_10_1007_s12355_021_01056_5
crossref_primary_10_3390_genes15040412
crossref_primary_10_1007_s10681_025_03466_y
crossref_primary_10_3390_agriculture14101704
crossref_primary_10_1002_tpg2_20063
crossref_primary_10_3390_plants13091275
crossref_primary_10_1002_ppj2_70013
crossref_primary_10_1007_s00122_022_04160_6
crossref_primary_10_7554_eLife_80009
crossref_primary_10_1007_s00122_021_03930_y
crossref_primary_10_1016_j_envexpbot_2025_106220
crossref_primary_10_3389_fpls_2020_551305
crossref_primary_10_3389_fpls_2025_1536981
crossref_primary_10_1007_s00122_022_04040_z
crossref_primary_10_3390_ani14182713
crossref_primary_10_3390_genes12050718
crossref_primary_10_1002_tpg2_20096
crossref_primary_10_1002_tpg2_70071
crossref_primary_10_1111_tpj_17111
crossref_primary_10_1111_tpj_70300
crossref_primary_10_3389_fmars_2020_00694
crossref_primary_10_3390_agronomy13051286
crossref_primary_10_3389_fpls_2023_1218042
crossref_primary_10_1002_tpg2_70075
crossref_primary_10_1007_s00122_024_04700_2
crossref_primary_10_3390_ani12192542
crossref_primary_10_3389_fpls_2022_946700
crossref_primary_10_3390_plants14030357
crossref_primary_10_3390_plants12051041
crossref_primary_10_3389_fpls_2025_1595339
crossref_primary_10_3390_ani13060992
crossref_primary_10_1007_s00122_020_03639_4
crossref_primary_10_1007_s00122_023_04397_9
crossref_primary_10_1007_s00122_019_03485_z
crossref_primary_10_1093_jxb_eraf012
crossref_primary_10_1093_bib_bbae290
crossref_primary_10_1186_s12870_025_06135_3
crossref_primary_10_1371_journal_pone_0310390
crossref_primary_10_1111_pbr_13111
crossref_primary_10_1371_journal_pone_0199539
crossref_primary_10_3390_agronomy12112839
crossref_primary_10_3390_agriculture14020257
crossref_primary_10_1002_tpg2_20077
crossref_primary_10_1002_tpg2_70091
crossref_primary_10_1111_tpj_14097
crossref_primary_10_3390_agronomy14102214
crossref_primary_10_1002_tpg2_70096
crossref_primary_10_1186_s12864_019_5662_9
crossref_primary_10_1002_tpg2_70099
crossref_primary_10_1111_pbi_14236
crossref_primary_10_3389_fpls_2024_1460353
crossref_primary_10_3390_genes14122133
crossref_primary_10_1093_forestry_cpaf009
crossref_primary_10_1038_s41467_023_39534_x
crossref_primary_10_1186_s12863_021_00995_y
crossref_primary_10_3389_fpls_2022_1106164
crossref_primary_10_1007_s11103_022_01302_8
crossref_primary_10_3389_fpls_2023_1125672
crossref_primary_10_3389_fvets_2022_862414
crossref_primary_10_1093_hr_uhad243
crossref_primary_10_3389_fpls_2024_1486736
crossref_primary_10_1002_tpg2_20269
crossref_primary_10_3390_agronomy10030368
crossref_primary_10_3389_fpls_2022_999692
crossref_primary_10_3390_ijms232012520
crossref_primary_10_1007_s00122_021_03780_8
crossref_primary_10_1094_PDIS_11_19_2402_RE
crossref_primary_10_3389_fpls_2024_1481282
crossref_primary_10_3390_cimb47030151
crossref_primary_10_1007_s00122_018_3077_7
crossref_primary_10_3390_genes15070950
crossref_primary_10_1007_s10681_022_03082_0
crossref_primary_10_1186_s12870_025_06646_z
crossref_primary_10_3390_ijms26031126
crossref_primary_10_1111_pbi_14254
crossref_primary_10_1038_s41598_025_94175_y
crossref_primary_10_3389_fpls_2023_1252777
crossref_primary_10_1007_s00122_024_04617_w
crossref_primary_10_3390_plants11030364
crossref_primary_10_1093_pcp_pcaa166
crossref_primary_10_3389_fpls_2022_1014282
crossref_primary_10_1038_s41598_021_89276_3
crossref_primary_10_1002_csc2_21261
crossref_primary_10_3390_ijms23063341
crossref_primary_10_1111_pce_14135
crossref_primary_10_1007_s00438_019_01610_7
crossref_primary_10_1111_pbi_13171
crossref_primary_10_1016_j_gpb_2021_08_005
crossref_primary_10_1186_s12870_021_03127_x
crossref_primary_10_1002_tpg2_20284
crossref_primary_10_1111_nph_15890
crossref_primary_10_3389_fgene_2021_664343
crossref_primary_10_3389_fpls_2022_1066752
crossref_primary_10_3835_plantgenome2017_09_0083
crossref_primary_10_1007_s00122_017_2987_0
crossref_primary_10_1371_journal_pcbi_1005357
crossref_primary_10_1016_j_biocon_2023_110377
crossref_primary_10_1093_hr_uhad212
crossref_primary_10_1111_pbi_13188
crossref_primary_10_3390_ani12091057
crossref_primary_10_1093_hr_uhac124
crossref_primary_10_1007_s00122_024_04596_y
crossref_primary_10_1093_jxb_erad222
crossref_primary_10_3390_agronomy15040792
crossref_primary_10_1186_s12864_022_08676_5
crossref_primary_10_1007_s11032_023_01360_w
crossref_primary_10_3390_plants13081084
crossref_primary_10_1038_s41598_021_83107_1
crossref_primary_10_1371_journal_pone_0219843
crossref_primary_10_3390_ani14192901
crossref_primary_10_3390_genes11111286
crossref_primary_10_1007_s10681_022_03129_2
crossref_primary_10_1016_j_molp_2022_03_009
crossref_primary_10_1094_PDIS_09_18_1669_RE
crossref_primary_10_1094_PHYTO_06_22_0217_FI
crossref_primary_10_1002_tpg2_20222
crossref_primary_10_1111_nph_18980
crossref_primary_10_1111_pbi_14447
crossref_primary_10_1111_tpj_15364
crossref_primary_10_3389_fpls_2022_1036064
crossref_primary_10_1007_s00122_025_04858_3
crossref_primary_10_1007_s00122_021_03956_2
crossref_primary_10_1093_hr_uhad270
crossref_primary_10_1186_s12870_022_03479_y
crossref_primary_10_1038_s41467_020_18404_w
crossref_primary_10_1016_j_stress_2025_100900
crossref_primary_10_1186_s12870_025_06620_9
crossref_primary_10_3390_genes11111298
crossref_primary_10_1002_tpg2_20456
crossref_primary_10_1111_ppl_13087
crossref_primary_10_1002_tpg2_20211
crossref_primary_10_1093_plcell_koab022
crossref_primary_10_1016_j_cpb_2020_100145
crossref_primary_10_1002_tpg2_20493
crossref_primary_10_2135_cropsci2015_10_0632
crossref_primary_10_1093_jxb_erad481
crossref_primary_10_1002_pld3_53
crossref_primary_10_1038_s41598_024_53462_w
crossref_primary_10_1186_s13059_017_1328_6
crossref_primary_10_1093_hr_uhad021
crossref_primary_10_3389_fpls_2020_590740
crossref_primary_10_3390_ijms23126524
crossref_primary_10_1371_journal_pone_0223094
crossref_primary_10_1038_s41598_021_92837_1
crossref_primary_10_3390_ijms21239148
crossref_primary_10_1007_s10681_023_03215_z
crossref_primary_10_1002_tpg2_20003
crossref_primary_10_1016_j_jgg_2022_12_001
crossref_primary_10_1038_s41437_023_00647_0
crossref_primary_10_1371_journal_pone_0262888
crossref_primary_10_1016_j_indcrop_2019_111877
crossref_primary_10_1002_tpg2_20243
crossref_primary_10_1002_tpg2_20485
crossref_primary_10_1038_s41598_020_69442_9
crossref_primary_10_1093_jxb_erab297
crossref_primary_10_1093_plphys_kiac593
crossref_primary_10_3389_fgene_2021_614087
crossref_primary_10_3390_genes14091815
crossref_primary_10_1016_j_jcs_2018_11_006
crossref_primary_10_1016_j_plantsci_2017_07_011
crossref_primary_10_3389_fpls_2017_01913
crossref_primary_10_1186_s12870_025_06775_5
crossref_primary_10_1534_g3_119_400811
crossref_primary_10_3390_genes13020225
crossref_primary_10_3390_plants13050588
crossref_primary_10_1038_s41598_017_11318_6
crossref_primary_10_1007_s11032_021_01257_6
crossref_primary_10_1038_s41588_021_00866_3
crossref_primary_10_3390_plants10030559
crossref_primary_10_1002_csc2_21058
crossref_primary_10_1007_s00122_023_04442_7
crossref_primary_10_1016_j_jafr_2025_102167
crossref_primary_10_1186_s12864_019_6275_z
crossref_primary_10_1007_s00299_024_03269_w
crossref_primary_10_1111_tpj_16760
crossref_primary_10_3390_plants13070940
crossref_primary_10_1186_s12864_023_09684_9
crossref_primary_10_3389_fpls_2022_939544
crossref_primary_10_3168_jds_2023_23462
crossref_primary_10_1111_tpj_16524
crossref_primary_10_1111_tpj_15437
crossref_primary_10_1016_j_psj_2019_12_068
crossref_primary_10_1007_s11032_022_01287_8
crossref_primary_10_1038_s41598_021_80996_0
crossref_primary_10_1038_s41598_024_71593_y
crossref_primary_10_3389_fpls_2021_713667
crossref_primary_10_3390_su142114339
crossref_primary_10_1002_tpg2_20300
crossref_primary_10_1186_s12870_025_07039_y
crossref_primary_10_1007_s00122_023_04281_6
crossref_primary_10_1016_j_postharvbio_2023_112577
crossref_primary_10_1016_j_ygeno_2023_110699
crossref_primary_10_1007_s00122_024_04815_6
crossref_primary_10_1038_s41598_021_01272_9
crossref_primary_10_1186_s12864_024_11174_5
crossref_primary_10_1186_s12870_017_1167_3
crossref_primary_10_1186_s12864_020_6717_7
crossref_primary_10_3390_plants12142659
crossref_primary_10_1186_s12915_025_02179_x
crossref_primary_10_1186_s12864_024_11043_1
crossref_primary_10_1038_s41467_024_51032_2
crossref_primary_10_1016_j_jia_2024_07_026
crossref_primary_10_1038_s41598_021_93170_3
crossref_primary_10_1111_ppl_13606
crossref_primary_10_1007_s00122_024_04728_4
crossref_primary_10_1007_s11816_025_00969_x
crossref_primary_10_3389_fgene_2021_715529
crossref_primary_10_1007_s00122_023_04424_9
crossref_primary_10_1002_ppp3_10513
crossref_primary_10_1038_s41598_024_55403_z
crossref_primary_10_1093_nsr_nwaa277
crossref_primary_10_1093_genetics_iyac128
crossref_primary_10_1093_plcell_koad244
crossref_primary_10_1111_pbi_13206
crossref_primary_10_1186_s12711_023_00820_3
crossref_primary_10_1186_s12864_024_10156_x
crossref_primary_10_3390_genes14061271
crossref_primary_10_1007_s11250_019_02170_z
crossref_primary_10_1002_csc2_70107
crossref_primary_10_1186_s12864_020_6489_0
crossref_primary_10_1093_hr_uhae153
crossref_primary_10_3390_genes11121512
crossref_primary_10_3390_ijms21020394
crossref_primary_10_1007_s00122_020_03731_9
crossref_primary_10_3390_ijms21061928
crossref_primary_10_1007_s00122_024_04685_y
crossref_primary_10_3390_plants11151989
crossref_primary_10_1016_j_indcrop_2022_115294
crossref_primary_10_3389_fvets_2022_1045589
crossref_primary_10_3389_fpls_2024_1356619
crossref_primary_10_1186_s12870_021_03183_3
crossref_primary_10_1007_s10722_024_02209_7
crossref_primary_10_3390_plants14121803
crossref_primary_10_1007_s11295_024_01660_y
crossref_primary_10_3390_ani14131839
crossref_primary_10_1007_s00122_022_04168_y
crossref_primary_10_3390_genes12122020
crossref_primary_10_3389_fpls_2019_01140
crossref_primary_10_3389_fpls_2019_00054
crossref_primary_10_3389_fpls_2024_1461631
crossref_primary_10_3390_agriculture11070667
crossref_primary_10_3389_fpls_2017_01039
crossref_primary_10_3389_fgene_2021_713575
crossref_primary_10_3389_fpls_2018_00611
crossref_primary_10_1111_pce_13577
crossref_primary_10_3389_fgene_2020_613217
crossref_primary_10_3389_fpls_2018_00610
crossref_primary_10_1186_s12864_025_11796_3
crossref_primary_10_1016_j_xplc_2024_101199
crossref_primary_10_1093_g3journal_jkab382
crossref_primary_10_1186_s12864_021_07391_x
crossref_primary_10_3390_ani11071992
crossref_primary_10_3389_fpls_2021_644799
crossref_primary_10_3389_fgene_2025_1593395
crossref_primary_10_3389_fpls_2023_1270166
crossref_primary_10_1111_tpj_16967
crossref_primary_10_3389_fpls_2018_01982
crossref_primary_10_1016_j_scienta_2024_112882
crossref_primary_10_1093_jxb_eraa471
crossref_primary_10_3390_plants13192775
crossref_primary_10_1002_agg2_20437
crossref_primary_10_1002_bimj_202300130
crossref_primary_10_1534_g3_120_401602
crossref_primary_10_3390_jof10010086
crossref_primary_10_3390_plants13172520
crossref_primary_10_1186_s12864_022_08529_1
crossref_primary_10_1016_j_gene_2024_148801
crossref_primary_10_1002_csc2_70158
crossref_primary_10_1186_s12284_019_0309_7
crossref_primary_10_3389_fpls_2021_692205
crossref_primary_10_1007_s00122_021_03926_8
crossref_primary_10_3389_fpls_2021_768589
crossref_primary_10_3390_ijms23094960
crossref_primary_10_3390_math12131944
crossref_primary_10_3389_fpls_2021_673072
crossref_primary_10_1016_j_envexpbot_2023_105252
crossref_primary_10_1016_S2095_3119_19_62773_5
crossref_primary_10_1186_s13068_024_02489_2
crossref_primary_10_3389_fgene_2019_00189
crossref_primary_10_1038_s41598_021_83581_7
crossref_primary_10_1007_s00122_022_04111_1
crossref_primary_10_1007_s00122_023_04326_w
crossref_primary_10_1038_s41598_021_91515_6
crossref_primary_10_3389_fgene_2022_849016
crossref_primary_10_1093_jxb_eraa490
crossref_primary_10_3389_fpls_2024_1412614
crossref_primary_10_1002_tpg2_20528
crossref_primary_10_1002_tpg2_20529
crossref_primary_10_1007_s11295_022_01570_x
crossref_primary_10_1007_s11427_022_2198_5
crossref_primary_10_1016_j_plantsci_2025_112542
crossref_primary_10_1186_s12870_022_03617_6
crossref_primary_10_1007_s00122_023_04315_z
crossref_primary_10_2135_cropsci2017_07_0423
crossref_primary_10_3389_fgene_2022_940650
crossref_primary_10_1007_s10681_021_02933_6
crossref_primary_10_3389_fpls_2022_883209
crossref_primary_10_3389_fpls_2021_632788
crossref_primary_10_3390_agriculture13020267
crossref_primary_10_1093_jxb_eraa480
crossref_primary_10_34133_2022_9768502
crossref_primary_10_3390_ijms22116119
crossref_primary_10_1007_s44187_024_00160_1
crossref_primary_10_1002_tpg2_20518
crossref_primary_10_1093_gigascience_giy154
crossref_primary_10_3390_ijms231810575
crossref_primary_10_3390_agronomy12081814
crossref_primary_10_1002_tpg2_20515
crossref_primary_10_1007_s11033_023_08309_4
crossref_primary_10_1007_s00122_024_04708_8
crossref_primary_10_1007_s10681_021_02922_9
crossref_primary_10_1007_s00122_022_04075_2
crossref_primary_10_1002_ppj2_20062
crossref_primary_10_1016_j_animal_2022_100672
crossref_primary_10_3389_fpls_2025_1660789
crossref_primary_10_3390_plants10081722
crossref_primary_10_1007_s12298_021_01060_9
crossref_primary_10_1007_s12042_019_09245_z
crossref_primary_10_3390_ijms231911432
crossref_primary_10_3389_fpls_2021_690059
crossref_primary_10_3389_fpls_2022_931423
crossref_primary_10_1186_s12870_023_04489_0
crossref_primary_10_1038_s41598_019_42940_1
crossref_primary_10_3389_fpls_2023_1271849
crossref_primary_10_1093_g3journal_jkae240
crossref_primary_10_3390_agronomy13071863
crossref_primary_10_1007_s00122_022_04109_9
crossref_primary_10_1002_pei3_70016
crossref_primary_10_1007_s00425_024_04465_4
crossref_primary_10_1016_j_pbi_2024_102670
crossref_primary_10_1111_age_13468
crossref_primary_10_1007_s00122_021_03841_y
crossref_primary_10_1007_s10681_017_2077_z
crossref_primary_10_1016_j_pbi_2023_102399
crossref_primary_10_3389_fpls_2022_844450
crossref_primary_10_1007_s00299_024_03230_x
crossref_primary_10_1016_j_envexpbot_2022_104973
crossref_primary_10_1007_s10681_024_03296_4
crossref_primary_10_1093_g3journal_jkac294
crossref_primary_10_3389_fgene_2020_00213
crossref_primary_10_2135_cropsci2017_03_0160
crossref_primary_10_3389_fpls_2021_568995
crossref_primary_10_3390_plants10102063
crossref_primary_10_1007_s10722_022_01515_2
crossref_primary_10_3389_fgene_2023_1195566
crossref_primary_10_1038_s41598_023_44046_1
crossref_primary_10_3389_fsufs_2024_1389970
crossref_primary_10_3389_fgene_2019_00302
crossref_primary_10_3390_genes16020193
crossref_primary_10_1016_j_plaphy_2025_110539
crossref_primary_10_3390_plants11172289
crossref_primary_10_1007_s10681_018_2176_5
crossref_primary_10_1016_j_ygeno_2022_110358
crossref_primary_10_3389_fpls_2023_1294507
crossref_primary_10_1007_s00122_024_04665_2
crossref_primary_10_1093_g3journal_jkad174
crossref_primary_10_3390_ijms20215470
crossref_primary_10_3390_plants8100432
crossref_primary_10_3390_agronomy13092345
crossref_primary_10_3390_genes13081430
crossref_primary_10_1111_gcb_16560
crossref_primary_10_1093_g3journal_jkaf113
crossref_primary_10_1371_journal_pone_0208217
crossref_primary_10_1111_eea_13296
crossref_primary_10_1371_journal_pone_0218263
crossref_primary_10_1186_s12284_019_0351_5
crossref_primary_10_1007_s00438_025_02228_8
crossref_primary_10_1099_mgen_0_001179
crossref_primary_10_3389_fpls_2018_01311
crossref_primary_10_3389_fpls_2023_1051994
crossref_primary_10_3390_genes15091177
crossref_primary_10_3389_fpls_2020_609209
crossref_primary_10_1007_s00122_023_04274_5
crossref_primary_10_3389_fpls_2023_1230068
crossref_primary_10_3389_fpls_2022_1009244
crossref_primary_10_1093_molbev_msz158
crossref_primary_10_3390_genes16060682
crossref_primary_10_3389_fpls_2021_777028
crossref_primary_10_1111_ppa_14031
crossref_primary_10_1007_s00425_022_03827_0
crossref_primary_10_1007_s10681_017_1970_9
crossref_primary_10_1016_j_cj_2024_10_004
crossref_primary_10_1016_j_jcs_2025_104189
crossref_primary_10_3389_fpls_2019_01794
crossref_primary_10_1093_genetics_iyab087
crossref_primary_10_1016_j_cpb_2024_100401
crossref_primary_10_1186_s12864_021_07874_x
crossref_primary_10_3390_agronomy12102289
crossref_primary_10_3390_ani13223516
crossref_primary_10_3390_ani11071927
crossref_primary_10_3389_fpls_2023_1090163
crossref_primary_10_1002_agj2_21528
crossref_primary_10_1007_s00122_025_04983_z
crossref_primary_10_3389_fpls_2020_607213
crossref_primary_10_1016_j_gene_2024_148891
crossref_primary_10_1016_j_molp_2020_03_003
crossref_primary_10_1002_ppj2_20092
crossref_primary_10_1007_s00122_024_04569_1
crossref_primary_10_1038_s41477_025_02007_8
crossref_primary_10_3389_fpls_2023_1340767
crossref_primary_10_1007_s00438_022_01986_z
crossref_primary_10_1038_s41598_021_87182_2
crossref_primary_10_1186_s13059_020_02052_w
crossref_primary_10_3389_fgene_2025_1650836
crossref_primary_10_1111_age_13032
crossref_primary_10_1126_science_ads5999
crossref_primary_10_1093_g3journal_jkac016
crossref_primary_10_1186_s12864_019_6224_x
crossref_primary_10_1111_jipb_13202
crossref_primary_10_1111_asj_13850
crossref_primary_10_3390_genes11060689
crossref_primary_10_1111_pbr_13172
crossref_primary_10_1038_s41438_020_00398_7
crossref_primary_10_3389_fpls_2018_00271
crossref_primary_10_3390_plants9091056
crossref_primary_10_1111_tpj_13828
crossref_primary_10_1016_j_vas_2024_100382
crossref_primary_10_1186_s12870_024_05754_6
crossref_primary_10_3389_fpls_2022_1048860
crossref_primary_10_1111_age_13001
crossref_primary_10_1007_s11105_025_01596_0
crossref_primary_10_3389_fpls_2021_696423
crossref_primary_10_3389_fgene_2022_853114
crossref_primary_10_3390_genes14071447
crossref_primary_10_1007_s11427_024_2578_6
crossref_primary_10_1016_j_scienta_2022_111389
crossref_primary_10_1094_PDIS_05_24_0990_RE
crossref_primary_10_1002_tpg2_70005
crossref_primary_10_1007_s11105_025_01574_6
crossref_primary_10_1016_j_aquaculture_2022_738630
crossref_primary_10_3389_fpls_2023_1092584
crossref_primary_10_3390_plants13070975
crossref_primary_10_3390_plants13070977
crossref_primary_10_1007_s11032_021_01272_7
crossref_primary_10_3389_fgene_2023_1221148
crossref_primary_10_1111_age_13493
crossref_primary_10_1002_csc2_20762
crossref_primary_10_1139_gen_2019_0098
crossref_primary_10_1002_aro2_14
crossref_primary_10_1038_s41437_020_00372_y
crossref_primary_10_3389_fpls_2019_01337
crossref_primary_10_1016_j_phytochem_2023_113957
crossref_primary_10_3389_fpls_2023_1196486
crossref_primary_10_1002_jsfa_12721
crossref_primary_10_1371_journal_pone_0221603
crossref_primary_10_3390_ijms21062129
crossref_primary_10_3389_fpls_2023_1255763
crossref_primary_10_1186_s12284_024_00739_3
crossref_primary_10_1007_s00122_019_03431_z
crossref_primary_10_3389_fpls_2018_00052
crossref_primary_10_1534_genetics_118_301487
crossref_primary_10_3389_fpls_2018_01146
crossref_primary_10_1111_nph_70570
crossref_primary_10_1111_pbr_13247
crossref_primary_10_1186_s12920_020_0667_4
crossref_primary_10_3389_fpls_2021_624156
crossref_primary_10_3390_cells11152457
crossref_primary_10_1016_j_gene_2024_149140
crossref_primary_10_3389_fgene_2025_1596192
crossref_primary_10_1017_S0960258521000064
crossref_primary_10_1093_evolut_qpad004
crossref_primary_10_1007_s00018_021_03868_w
crossref_primary_10_1186_s12870_025_06614_7
crossref_primary_10_1007_s42976_024_00538_y
crossref_primary_10_1111_age_13503
crossref_primary_10_1007_s11427_022_2158_7
crossref_primary_10_1007_s00122_023_04352_8
crossref_primary_10_3390_plants12081610
crossref_primary_10_1186_s13040_021_00247_w
crossref_primary_10_3389_fagro_2020_590374
crossref_primary_10_3390_genes15121521
crossref_primary_10_1534_g3_118_200700
crossref_primary_10_3390_agronomy11081646
crossref_primary_10_3390_plants9040503
crossref_primary_10_1371_journal_pgen_1010437
crossref_primary_10_3389_fpls_2021_647043
crossref_primary_10_1186_s12870_021_03155_7
crossref_primary_10_1111_pbr_13010
crossref_primary_10_1016_j_hpj_2023_12_015
crossref_primary_10_3389_fpls_2023_1107718
crossref_primary_10_3390_agronomy9090479
crossref_primary_10_1111_pbr_70032
crossref_primary_10_1111_ppl_14255
crossref_primary_10_3389_fpls_2024_1463121
crossref_primary_10_1007_s11032_020_01179_9
crossref_primary_10_1111_eea_13202
crossref_primary_10_1038_s41598_024_83007_0
crossref_primary_10_3389_fpls_2023_1163683
crossref_primary_10_3389_fpls_2025_1621916
crossref_primary_10_3835_plantgenome2017_12_0114
crossref_primary_10_1007_s00122_023_04245_w
crossref_primary_10_1186_s12864_020_6538_8
crossref_primary_10_3390_agronomy8060095
crossref_primary_10_1007_s00122_022_04050_x
crossref_primary_10_1111_pce_15186
crossref_primary_10_3389_fpls_2023_1229495
crossref_primary_10_3390_genes11111387
crossref_primary_10_1111_pbr_13262
crossref_primary_10_1007_s12042_024_09370_4
crossref_primary_10_3389_fpls_2022_866300
crossref_primary_10_1186_s12864_022_08793_1
crossref_primary_10_3389_fpls_2023_1251157
crossref_primary_10_1007_s00438_022_01882_6
crossref_primary_10_3389_fpls_2022_1064059
crossref_primary_10_1111_ppl_13180
crossref_primary_10_3390_ijms26178205
crossref_primary_10_3390_f13020332
crossref_primary_10_3168_jds_2020_18725
crossref_primary_10_1534_g3_118_200913
crossref_primary_10_1128_mSphere_00128_20
crossref_primary_10_1007_s11032_023_01378_0
crossref_primary_10_3389_fpls_2022_838088
crossref_primary_10_3390_ijms25116234
crossref_primary_10_1007_s13237_025_00584_9
crossref_primary_10_1073_pnas_2012087118
crossref_primary_10_1186_s12870_024_05151_z
crossref_primary_10_1094_PDIS_01_24_0162_RE
crossref_primary_10_3390_ijms19103011
crossref_primary_10_3389_fpls_2022_995609
crossref_primary_10_3390_ijms23179755
crossref_primary_10_3390_cancers17060982
crossref_primary_10_1093_g3journal_jkae161
crossref_primary_10_1007_s00425_021_03814_x
crossref_primary_10_1111_ppl_14440
crossref_primary_10_1016_j_jgg_2023_01_011
crossref_primary_10_3389_fgene_2021_799681
crossref_primary_10_1007_s00438_020_01690_w
crossref_primary_10_1186_s12870_019_2000_y
crossref_primary_10_3390_agronomy13051396
crossref_primary_10_1186_s12870_021_03146_8
crossref_primary_10_1094_PHYTO_04_21_0160_R
crossref_primary_10_1186_s12864_024_10545_2
crossref_primary_10_1371_journal_pgen_1009495
crossref_primary_10_1111_pbi_13080
crossref_primary_10_1186_s12870_018_1293_6
crossref_primary_10_1002_advs_202412587
crossref_primary_10_1007_s00122_017_2951_z
crossref_primary_10_3390_ijms19103237
crossref_primary_10_1038_s41598_020_62034_7
crossref_primary_10_1002_tpg2_20179
crossref_primary_10_1186_s12870_021_03111_5
crossref_primary_10_1016_j_plaphy_2025_109759
crossref_primary_10_1016_j_ygeno_2022_110406
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_3390_ijms242015300
crossref_primary_10_3390_ijms20153667
crossref_primary_10_1111_tpj_16387
crossref_primary_10_3389_fgene_2021_799664
crossref_primary_10_3390_genes11121395
crossref_primary_10_1093_jxb_eraf142
crossref_primary_10_1186_s12870_024_04976_y
crossref_primary_10_3389_fpls_2020_598509
crossref_primary_10_3389_fpls_2021_671323
crossref_primary_10_3389_fgene_2022_1060304
crossref_primary_10_1007_s00122_021_03820_3
crossref_primary_10_1007_s42729_025_02504_x
crossref_primary_10_1038_s41477_017_0007_7
crossref_primary_10_1007_s13205_024_03985_w
crossref_primary_10_1016_j_jia_2024_11_014
crossref_primary_10_3389_fgene_2024_1377223
crossref_primary_10_3389_fpls_2024_1297096
crossref_primary_10_1007_s10722_022_01488_2
crossref_primary_10_3390_agriculture15020124
crossref_primary_10_1007_s00122_021_03988_8
crossref_primary_10_1016_j_cpb_2025_100464
crossref_primary_10_1093_g3journal_jkaf024
crossref_primary_10_1093_hr_uhac205
crossref_primary_10_1002_tpg2_20391
crossref_primary_10_3389_fpls_2024_1442008
crossref_primary_10_1007_s00122_022_04090_3
crossref_primary_10_1371_journal_pone_0261461
crossref_primary_10_1186_s13059_025_03768_3
crossref_primary_10_1007_s00122_024_04701_1
crossref_primary_10_3390_genes13112002
crossref_primary_10_1002_csc2_21360
crossref_primary_10_1007_s00122_025_04924_w
crossref_primary_10_1111_pce_13189
crossref_primary_10_1002_tpg2_20146
crossref_primary_10_1007_s13353_022_00696_x
crossref_primary_10_1038_s41588_019_0401_3
crossref_primary_10_1007_s00122_020_03762_2
crossref_primary_10_1093_plcell_koab134
crossref_primary_10_1093_plcell_koad314
crossref_primary_10_1007_s10722_024_02050_y
crossref_primary_10_3389_fvets_2022_932034
crossref_primary_10_1186_s12284_024_00700_4
crossref_primary_10_1111_tpj_17229
crossref_primary_10_3389_fgene_2022_819849
crossref_primary_10_1094_PHYTO_11_21_0465_R
crossref_primary_10_3389_fgene_2022_934757
crossref_primary_10_3389_fpls_2021_698116
crossref_primary_10_1016_j_lwt_2024_116301
crossref_primary_10_1002_tpg2_20136
crossref_primary_10_1007_s10681_025_03494_8
crossref_primary_10_1093_hr_uhad117
crossref_primary_10_1007_s00122_023_04421_y
crossref_primary_10_1016_j_envexpbot_2022_105034
crossref_primary_10_1111_pbi_13284
crossref_primary_10_1002_tpg2_20373
crossref_primary_10_3390_ijms20020359
crossref_primary_10_1111_tpj_16583
crossref_primary_10_1093_jxb_erac236
crossref_primary_10_3168_jds_2022_21923
crossref_primary_10_1016_j_gpb_2020_06_006
crossref_primary_10_1007_s00122_020_03709_7
crossref_primary_10_3390_nu15204398
crossref_primary_10_1016_j_jia_2025_06_016
crossref_primary_10_34133_plantphenomics_0270
crossref_primary_10_1007_s10681_020_02707_6
crossref_primary_10_3389_fpls_2024_1458179
crossref_primary_10_1002_tpg2_20161
crossref_primary_10_1007_s10142_023_01261_3
crossref_primary_10_1186_s12870_020_02804_7
crossref_primary_10_3390_plants12234044
crossref_primary_10_1016_j_jplph_2025_154494
crossref_primary_10_3389_fgene_2023_1168150
crossref_primary_10_1186_s12870_024_05805_y
crossref_primary_10_3390_ijms23105538
crossref_primary_10_1007_s11295_018_1305_6
crossref_primary_10_1007_s11103_024_01489_y
crossref_primary_10_1093_plphys_kiae611
crossref_primary_10_1016_j_plantsci_2017_12_004
crossref_primary_10_1007_s00184_020_00784_0
crossref_primary_10_1111_pbi_13062
crossref_primary_10_3390_ijms252111836
crossref_primary_10_1093_jas_skab210
crossref_primary_10_1016_j_smallrumres_2023_107053
crossref_primary_10_3390_ani11082259
crossref_primary_10_1186_s40104_019_0322_0
crossref_primary_10_1186_s12864_019_5992_7
crossref_primary_10_1007_s11104_017_3479_3
crossref_primary_10_1111_pce_15322
crossref_primary_10_1186_s12870_023_04306_8
crossref_primary_10_1002_tpg2_20102
crossref_primary_10_1111_tpj_70250
crossref_primary_10_1093_hr_uhad169
crossref_primary_10_1002_tpg2_20105
crossref_primary_10_1111_age_12851
crossref_primary_10_3390_agronomy13102538
crossref_primary_10_1111_pbi_70011
crossref_primary_10_1016_j_pce_2025_104037
crossref_primary_10_1007_s10722_021_01293_3
crossref_primary_10_7717_peerj_13128
crossref_primary_10_1093_g3journal_jkaf090
crossref_primary_10_1111_tpj_16337
crossref_primary_10_1007_s00122_023_04256_7
crossref_primary_10_1007_s00122_023_04487_8
crossref_primary_10_1007_s11105_023_01408_3
crossref_primary_10_1007_s00122_020_03640_x
crossref_primary_10_1093_hr_uhac069
crossref_primary_10_1111_rssb_12495
crossref_primary_10_1038_ng_3975
crossref_primary_10_3389_fpls_2021_699486
crossref_primary_10_1007_s42976_023_00472_5
crossref_primary_10_1093_plphys_kiab390
crossref_primary_10_3389_fpls_2023_1229457
crossref_primary_10_1002_bies_202100109
crossref_primary_10_1007_s10681_018_2215_2
crossref_primary_10_1007_s00122_020_03707_9
crossref_primary_10_1016_j_jia_2023_02_040
crossref_primary_10_3390_genes13020351
crossref_primary_10_3390_plants12030419
crossref_primary_10_1007_s00438_019_01631_2
crossref_primary_10_1007_s10681_021_02783_2
crossref_primary_10_3389_fpls_2021_763618
crossref_primary_10_3389_fpls_2023_1179357
crossref_primary_10_3389_fpls_2020_00861
crossref_primary_10_3389_fpls_2022_883280
crossref_primary_10_1186_s12864_017_3843_y
crossref_primary_10_1002_tpg2_20363
crossref_primary_10_1186_s12864_020_6616_y
crossref_primary_10_3389_fvets_2024_1506471
crossref_primary_10_1007_s11105_025_01559_5
crossref_primary_10_3390_genes13122297
crossref_primary_10_1038_s41467_022_35621_7
crossref_primary_10_1007_s00122_022_04104_0
crossref_primary_10_1007_s00122_025_04857_4
crossref_primary_10_1093_jxb_eraa084
crossref_primary_10_1007_s11103_020_01111_x
crossref_primary_10_3835_plantgenome2017_01_0001
crossref_primary_10_1007_s00122_018_3108_4
crossref_primary_10_1111_pbi_13023
crossref_primary_10_1002_tpg2_20115
crossref_primary_10_1002_tpg2_20110
crossref_primary_10_1007_s10658_020_02172_w
crossref_primary_10_1093_pcp_pcaa019
crossref_primary_10_3389_fgene_2021_724533
crossref_primary_10_1007_s11816_025_00983_z
Cites_doi 10.1038/ng.2876
10.1105/tpc.11.5.949
10.1086/519795
10.1093/nar/gkl913
10.1186/gb-2013-14-6-r55
10.1375/twin.13.6.517
10.1186/1471-2156-13-100
10.1038/nrg2813
10.1534/genetics.114.164285
10.1371/journal.pgen.0030004
10.1371/journal.pgen.0020190
10.1371/journal.pgen.1000686
10.1038/ng.548
10.1371/journal.pgen.1003246
10.3168/jds.2007-0980
10.1038/nmeth.1681
10.1186/s12915-014-0073-5
10.1038/ng.746
10.1534/genetics.107.080101
10.1038/ng.608
10.1038/nrg2554
10.1038/ng1847
10.1038/ng.2410
10.1038/srep06874
10.1038/nature08800
10.1038/90135
10.1038/ng.2310
10.1038/ng1702
10.1038/ng.2314
10.1038/nmeth.2037
10.1093/bioinformatics/bts444
10.1038/ng0508-491
10.1038/ng.546
10.1038/ng1337
10.1038/ng.2456
10.1038/ng.3190
10.1093/bioinformatics/btm108
ContentType Journal Article
Copyright COPYRIGHT 2016 Public Library of Science
2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet 12(2): e1005767. doi:10.1371/journal.pgen.1005767
Copyright_xml – notice: COPYRIGHT 2016 Public Library of Science
– notice: 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet 12(2): e1005767. doi:10.1371/journal.pgen.1005767
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1005767
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Iterative Usage of Fixed and Random Effect Models for GWAS
EISSN 1553-7404
ExternalDocumentID 1773769578
oai_doaj_org_article_fa4334b38e86407ea113a2f0ca8ca9fb
PMC4734661
A479538945
26828793
10_1371_journal_pgen_1005767
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
7X8
PUEGO
5PM
AAPBV
ABPTK
PQEST
PQUKI
ID FETCH-LOGICAL-c764t-e4e4c3476685aa1147350bbff57a30dd538c522647671d3628b33ccb0f687aa93
IEDL.DBID FPL
ISICitedReferencesCount 852
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372554100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Sun Jul 02 11:04:36 EDT 2023
Tue Oct 14 18:56:03 EDT 2025
Tue Nov 04 01:40:44 EST 2025
Fri Sep 05 12:59:27 EDT 2025
Tue Nov 11 10:14:25 EST 2025
Tue Nov 04 17:46:57 EST 2025
Thu Nov 13 14:50:14 EST 2025
Thu Nov 13 15:46:33 EST 2025
Thu Nov 13 15:52:13 EST 2025
Thu May 22 21:23:39 EDT 2025
Wed Feb 19 02:33:57 EST 2025
Sat Nov 29 01:34:19 EST 2025
Tue Nov 18 21:46:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-e4e4c3476685aa1147350bbff57a30dd538c522647671d3628b33ccb0f687aa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: ZZ BF ESB. Performed the experiments: XL. Analyzed the data: XL MH. Contributed reagents/materials/analysis tools: XL ZZ. Wrote the paper: ZZ XL. Supervised the design of the study: ZZ BF ESB.
The authors have declared that no competing interests exist.
OpenAccessLink http://dx.doi.org/10.1371/journal.pgen.1005767
PMID 26828793
PQID 1762347272
PQPubID 23479
ParticipantIDs plos_journals_1773769578
doaj_primary_oai_doaj_org_article_fa4334b38e86407ea113a2f0ca8ca9fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4734661
proquest_miscellaneous_1762347272
gale_infotracmisc_A479538945
gale_infotracacademiconefile_A479538945
gale_incontextgauss_ISR_A479538945
gale_incontextgauss_ISN_A479538945
gale_incontextgauss_IOV_A479538945
gale_healthsolutions_A479538945
pubmed_primary_26828793
crossref_primary_10_1371_journal_pgen_1005767
crossref_citationtrail_10_1371_journal_pgen_1005767
PublicationCentury 2000
PublicationDate 2016-2-1
2016-Feb
20160201
2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-2-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2016
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References D Reich (ref12) 2008
PM Visscher (ref4) 2010; 13
J Marchini (ref5) 2004; 36
Q Wang (ref24) 2014
HHR Neves (ref30) 2012; 13
AL Price (ref8) 2006; 38
J Yang (ref1) 2010; 42
C Widmer (ref37) 2014; 4
Q Lan (ref27) 2012; 44
G McVean (ref13) 2009; 5
MC Romay (ref29) 2013; 14
PM VanRaden (ref26) 2008; 91
V Segura (ref25) 2012
D Altshuler (ref41) 2010; 476
M Li (ref22) 2014; 12
SJ Larsson (ref11) 2013; 9
HM Kang (ref16) 2010; 42
J Listgarten (ref23) 2012
SD Michaels (ref32) 1999; 11
GR Svishcheva (ref20) 2012
B Fan (ref31) 2011; 6
F Tian (ref2) 2011; 43
AE Lipka (ref42) 2012; 28
D Welter (ref28) 2014
AL Price (ref7) 2010; 11
HM Kang (ref15) 2008; 178
X Zhou (ref18) 2012
B Bulik-Sullivan (ref36) 2015
S Atwell (ref21) 2010; 465
J Yu (ref9) 2006; 38
Z Zhang (ref17) 2010; 42
S Purcell (ref39) 2007; 81
P Loh (ref35) 2014; 47
C Lippert (ref19) 2011
J Yang (ref6) 2014; 46
N Patterson (ref34) 2006; 2
G Tucker (ref33) 2014
K Zhao (ref14) 2007; 3
KA Frazer (ref3) 2009; 10
JM Thornsberry (ref10) 2001; 28
YS Aulchenko (ref40) 2007; 23
T Kulikova (ref38) 2007; 35
26991120 - PLoS Genet. 2016 Mar;12(3):e1005957
References_xml – volume: 46
  start-page: 100
  year: 2014
  ident: ref6
  article-title: Advantages and pitfalls in the application of mixed-model association methods
  publication-title: Nat Genet
  doi: 10.1038/ng.2876
– volume: 11
  start-page: 949
  year: 1999
  ident: ref32
  article-title: FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.5.949
– volume: 6
  year: 2011
  ident: ref31
  article-title: Genome-wide association study identifies loci for body composition and structural soundness traits in pigs
  publication-title: PLoS One
– volume: 81
  start-page: 559
  year: 2007
  ident: ref39
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 35
  year: 2007
  ident: ref38
  article-title: EMBL Nucleotide Sequence Database in 2006
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl913
– volume: 14
  start-page: R55
  year: 2013
  ident: ref29
  article-title: Comprehensive genotyping of the USA national maize inbred seed bank
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-6-r55
– volume: 13
  start-page: 517
  year: 2010
  ident: ref4
  article-title: A commentary on “common SNPs explain a large proportion of the heritability for human height” by Yang
  publication-title: Twin Res Hum Genet
  doi: 10.1375/twin.13.6.517
– volume: 13
  start-page: 100
  year: 2012
  ident: ref30
  article-title: Queiroz S a. A comparison of statistical methods for genomic selection in a mice population
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-13-100
– volume: 11
  start-page: 459
  year: 2010
  ident: ref7
  article-title: New approaches to population stratification in genome-wide association studies
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2813
– start-page: 1045
  year: 2014
  ident: ref33
  article-title: Improving the power of GWAS and avoiding confounding from population stratification with PC-select
  publication-title: Genetics
  doi: 10.1534/genetics.114.164285
– volume: 3
  start-page: 0071
  year: 2007
  ident: ref14
  article-title: An Arabidopsis example of association mapping in structured samples
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030004
– volume: 2
  start-page: 2074
  year: 2006
  ident: ref34
  article-title: Population structure and eigenanalysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020190
– volume: 5
  year: 2009
  ident: ref13
  article-title: A genealogical interpretation of principal components analysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000686
– volume: 42
  start-page: 348
  year: 2010
  ident: ref16
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.548
– volume: 476
  start-page: 1061
  year: 2010
  ident: ref41
  article-title: A map of human genome variation from population scale sequencing
  publication-title: Nature
– volume: 9
  year: 2013
  ident: ref11
  article-title: Lessons from Dwarf8 on the Strengths and Weaknesses of Structured Association Mapping
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003246
– volume: 91
  start-page: 4414
  year: 2008
  ident: ref26
  article-title: Efficient methods to compute genomic predictions
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2007-0980
– start-page: 42
  year: 2014
  ident: ref28
  article-title: The NHGRI GWAS Catalog, a curated resource of SNP-trait associations
  publication-title: Nucleic Acids Res
– start-page: 833
  year: 2011
  ident: ref19
  article-title: FaST linear mixed models for genome-wide association studies
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1681
– year: 2015
  ident: ref36
  article-title: LD Score Regression Distinguishes Confounding from Polygenicity in Genome-Wide Association Studies [Internet]
  publication-title: Nature Genetics
– volume: 12
  start-page: 73
  year: 2014
  ident: ref22
  article-title: Enrichment of statistical power for genome-wide association studies
  publication-title: BMC Biol
  doi: 10.1186/s12915-014-0073-5
– volume: 43
  start-page: 159
  year: 2011
  ident: ref2
  article-title: Genome-wide association study of leaf architecture in the maize nested association mapping population
  publication-title: Nat Genet
  doi: 10.1038/ng.746
– volume: 178
  start-page: 1709
  year: 2008
  ident: ref15
  article-title: Efficient control of population structure in model organism association mapping
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– volume: 42
  start-page: 565
  year: 2010
  ident: ref1
  article-title: Common {SNPs} explain a large proportion of the heritability for human height
  publication-title: Nat Gen
  doi: 10.1038/ng.608
– volume: 10
  start-page: 241
  year: 2009
  ident: ref3
  article-title: Human genetic variation and its contribution to complex traits
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2554
– volume: 38
  start-page: 904
  year: 2006
  ident: ref8
  article-title: Principal components analysis corrects for stratification in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng1847
– start-page: 1166
  year: 2012
  ident: ref20
  article-title: Rapid variance components–based method for whole-genome association analysis
  publication-title: Nature Genetics
  doi: 10.1038/ng.2410
– volume: 4
  start-page: 6874
  year: 2014
  ident: ref37
  article-title: Further improvements to linear mixed models for genome-wide association studies
  publication-title: Sci Rep
  doi: 10.1038/srep06874
– volume: 465
  start-page: 627
  year: 2010
  ident: ref21
  article-title: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines
  publication-title: Nature
  doi: 10.1038/nature08800
– volume: 28
  start-page: 286
  year: 2001
  ident: ref10
  article-title: Dwarf8 polymorphisms associate with variation in flowering time
  publication-title: Nat Genet
  doi: 10.1038/90135
– year: 2014
  ident: ref24
  article-title: A super powerful method for genome wide association study
  publication-title: PLoS One
– start-page: 821
  year: 2012
  ident: ref18
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nature Genetics
  doi: 10.1038/ng.2310
– volume: 38
  start-page: 203
  year: 2006
  ident: ref9
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
  publication-title: Nat Genet
  doi: 10.1038/ng1702
– start-page: 825
  year: 2012
  ident: ref25
  article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations
  publication-title: Nature Genetics
  doi: 10.1038/ng.2314
– start-page: 525
  year: 2012
  ident: ref23
  article-title: Improved linear mixed models for genome-wide association studies
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2037
– volume: 28
  start-page: 2397
  year: 2012
  ident: ref42
  article-title: GAPIT: genome association and prediction integrated tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts444
– start-page: 491
  year: 2008
  ident: ref12
  article-title: Principal component analysis of genetic data
  publication-title: Nature genetics
  doi: 10.1038/ng0508-491
– volume: 42
  start-page: 355
  year: 2010
  ident: ref17
  article-title: Mixed linear model approach adapted for genome-wide association studies
  publication-title: Nat Genet. Nature Publishing Group
  doi: 10.1038/ng.546
– volume: 36
  start-page: 512
  year: 2004
  ident: ref5
  article-title: The effects of human population structure on large genetic association studies
  publication-title: Nat Genet
  doi: 10.1038/ng1337
– volume: 44
  start-page: 1330
  year: 2012
  ident: ref27
  article-title: Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia
  publication-title: Nat Genet
  doi: 10.1038/ng.2456
– volume: 47
  start-page: 284
  year: 2014
  ident: ref35
  article-title: Efficient Bayesian mixed model analysis increases association power in large cohorts
  publication-title: Nat Genet
  doi: 10.1038/ng.3190
– volume: 23
  start-page: 1294
  year: 2007
  ident: ref40
  article-title: GenABEL: an R library for genome-wide association analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm108
– reference: 26991120 - PLoS Genet. 2016 Mar;12(3):e1005957
SSID ssj0035897
Score 2.6736739
Snippet False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that...
  False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005767
SubjectTerms Arabidopsis - genetics
Big Data
Biology and Life Sciences
Datasets
Flowers - genetics
Flowers - physiology
Genes, Plant
Genetic Loci
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genotype & phenotype
Humans
Linear models (Statistics)
Lung cancer
Medicine and Health Sciences
Models, Genetic
Physical Sciences
Population
Power
Quantitative Trait, Heritable
Research and Analysis Methods
Software
Species Specificity
Statistical methods
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQBBIviO8FBhiExFNYUzux_TjQCpNQmQYbe7Mcf0ClLqmWFsG_597YrRqEtD3w0ofmRFXvubm-ka_PIeS1K5RQrjR5La3NeeV9bhgT-ZiXwbjC23HvdXj2SUyn8vxcHW9ZfeFMWJQHjoHbD4YzxmsmvcQ9J2-KgplxGFkjrVGhxuoLXc_6ZSrWYFbKaKtSliwX8FqfDs0xUewnjt4ugCCcEYCGWwwWpV67f1OhdxbztvtX-_n3FOXWsjS5S-6kfpIexP9xj9zwzX1yKzpM_n5A5ke9ajKUNHqKI2S0DXQy--UdNY2jJ_DRXtCoYEzRFm3eUehi6TF6p4XVvEcd9ioT8PP0g2_aC59_mzlPt3ilaRjxITmdHH59_zFPBgu5FRVf5p57bhkXVSVLA4FFG-JRXYdQCsNGzkExtNifAUIUDpY6WTNmbT0KlRTGKPaI7DRt43cJLaQPPhhmGCoOWq5q5Qony7quZAiOZYStI6xtUh9HE4y57rfUBLyFxIBp5EUnXjKSb-5aRPWNK_DvkLwNFrWz-y8go3TKKH1VRmXkBVKv40HUTQXQB1woiIjiZUZe9QjUz2hwQOe7WXWdPvp8dg3Ql-l1QCcD0JsECi3EzJp0cgIij-JdA-TeAAmlwg4u72I2r0PX6UIIWGAUVO2MvFxnuMa7cPSu8e0KMdAhc9yvz8jjmPGb-I4r9EtQwK4YPAsDAoZXmtmPXsQcco1Db_jkfzD2lNyGPjYN0--RneXlyj8jN-3P5ay7fN5Xhj9rPWh_
  priority: 102
  providerName: Directory of Open Access Journals
Title Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/26828793
https://www.proquest.com/docview/1762347272
https://pubmed.ncbi.nlm.nih.gov/PMC4734661
https://doaj.org/article/fa4334b38e86407ea113a2f0ca8ca9fb
http://dx.doi.org/10.1371/journal.pgen.1005767
Volume 12
WOSCitedRecordID wos000372554100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVYBxIvfMMCoxiExFOgqZ3YftxQC5VGiQob5Sly_AGVuqRaWgT_nmsnDcvExHjJQ3Msuefa19fx9bkIvdSRYELHMsy5UiFNjAklISwc0thKHRk19LUOT47YdMrnc5H-2SheOMEnLHrTcPp6BYS6M30IkNkO2h2SJHEpXOP0aOt5ScwFa67HXdays_x4lf7WF_dWy7L6W6B5MV_y3AI0vv2_Xb-DbjWhJj6ox8ZddM0U99CNuvjkr_toOfGCyuDt8LHLLsOlxePFT6OxLDSewaM8xbW4MXYV05YVhgAXp66smt0sPWrkBSigv_idKcpTE35ZaIPPmRw3eYoP0PF49Pnt-7CpvRAqltB1aKihilAGJMdSwqaJkXiQ59bGTJKB1uAnlQvdAMEiDasgzwlRKh_YhDMpBXmIekVZmD2EI26ssZJI4sQIFRW50JHmcZ4n3FpNAkS2JslUI0zu6mMsM3_axmCDUhOWOR6zhscAhW2rVS3M8Q_8obN2i3Wy2v4HMFjWzNLMSkoIzQk33B1wGvjjRA7tQEmupLB5gJ65sZLVd1Rb55AdUCaAEUHjAL3wCCetUbjcnW9yU1XZ5OPJFUCfplcBzTqgVw3IlsCZks2lCmDe6Xp1kPsdJHgR1Xm954b_lroqixiDtUeAQw_Q8-2UyFwrl5VXmHLjMBA8U3eUH6BH9RRp-R0mrpSCAOuyzuTpGKD7plh89_rmMNYohI2PL-_SE3QTAtcme34f9dZnG_MUXVc_1ovqrI922Jz5J--j3cPRNJ31_beWvncXfZffm8KbdPIh_fob2vppWA
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggOCF37DAYAYh8ZTR1E5sPw60sopSqrFfb5bj2FCpS6alRfDfc5e41YKY2AMvVdR8luLP9vmsO39HyJsiUUIVqYlzaW3MM-diw5iIBzz1pkicHTS1Do_GYjKRJydqGiSF8C5MYBDOiPOqbiL5-FCV7l1gsg2cbidMJCvw9hlwjeF-8J3FdXJDqERidtdwOl4ZZZZKJcLNuctadnamRsB_baZ7-BF_80H_TKW8sDcN7_3HXt0nd4ODSnfaFg_INVc-JLfakpW_HpH5qJFhBhtJDzEnjVaeDmc_XUFNWdB9-KlOaSuJTLHO2rym4BbTKRZj88t5g9ptZCugK_SjK6tTFx_PCkcvTBQashsfk8Ph7sGHvThUbIityPgidtxxy7jIMpkaA0ctwdJ-nnufCsP6RQHW1aLDBwiRFLB3ypwxa_O-z6QwRrEnpFcCLRuEJtJ55w0zDCUMLVe5KpJCpnmeSe8LFhG2Gi1tg5w5VtWY6yZGJ-BY0xKmkUcdeIxIvG511sp5_AP_HifCGoti3M0fMIY6jJ32hjPGcyadxLCog44zM_B9a6Q1yucR2cJppNubrWuTone4UMCI4mlEXjcIFOQoMePnm1nWtR59OboC6OvkKqD9DuhtAPkKOLMmXMUA5lENrIPc7CDB9tjO6w2cyCvqap0IATuWgm0gIq9Wq0VjK8zlK121RAy43BwTACLytF09a34HGRZgUDC6orOuOgPQfVPOvjeq6DDXODibzy7_pC1ye-_g81iPR5NPz8kdcH1D_v0m6S3Ol-4FuWl_LGb1-cvGdvwG5Ed7QQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGuYgX7rDCYAYheMrW1E5sPw5YoWIq1WCXF2Q5jg2VumRaWgT_nnMSp1oQE3vhpaqaL1H8-fj4uD7-DiEv81gJlScmyqS1EU-diwxjIhryxJs8dnZY1zo83BOTiTw-VtM18rU9CxMYhDXivKzqnXz8UhZuOzC5jXpFze7pVsxE3N6xdQqE454_BNDiVa04hP-MLfAA0hVyVahY4tpsNN1rHTVLpBLhNN1FD-rMVrWo_8p19_DF_haX_pleeW6-Gt3-zy29Q26FQJbuNE-5S9ZccY9cb0pb_rpP5uNarhl8KT3A3DVaejqa_XQ5NUVO9-GjPKGNdDLFemzzikL4TKdYtM0v5zVqt5a3gObR964oT1x0NMsdPWdQNGRBPiAHo90vbz9EobJDZEXKF5HjjlvGRZrKxBhYkgmWDLLM-0QYNshz8MIWA0NAiDiHOVZmjFmbDXwqhTGKPSS9AqhaJzSWzjtvmGEodWi5ylQe5zLJslR6n7M-YW0Pahtkz7H6xlzXe3kClj8NYRpp1YHWPolWd502sh__wL9B41hhUbS7_gH6VYf-1N5wxnjGpJO4feqg4cwM_cAaaY3yWZ9somnp5gTsyvXoHS4UMKJ40icvagQKdxSYGfTNLKtKjz8dXgL0eXIZ0H4H9DqAfAmcWROObADzaJsd5EYHCT7Kdi6vo3G31FU6FgJmNgXTRZ88b0eQxrsw569w5RIxEJpzTBTok0fNiFrxO0yxUIOC3hWdsdbpgO6VYva9Vk8HW-MQlD6--JU2yY3pu5HeG08-PiE3IUIOafobpLc4W7qn5Jr9sZhVZ89qd_IbmSqKdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Usage+of+Fixed+and+Random+Effect+Models+for+Powerful+and+Efficient+Genome-Wide+Association+Studies&rft.jtitle=PLoS+genetics&rft.au=Liu%2C+Xiaolei&rft.au=Huang%2C+Meng&rft.au=Fan%2C+Bin&rft.au=Buckler%2C+Edward+S&rft.date=2016-02-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pgen.1005767&rft.externalDocID=A479538945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon