Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan

Although dialysis patients are at a high risk of death, it is difficult for medical practitioners to simultaneously evaluate many inter-related risk factors. In this study, we evaluated the characteristics of hemodialysis patients using machine learning model, and its usefulness for screening hemodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 15; H. 5; S. e0233491
Hauptverfasser: Kanda, Eiichiro, Epureanu, Bogdan I., Adachi, Taiji, Tsuruta, Yuki, Kikuchi, Kan, Kashihara, Naoki, Abe, Masanori, Masakane, Ikuto, Nitta, Kosaku
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 29.05.2020
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!