Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan
Although dialysis patients are at a high risk of death, it is difficult for medical practitioners to simultaneously evaluate many inter-related risk factors. In this study, we evaluated the characteristics of hemodialysis patients using machine learning model, and its usefulness for screening hemodi...
Uloženo v:
| Vydáno v: | PloS one Ročník 15; číslo 5; s. e0233491 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
29.05.2020
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!