Regularized Machine Learning in the Genetic Prediction of Complex Traits

  [...]we discuss some key future advances, open questions and challenges in this developing field, when moving toward low-frequency variants and cross-phenotype interactions. Multivariate modeling approaches have already been shown to provide improved insights into genetic mechanisms and the intera...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS genetics Ročník 10; číslo 11; s. e1004754
Hlavní autori: Okser, Sebastian, Pahikkala, Tapio, Airola, Antti, Salakoski, Tapio, Ripatti, Samuli, Aittokallio, Tero
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 01.11.2014
Public Library of Science (PLoS)
Predmet:
ISSN:1553-7404, 1553-7390, 1553-7404
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:  [...]we discuss some key future advances, open questions and challenges in this developing field, when moving toward low-frequency variants and cross-phenotype interactions. Multivariate modeling approaches have already been shown to provide improved insights into genetic mechanisms and the interaction networks behind many complex traits, including atherosclerosis, coronary heart disease, and lipid levels, which would have gone undetected using the standard univariate modeling [2], [19]-[22].
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1004754