Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan

Although dialysis patients are at a high risk of death, it is difficult for medical practitioners to simultaneously evaluate many inter-related risk factors. In this study, we evaluated the characteristics of hemodialysis patients using machine learning model, and its usefulness for screening hemodi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PloS one Ročník 15; číslo 5; s. e0233491
Hlavní autori: Kanda, Eiichiro, Epureanu, Bogdan I., Adachi, Taiji, Tsuruta, Yuki, Kikuchi, Kan, Kashihara, Naoki, Abe, Masanori, Masakane, Ikuto, Nitta, Kosaku
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 29.05.2020
Public Library of Science (PLoS)
Predmet:
ISSN:1932-6203, 1932-6203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.