Improving cold storage and processing traits in potato through targeted gene knockout

Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high‐temperature processing, these reducing sugars react with free amino acids, resulting in brown, bi...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal Vol. 14; no. 1; pp. 169 - 176
Main Authors: Clasen, Benjamin M, Stoddard, Thomas J, Luo, Song, Demorest, Zachary L, Li, Jin, Cedrone, Frederic, Tibebu, Redeat, Davison, Shawn, Ray, Erin E, Daulhac, Aurelie, Coffman, Andrew, Yabandith, Ann, Retterath, Adam, Haun, William, Baltes, Nicholas J, Mathis, Luc, Voytas, Daniel F, Zhang, Feng
Format: Journal Article
Language:English
Published: England Blackwell Pub 01.01.2016
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects:
ISSN:1467-7644, 1467-7652, 1467-7652
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high‐temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter‐tasting products and elevated levels of acrylamide—a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator‐like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv‐knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.
AbstractList Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high‐temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter‐tasting products and elevated levels of acrylamide—a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator‐like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv‐knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.
Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high‐temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter‐tasting products and elevated levels of acrylamide—a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene ( VInv ), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator‐like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv‐ knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.
Summary Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high‐temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter‐tasting products and elevated levels of acrylamide—a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator‐like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv‐knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.
Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.
Author Clasen, Benjamin M
Baltes, Nicholas J
Luo, Song
Demorest, Zachary L
Stoddard, Thomas J
Ray, Erin E
Haun, William
Tibebu, Redeat
Daulhac, Aurelie
Retterath, Adam
Davison, Shawn
Mathis, Luc
Cedrone, Frederic
Voytas, Daniel F
Yabandith, Ann
Li, Jin
Coffman, Andrew
Zhang, Feng
AuthorAffiliation 1 Cellectis plant sciences Inc. New Brighton MN USA
2 Cellectis SA Paris France
AuthorAffiliation_xml – name: 2 Cellectis SA Paris France
– name: 1 Cellectis plant sciences Inc. New Brighton MN USA
Author_xml – sequence: 1
  fullname: Clasen, Benjamin M
– sequence: 2
  fullname: Stoddard, Thomas J
– sequence: 3
  fullname: Luo, Song
– sequence: 4
  fullname: Demorest, Zachary L
– sequence: 5
  fullname: Li, Jin
– sequence: 6
  fullname: Cedrone, Frederic
– sequence: 7
  fullname: Tibebu, Redeat
– sequence: 8
  fullname: Davison, Shawn
– sequence: 9
  fullname: Ray, Erin E
– sequence: 10
  fullname: Daulhac, Aurelie
– sequence: 11
  fullname: Coffman, Andrew
– sequence: 12
  fullname: Yabandith, Ann
– sequence: 13
  fullname: Retterath, Adam
– sequence: 14
  fullname: Haun, William
– sequence: 15
  fullname: Baltes, Nicholas J
– sequence: 16
  fullname: Mathis, Luc
– sequence: 17
  fullname: Voytas, Daniel F
– sequence: 18
  fullname: Zhang, Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25846201$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URNuFA38AInEph239Fds5Iaj4WKkSSLBny3EmWbdZO9hJUf99vexuBRVI68tYmud9NXpnTtGRDx4QeknwOcnvYqjdOaFM4ifohHAh51KU9Ojhz_kxOk3pGmNKRCmeoWNaKi4oJidouVgPMdw63xU29E2RxhBNB4XxTZEbFlLa9MZo3JgK54shjGYMxbiKYepWxWhiByM0RQceihsf7E2YxufoaWv6BC92dYaWnz7-uPwyv_r6eXH5_mpuZSnxnFguQDDSWqAWBCUttk3LcGPBNqQCpQDzltYYVFVaqsralow3pawNVm3Vshl6t_UdpnoNWebzoL0eolubeKeDcfrvjncr3YVbTQhTFeEqO5ztHGL4OUEa9dolC31vPIQpaaIww4qKw1DMK0bZAaiUIltiyg5ABVZS8ew7Q28eoddhij4HrEmFBZWYMZGpV39m8hDGfucZuNgCNoaUIrTaurxTFzYRuV4TrDdXpfNV6d9XlRVvHyn2pv9id-6_XA93_wf1tw-LveL1VtGaoE0XXdLL73lQgTGhikrO7gFwmeSC
CitedBy_id crossref_primary_10_1111_cjag_12221
crossref_primary_10_1007_s00299_016_1988_9
crossref_primary_10_1093_jxb_erac171
crossref_primary_10_1007_s11240_021_02221_0
crossref_primary_10_1007_s11540_024_09800_6
crossref_primary_10_1007_s12230_021_09855_y
crossref_primary_10_1002_biot_202400457
crossref_primary_10_1016_j_gene_2022_146556
crossref_primary_10_3390_ijms20020402
crossref_primary_10_1007_s11816_017_0446_7
crossref_primary_10_1007_s11627_021_10201_4
crossref_primary_10_1007_s00299_019_02426_w
crossref_primary_10_1007_s00299_016_1993_z
crossref_primary_10_1007_s12033_018_00150_6
crossref_primary_10_1080_07352689_2017_1402989
crossref_primary_10_3389_fpls_2018_01249
crossref_primary_10_3390_horticulturae10010057
crossref_primary_10_3390_biology14040445
crossref_primary_10_3389_fpls_2017_02034
crossref_primary_10_3390_su12031048
crossref_primary_10_3389_fpls_2017_01181
crossref_primary_10_1080_19440049_2020_1871083
crossref_primary_10_3389_fmicb_2017_00047
crossref_primary_10_1016_j_cofs_2022_100887
crossref_primary_10_1007_s13205_018_1355_3
crossref_primary_10_1186_s13750_019_0171_5
crossref_primary_10_1007_s11033_021_06650_0
crossref_primary_10_1590_0103_8478cr20200470
crossref_primary_10_1177_1535370218793890
crossref_primary_10_3390_plants10112259
crossref_primary_10_1007_s12230_016_9513_9
crossref_primary_10_3390_ijms20164045
crossref_primary_10_1080_07388551_2023_2270581
crossref_primary_10_3389_fgeed_2023_1242510
crossref_primary_10_1002_biot_201600173
crossref_primary_10_3390_ijms23179982
crossref_primary_10_1016_j_plaphy_2018_02_019
crossref_primary_10_1007_s13580_016_0281_8
crossref_primary_10_1080_07352689_2016_1148980
crossref_primary_10_1186_s12896_019_0530_x
crossref_primary_10_2903_j_efsa_2020_6299
crossref_primary_10_3390_plants12020379
crossref_primary_10_3390_su8101054
crossref_primary_10_1007_s11240_020_02008_9
crossref_primary_10_1007_s11240_019_01662_y
crossref_primary_10_1038_nbt_4252
crossref_primary_10_1007_s12298_024_01486_x
crossref_primary_10_1111_tpj_16049
crossref_primary_10_1007_s00425_022_03906_2
crossref_primary_10_1007_s13562_024_00878_0
crossref_primary_10_1016_S2095_3119_16_61411_9
crossref_primary_10_3389_fpls_2021_747476
crossref_primary_10_1016_j_plantsci_2022_111474
crossref_primary_10_3389_fpls_2022_1055529
crossref_primary_10_1016_j_plantsci_2018_02_025
crossref_primary_10_1016_j_jgg_2016_03_004
crossref_primary_10_3389_fnut_2020_533453
crossref_primary_10_1002_fpf2_12026
crossref_primary_10_1007_s10529_020_02950_w
crossref_primary_10_1007_s00425_022_03933_z
crossref_primary_10_3390_plants14131983
crossref_primary_10_3390_agronomy9100575
crossref_primary_10_1186_s13059_018_1586_y
crossref_primary_10_1080_00288233_2022_2141273
crossref_primary_10_1007_s11427_017_9022_1
crossref_primary_10_1016_j_molp_2022_01_003
crossref_primary_10_1093_g3journal_jkac096
crossref_primary_10_1111_tpj_14679
crossref_primary_10_3390_life13071456
crossref_primary_10_1111_pbi_13088
crossref_primary_10_3389_fpls_2018_01607
crossref_primary_10_1134_S0003683821070048
crossref_primary_10_1002_tpg2_20298
crossref_primary_10_1007_s11248_021_00251_0
crossref_primary_10_3389_fpls_2021_768233
crossref_primary_10_1007_s12298_020_00782_6
crossref_primary_10_1007_s11816_019_00562_z
crossref_primary_10_3389_fmicb_2022_983243
crossref_primary_10_54112_bbasr_v2025i1_100
crossref_primary_10_1007_s00122_021_03820_3
crossref_primary_10_1016_j_jocn_2019_01_015
crossref_primary_10_3389_fgeed_2023_1094965
crossref_primary_10_7554_eLife_30247
crossref_primary_10_1080_14620316_2022_2036254
crossref_primary_10_1111_pbi_12448
crossref_primary_10_3390_antiox9121225
crossref_primary_10_1007_s11816_018_0472_0
crossref_primary_10_3389_fbioe_2019_00031
crossref_primary_10_1111_tpj_13319
crossref_primary_10_1111_ppl_12731
crossref_primary_10_3390_agronomy8120277
crossref_primary_10_1038_s44222_023_00115_8
crossref_primary_10_1089_crispr_2018_29007_fyu
crossref_primary_10_3389_fgene_2023_1204585
crossref_primary_10_1111_aab_12536
crossref_primary_10_3390_bioengineering9040176
crossref_primary_10_3389_fmicb_2022_873930
crossref_primary_10_3390_plants10091882
crossref_primary_10_1134_S0003683819090047
crossref_primary_10_1038_s41598_018_32714_6
crossref_primary_10_1016_j_cofs_2017_09_006
crossref_primary_10_1007_s13562_025_00981_w
crossref_primary_10_1134_S0026893323020061
crossref_primary_10_1007_s11101_021_09749_1
crossref_primary_10_1016_j_cpb_2020_100171
crossref_primary_10_12688_f1000research_122453_1
crossref_primary_10_3390_agronomy11030572
crossref_primary_10_1093_jxb_erac326
crossref_primary_10_1016_j_plaphy_2018_04_026
crossref_primary_10_1007_s00425_020_03372_8
crossref_primary_10_1007_s00122_017_2953_x
crossref_primary_10_1080_15427528_2017_1333192
crossref_primary_10_1080_15427528_2019_1678541
crossref_primary_10_1007_s11248_021_00253_y
crossref_primary_10_1080_07060661_2016_1199597
crossref_primary_10_1080_09168451_2020_1793656
crossref_primary_10_1038_s41438_019_0196_5
crossref_primary_10_3839_jabc_2018_043
crossref_primary_10_1007_s42976_024_00519_1
crossref_primary_10_1111_pbi_13842
crossref_primary_10_1038_s41438_021_00522_1
crossref_primary_10_1111_aab_12634
crossref_primary_10_1186_s13059_015_0796_9
crossref_primary_10_1186_s42397_023_00140_3
crossref_primary_10_1016_j_hpj_2020_11_004
crossref_primary_10_3390_ijms21165665
crossref_primary_10_1093_plcell_koae050
crossref_primary_10_1525_elementa_2022_00145
crossref_primary_10_3389_fbioe_2023_1276226
crossref_primary_10_1007_s00425_022_04022_x
crossref_primary_10_1016_j_gene_2020_144795
crossref_primary_10_1016_j_tig_2021_10_004
crossref_primary_10_1186_s12302_021_00482_2
crossref_primary_10_3389_fpls_2016_01584
crossref_primary_10_1186_s13578_017_0148_4
crossref_primary_10_1002_adfm_202202585
crossref_primary_10_1007_s12033_022_00507_y
crossref_primary_10_1016_j_foodcont_2023_109933
crossref_primary_10_3390_ijms241511920
crossref_primary_10_3389_fgeed_2021_760820
crossref_primary_10_1111_pbr_12345
crossref_primary_10_3390_ijms26157496
crossref_primary_10_1007_s11540_025_09928_z
crossref_primary_10_1016_j_foodchem_2020_127550
crossref_primary_10_1002_jsfa_8478
crossref_primary_10_3390_plants11182393
crossref_primary_10_3389_fpls_2020_577313
crossref_primary_10_1016_j_plaphy_2016_11_021
crossref_primary_10_1038_s41598_017_11760_6
crossref_primary_10_1007_s00299_016_2062_3
crossref_primary_10_1111_tpj_13176
crossref_primary_10_3389_fpls_2018_00925
crossref_primary_10_3390_agronomy15061481
crossref_primary_10_1007_s11756_022_01142_3
crossref_primary_10_1007_s10142_025_01533_0
crossref_primary_10_3389_fpls_2016_01045
crossref_primary_10_1016_j_plaphy_2018_03_027
crossref_primary_10_1007_s11816_017_0448_5
crossref_primary_10_3389_fgene_2023_1085024
crossref_primary_10_3389_fpls_2019_00110
crossref_primary_10_1016_j_plantsci_2016_12_012
crossref_primary_10_3390_agronomy14092175
crossref_primary_10_1038_s41598_020_58985_6
crossref_primary_10_1007_s00299_016_1975_1
crossref_primary_10_1111_pbr_12526
crossref_primary_10_1038_s44222_023_00037_5
crossref_primary_10_1038_s41598_019_54126_w
crossref_primary_10_3389_fpls_2023_1133029
crossref_primary_10_1088_1755_1315_659_1_012096
crossref_primary_10_1186_s43897_024_00105_3
crossref_primary_10_1111_nph_14702
crossref_primary_10_1111_pbi_12833
crossref_primary_10_1111_pbi_13125
crossref_primary_10_3389_fgene_2023_1017388
crossref_primary_10_3389_fsufs_2020_00050
crossref_primary_10_1007_s11627_016_9784_3
crossref_primary_10_1007_s00299_020_02629_6
crossref_primary_10_1007_s11676_017_0588_z
crossref_primary_10_1016_j_plaphy_2019_11_001
crossref_primary_10_1080_07352689_2017_1281663
crossref_primary_10_1038_s41598_018_32049_2
crossref_primary_10_1007_s00299_022_02830_9
crossref_primary_10_1007_s00299_020_02655_4
crossref_primary_10_1007_s13562_022_00812_2
crossref_primary_10_1007_s11103_016_0499_y
crossref_primary_10_1002_jcp_25367
crossref_primary_10_1007_s00122_017_2944_y
crossref_primary_10_1007_s11816_017_0425_z
crossref_primary_10_1002_tpg2_20248
crossref_primary_10_3389_fpls_2019_00114
crossref_primary_10_1007_s10725_023_00968_4
crossref_primary_10_1016_j_copbio_2017_07_012
crossref_primary_10_3390_foods13050652
crossref_primary_10_1016_j_foodchem_2023_136718
crossref_primary_10_1007_s11103_017_0640_6
crossref_primary_10_1016_j_plantsci_2019_01_006
crossref_primary_10_1007_s00425_023_04110_6
crossref_primary_10_1007_s00299_016_1974_2
crossref_primary_10_1007_s11105_021_01286_7
crossref_primary_10_1016_j_molp_2019_03_016
crossref_primary_10_1080_00288233_2023_2187425
crossref_primary_10_1016_j_cj_2018_07_004
crossref_primary_10_1371_journal_pone_0154027
crossref_primary_10_3389_fpls_2020_00056
crossref_primary_10_1093_hr_uhad017
crossref_primary_10_1007_s11816_016_0417_4
Cites_doi 10.1104/pp.112.205179
10.1111/pbi.12099
10.1016/S1360-1385(03)00130-4
10.1111/pbi.12055
10.1007/s11540-009-9140-7
10.1111/pbi.12201
10.1007/s11540-006-9002-5
10.2135/cropsci2010.08.0473
10.1186/1471-2229-10-271
10.1080/02652030701398509
10.1021/jf1032262
10.1007/BF02883548
10.1021/jf020302f
10.1038/ncomms2782
10.1186/1756-0500-2-141
10.1016/0168-9452(85)90194-3
10.1016/B978-0-12-690680-6.50007-3
10.1038/embor.2011.160
10.2174/1874294700903010014
10.1146/annurev-arplant-042811-105552
10.1007/s00299-005-0018-0
10.1271/bbb.70.1173
10.1016/j.foodchem.2011.08.001
10.1038/419449a
10.1104/pp.110.162545
10.1111/j.1467-7652.2008.00340.x
10.1016/j.tplants.2004.10.009
10.1021/jf0706631
10.1093/nar/gku155
10.1093/nar/gkr218
10.1038/nbt.3101
10.1134/S1607672914010013
10.1038/nprot.2007.199
10.1093/nar/25.22.4692
10.1038/nbt.2675
10.2139/ssrn.2503388
10.1111/j.1744-7348.2004.tb00380.x
10.1038/419448a
10.1111/jfq.12068
ContentType Journal Article
Copyright 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd
2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd
– notice: 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7U5
F28
L7M
7S9
L.6
5PM
DOI 10.1111/pbi.12370
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database (subscription)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Engineering Research Database
CrossRef


MEDLINE - Academic
Publicly Available Content Database

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Benjamin M. Clasen et al
EISSN 1467-7652
EndPage 176
ExternalDocumentID PMC11389148
25846201
10_1111_pbi_12370
PBI12370
US201600128274
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPTK
ABPVW
ACBWZ
ACCFJ
ACIWK
ACPRK
ACSCC
ACXME
ACXQS
ADBBV
ADIZJ
ADKYN
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAHBH
AANHP
ACCMX
ACRPL
ACUHS
ACYXJ
ADNMO
AEUYN
ALUQN
ITC
OIG
RPM
AAMMB
AAYXX
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
BANNL
CITATION
O8X
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7X8
7U5
F28
L7M
7S9
L.6
5PM
ID FETCH-LOGICAL-c7570-1c46e631fce2ce621f0cdf30dcecd19e88e04f2b0e895c285bc534d57ba08f9f3
IEDL.DBID 24P
ISICitedReferencesCount 253
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369285700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-7644
1467-7652
IngestDate Tue Nov 04 02:05:10 EST 2025
Fri Sep 05 17:22:37 EDT 2025
Fri Sep 05 12:40:34 EDT 2025
Tue Oct 07 09:29:02 EDT 2025
Thu Oct 02 06:19:25 EDT 2025
Sat Aug 23 12:28:30 EDT 2025
Thu Apr 03 07:03:42 EDT 2025
Sat Nov 29 03:52:00 EST 2025
Tue Nov 18 20:56:25 EST 2025
Wed Jan 22 16:22:11 EST 2025
Wed Dec 27 19:17:20 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords acrylamide reduction
vacuolar invertase
cold-induced sweetening
gene editing
transcription activator-like effector nucleases
potato
Language English
License 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7570-1c46e631fce2ce621f0cdf30dcecd19e88e04f2b0e895c285bc534d57ba08f9f3
Notes http://dx.doi.org/10.1111/pbi.12370
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1906270336?pq-origsite=%requestingapplication%
PMID 25846201
PQID 1906270336
PQPubID 1096352
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11389148
proquest_miscellaneous_1803082648
proquest_miscellaneous_1800493238
proquest_miscellaneous_1776648023
proquest_miscellaneous_1760878432
proquest_journals_1906270336
pubmed_primary_25846201
crossref_citationtrail_10_1111_pbi_12370
crossref_primary_10_1111_pbi_12370
wiley_primary_10_1111_pbi_12370_PBI12370
fao_agris_US201600128274
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2016
Publisher Blackwell Pub
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Pub
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2004; 145
2006; 70
2010; 10
2013; 4
2010; 58
2002; 50
1997; 25
2015; 33
2013; 64
2004; 9
2011; 12
2002; 419
2008; 6
2011; 39
2007; 55
2013; 161
2005; 24
2014; 42
2014; 454
1985; 39
2009; 52
2012; 133
2013; 11
2006; 49
2003; 8
2013; 31
2011; 51
2010; 154
2014; 37
2014
1981
2007; 2
2009; 3
2009; 2
2001; 78
2007; 24
2014; 12
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – start-page: 21
  year: 1981
  end-page: 44
– volume: 2
  start-page: 141
  year: 2009
  article-title: Optimizing TILLING and Ecotilling techniques for potato ( L)
  publication-title: BMC Res. Notes
– volume: 64
  start-page: 327
  year: 2013
  end-page: 350
  article-title: Plant genome engineering with sequence‐specific nucleases
  publication-title: Annu. Rev. Plant Biol.
– volume: 55
  start-page: 4281
  year: 2007
  end-page: 4288
  article-title: Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering
  publication-title: J. Agric. Food Chem.
– volume: 11
  start-page: 907
  year: 2013
  end-page: 920
  article-title: Applications of biotechnology and genomics in potato improvement
  publication-title: Plant Biotechnol. J.
– volume: 419
  start-page: 449
  year: 2002
  end-page: 450
  article-title: Acrylamide from Maillard reaction products
  publication-title: Nature
– volume: 8
  start-page: 310
  year: 2003
  end-page: 312
  article-title: Progress in improving processing attributes in potato
  publication-title: Trends Plant Sci.
– volume: 6
  start-page: 576
  year: 2008
  end-page: 584
  article-title: Precision breeding for novel starch variants in potato
  publication-title: Plant Biotechnol. J.
– volume: 78
  start-page: 221
  year: 2001
  end-page: 236
  article-title: Biochemical and molecular control of cold‐induced sweetening in potatoes
  publication-title: Am. J. Potato Res.
– volume: 33
  start-page: 179
  year: 2015
  end-page: 186
  article-title: Genome‐wide detection of DNA double‐stranded breaks induced by engineered nucleases
  publication-title: Nat. Biotechnol.
– volume: 39
  start-page: e82
  year: 2011
  article-title: Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 4692
  year: 1997
  end-page: 4693
  article-title: Universal and rapid salt‐extraction of high quality genomic DNA for PCR‐based techniques
  publication-title: Nucleic Acids Res.
– volume: 454
  start-page: 1
  year: 2014
  end-page: 3
  article-title: Polymorphism of Pain‐1 invertase gene in species
  publication-title: Dokl. Biochem. Biophys.
– volume: 51
  start-page: 981
  year: 2011
  end-page: 990
  article-title: Developing Cold‐Chipping Potato Varieties by Silencing the Vacuolar Invertase Gene All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher
  publication-title: Crop Sci.
– volume: 10
  start-page: 271
  year: 2010
  article-title: Natural diversity of potato ( ) invertases
  publication-title: BMC Plant Biol.
– volume: 3
  start-page: 14
  year: 2009
  end-page: 21
  article-title: Expression of a chimeric magainin gene in potato confers improved resistance to the phytopathogen Erwinia carotovora
  publication-title: Open Plant Sci. J.
– year: 2014
– volume: 52
  start-page: 367
  year: 2009
  end-page: 378
  article-title: Potato transformation with modified nucleotide sequences of the cry9Aa2 gene improves resistance to potato tuber moth
  publication-title: Potato Res.
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 395
  year: 2013
  end-page: 407
  article-title: Intragenesis and cisgenesis as alternatives to transgenic crop development
  publication-title: Plant Biotechnol. J.
– volume: 58
  start-page: 12162
  year: 2010
  end-page: 12167
  article-title: Tuber‐specific silencing of the acid invertase gene substantially lowers the acrylamide‐forming potential of potato
  publication-title: J. Agric. Food Chem.
– volume: 37
  start-page: 9
  year: 2014
  end-page: 17
  article-title: Nondestructive analysis to monitor potato quality during cold storage
  publication-title: J. Food Qual.
– volume: 161
  start-page: 20
  year: 2013
  end-page: 27
  article-title: Transcription activator‐like effector nucleases enable efficient plant genome engineering
  publication-title: Plant Physiol.
– volume: 4
  start-page: 1762
  year: 2013
  article-title: Compact designer TALENs for efficient genome engineering
  publication-title: Nat. Commun.
– volume: 24
  start-page: 71
  year: 2007
  end-page: 81
  article-title: Options for legal measures to reduce acrylamide contents in the most relevant foods
  publication-title: Food Addit. Contam.
– volume: 9
  start-page: 606
  year: 2004
  end-page: 613
  article-title: Function and regulation of plant invertases: sweet sensations
  publication-title: Trends Plant Sci.
– volume: 39
  start-page: 67
  year: 1985
  end-page: 74
  article-title: Isolation, culture and regeneration of protoplasts from potato and several related species
  publication-title: Plant Sci.
– volume: 12
  start-page: 883
  year: 2011
  end-page: 888
  article-title: Renegotiating GM crop regulation. Targeted gene‐modification technology raises new issues for the oversight of genetically modified crops
  publication-title: EMBO reports
– volume: 49
  start-page: 49
  year: 2006
  end-page: 65
  article-title: Genetic resources (including wild and cultivated species) and progress in their utilisation in potato breeding
  publication-title: Potato Res.
– volume: 42
  start-page: 5390
  year: 2014
  end-page: 5402
  article-title: Comprehensive analysis of the specificity of transcription activator‐like effector nucleases
  publication-title: Nucleic Acids Res.
– volume: 145
  start-page: 247
  year: 2004
  end-page: 256
  article-title: An overview of the factors affecting sugar content of potatoes
  publication-title: Ann. Appl. Biol.
– volume: 133
  start-page: 1138
  year: 2012
  end-page: 1154
  article-title: Acrylamide formation in fried potato products – present and future, a critical review on mitigation strategies
  publication-title: Food Chem.
– volume: 70
  start-page: 1173
  year: 2006
  end-page: 1180
  article-title: Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 50
  start-page: 4998
  year: 2002
  end-page: 5006
  article-title: Analysis of acrylamide, a carcinogen formed in heated foodstuffs
  publication-title: J. Agric. Food Chem.
– volume: 12
  start-page: 934
  year: 2014
  end-page: 940
  article-title: Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family
  publication-title: Plant Biotechnol. J.
– volume: 419
  start-page: 448
  year: 2002
  end-page: 449
  article-title: Acrylamide is formed in the Maillard reaction
  publication-title: Nature
– volume: 154
  start-page: 939
  year: 2010
  end-page: 948
  article-title: Suppression of the vacuolar invertase gene prevents cold‐induced sweetening in potato
  publication-title: Plant Physiol.
– volume: 24
  start-page: 603
  year: 2005
  end-page: 611
  article-title: Direct gene transfer in potato: a comparison of particle bombardment of leaf explants and PEG‐mediated transformation of protoplasts
  publication-title: Plant Cell Rep.
– volume: 2
  start-page: 1565
  year: 2007
  end-page: 1572
  article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nat. Protoc.
– ident: e_1_2_6_40_1
  doi: 10.1104/pp.112.205179
– ident: e_1_2_6_4_1
  doi: 10.1111/pbi.12099
– ident: e_1_2_6_11_1
  doi: 10.1016/S1360-1385(03)00130-4
– ident: e_1_2_6_20_1
  doi: 10.1111/pbi.12055
– ident: e_1_2_6_21_1
  doi: 10.1007/s11540-009-9140-7
– ident: e_1_2_6_19_1
  doi: 10.1111/pbi.12201
– ident: e_1_2_6_8_1
  doi: 10.1007/s11540-006-9002-5
– ident: e_1_2_6_37_1
  doi: 10.2135/cropsci2010.08.0473
– ident: e_1_2_6_12_1
  doi: 10.1186/1471-2229-10-271
– ident: e_1_2_6_17_1
  doi: 10.1080/02652030701398509
– ident: e_1_2_6_38_1
  doi: 10.1021/jf1032262
– ident: e_1_2_6_33_1
  doi: 10.1007/BF02883548
– ident: e_1_2_6_35_1
  doi: 10.1021/jf020302f
– ident: e_1_2_6_5_1
  doi: 10.1038/ncomms2782
– ident: e_1_2_6_13_1
  doi: 10.1186/1756-0500-2-141
– ident: e_1_2_6_18_1
  doi: 10.1016/0168-9452(85)90194-3
– ident: e_1_2_6_16_1
  doi: 10.1016/B978-0-12-690680-6.50007-3
– ident: e_1_2_6_24_1
  doi: 10.1038/embor.2011.160
– ident: e_1_2_6_3_1
  doi: 10.2174/1874294700903010014
– ident: e_1_2_6_36_1
  doi: 10.1146/annurev-arplant-042811-105552
– ident: e_1_2_6_10_1
  doi: 10.1007/s00299-005-0018-0
– ident: e_1_2_6_26_1
  doi: 10.1271/bbb.70.1173
– ident: e_1_2_6_27_1
  doi: 10.1016/j.foodchem.2011.08.001
– ident: e_1_2_6_34_1
  doi: 10.1038/419449a
– ident: e_1_2_6_6_1
  doi: 10.1104/pp.110.162545
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1467-7652.2008.00340.x
– ident: e_1_2_6_30_1
  doi: 10.1016/j.tplants.2004.10.009
– ident: e_1_2_6_31_1
  doi: 10.1021/jf0706631
– ident: e_1_2_6_22_1
  doi: 10.1093/nar/gku155
– ident: e_1_2_6_9_1
  doi: 10.1093/nar/gkr218
– ident: e_1_2_6_15_1
  doi: 10.1038/nbt.3101
– ident: e_1_2_6_32_1
  doi: 10.1134/S1607672914010013
– ident: e_1_2_6_39_1
  doi: 10.1038/nprot.2007.199
– ident: e_1_2_6_2_1
  doi: 10.1093/nar/25.22.4692
– ident: e_1_2_6_25_1
  doi: 10.1038/nbt.2675
– ident: e_1_2_6_14_1
  doi: 10.2139/ssrn.2503388
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1744-7348.2004.tb00380.x
– ident: e_1_2_6_28_1
  doi: 10.1038/419448a
– ident: e_1_2_6_7_1
  doi: 10.1111/jfq.12068
SSID ssj0021656
Score 2.5941954
Snippet Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of...
Summary Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms Acrylamide
Acrylamide - analysis
acrylamide reduction
acrylamides
alleles
Amino acids
Autotetraploid
Base Sequence
beta-fructofuranosidase
beta-Fructofuranosidase - genetics
Bitter taste
Carbohydrates - analysis
Carcinogens
Chips
cold
Cold storage
Cold Temperature
cold‐induced sweetening
Cryopreservation - methods
Deoxyribonucleic acid
DNA
free amino acids
Fructose
gene editing
Gene expression
Gene Knockout Techniques
Gene silencing
Gene Targeting
Genes
Genes, Plant
Genomes
Glucose
Interference
Invertase
Mutation
Mutation - genetics
Mutations
Nuclease
nucleases
Plants (organisms)
Plants, Genetically Modified
potato
Potatoes
reducing sugars
Ribonucleic acid
RNA
RNA interference
RNA-mediated interference
Shelf life
Silence
Solanum tuberosum
Solanum tuberosum - genetics
sprouting
Sucrose
Sugar
Sugars
temperature
Temperature effects
Temporal variations
Transcription
Transcription activator-like effector nucleases
Transcription Activator-Like Effector Nucleases - metabolism
Transgenic plants
Tubers
vacuolar invertase
vacuoles
Vacuoles - enzymology
Vegetables
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RwgEOvEtTCjKIQy8Bx05i51QVRAUSqlaCRb1FjuPQFSgJm11-PzOON7Si7IVbJI8izcPzsMffALxCE1Em5S4WFa_i1Bj0gxg16PbRKkyPq8zjFHz9pM7O9Pl5MQsHbkNoq9z4RO-o687SGfmbxAPqcinz4_5nTFOj6HY1jNDYgZuEkiB8695sKrgIWWZ8XaRihYE_IAtRJ09fLV6j06YZxZfi0U5juutSzb87Ji9nsj4Und77Xybuw92QhLKT0WoewA3XPoQ7J9-WAYjDPYL5dNrA0FRqRk2U6HqYaWvWj48LaI0mTKwGtmhZ32Ha2rEw94eNHeauZmigjn1v0e1269VjmJ--__LuQxxGMMRWZYrHiU1zl8uksU5Yl4uk4bZuJEdB2DopnNaOpw3q2ekis0Jnlc1kWmeqMlw3RSP3YLftWrcPTErMTNACEpei42gyUztVcEN4-hKrNhHB0UYRpQ345MTEj3JTp6DOSq-zCF5OpP0IynEd0T5qszQou6GcfxYEpUfRGMvwCA436inDlh3KP7qJ4MW0jJuNblBM67o10qica6VTKbbRqDxPCVdvC42mykxiurSVhqCE8FcRPBmtb2JWUNqIHEWgr9jlRECg4VdX2sWFBw9P_M00_fTIm_C_BVjO3n70HwfbxfUUbpNwx3OpQ9hdLdfuGdyyv1aLYfnc78jf1mg8iA
  priority: 102
  providerName: ProQuest
Title Improving cold storage and processing traits in potato through targeted gene knockout
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12370
https://www.ncbi.nlm.nih.gov/pubmed/25846201
https://www.proquest.com/docview/1906270336
https://www.proquest.com/docview/1760878432
https://www.proquest.com/docview/1776648023
https://www.proquest.com/docview/1800493238
https://www.proquest.com/docview/1803082648
https://pubmed.ncbi.nlm.nih.gov/PMC11389148
Volume 14
WOSCitedRecordID wos000369285700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: M7P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: M7S
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: PIMPY
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1467-7652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021656
  issn: 1467-7644
  databaseCode: 24P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8aGwd24BsWGJVBHHYJcuIkdsRpQ5uoBFXEKJRT5DgOVENJ1bT8_bznpNEqRoXEJUrl10h-389-_hngNaqI1BG3fljwwo-0Rj-IUYN2H43E9LiIHU7Blw9yMlGzWZrtwdvNWZgOH2JYcCPLcP6aDFwX7TUjXxTzN-h2JdbrB0EgJKl0GGVDtUWwMt3RIulLjPo9rBC18Qx_3QpGtyrd3JRn_tkueT2NdXHo4t5_zeA-3O3TT3ba6csD2LP1Qzg8_b7sITjsI5gO6wwMlaRk1D6JTofpumSL7lgBjdHdEquWzWu2aDBhbVh_4w_resttyVA1Lbuq0eE269VjmF6cf3733u8vX_CNjCX3AxMlNhFBZWxobBIGFTdlJThywZRBapWyPKpQwlalsQlVXJhYRGUsC81VlVbiCezXTW2PgAmBOQnKPrARuowq1qWVKdeEpC-wXgs9ONlIITc9MjlN4me-qVCQU7njlAevBtJFB8dxE9ERijLXyLs2n16GBKJHcRgLcA-ON_LNe2Nt88BhNXMhEg9eDsNoZrR3omvbrJFGJlxJFYlwF41MkogQ9XbQKKrJBCZKO2kIRAg_5cHTTvWGyYaUMOKMPFBbSjkQEFz49kg9_-FgwwO3J00fPXFa-XcG5tnZ2L08-3fS53CHGN2tTh3D_mq5ti_gtvm1mrfLkTNNfMqZGsHB2fkk-zRyyx8jarbN3PMSR7Lxx-wb_vo6nvwGlR9Bxg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WyTgwBsaKGAQSL2kTewkdg4IlUfVVberleiicgqJ48AKlITNLog_xW9kJi9aUfbWA7eVPLLWzjcve_wNwDOEiIw9x9g8cRLbi2O0g-g16PZRSwyPE7_mKXg_kuOxOjkJJ2vwq3sLQ2WVnU2sDXVaaDoj33VrQl1HiOBl-c2mrlF0u9q10GhgcWh-_sCUrXoxfIPf9znn-2-PXx_YbVcBW0tfOrarvcAEws204doE3M0cnWbCSbXRqRsapYzjZfjXjQp9zZWfaF94qS-T2FFZmAmcdx02PAL7ADYmw6PJhz7FIy6b5j2TtCWGGi2XEdUOlclsB90EdUU-5QHXs7g4L7j9u0bzdOxcO7_96__btt2Aa22YzfYavbgJaya_BVf3Ps1bqhFzG6b9eQpDZUgZlYmicWVxnrKyeT5BY9RDY1GxWc7KAgPzgrWdjVhTQ29Shipo2JccHUuxXNyB6YWs6y4M8iI3m8CEwNgLMe4aD01j5sepkaETU8cAgXkpt2C7-_CRbhnYaRFfoy4TQ4xENUYseNqLlg3tyHlCm4ieKMa9q6LpO05kgRRvcOlZsNXBIWqNUhX9wYIFT_phNCd0RxTnpliijAwcJZUn-CoZGQQeMQeukFGUewoMCFfKEFkSTmXBvQbt_WI5Bca4IgvUGT3oBYgW_exIPvtc06O79d07Tbpdq8y_NzCavBrWP-6v3q7HcPng-GgUjYbjwwdwhTa6OYXbgsFivjQP4ZL-vphV80etPWDw8aJ16TcZwZzF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61W4TKgXdpoIBBIPUSmthJ7BwQKpQVq5bVSrBVOYXEcWAFSsJmF8Rf49cxkxetKHvrgVskjyyNM4_P9vgbgCdoIjL2HGPzxElsL44xDmLWoNtHLREeJ37NU3B8JMdjdXISTtbgV_cWhsoqu5hYB-q00HRGvufWhLqOEMFe1pZFTA6GL8pvNnWQopvWrp1GYyKH5ucP3L5Vz0cH-K-fcj58_f7VG7vtMGBr6UvHdrUXmEC4mTZcm4C7maPTTDipNjp1Q6OUcbwM1TAq9DVXfqJ94aW-TGJHZWEmcN512EBI7vEBbExGbycf-u0e8do0b5ukLRF2tLxGVEdUJrNnmDKoQ_KpbLiexcV5QPfves3TOLpOhMNr__MSXoerLfxm-42_3IA1k9-EK_uf5i0FibkF0_6chaGTpIzKRzHosjhPWdk8q6Ax6q2xqNgsZ2WBgL1gbccj1tTWm5Shaxr2JceEUywXt2F6IXptwSAvcrMNTAjEZGj7rvEwZGZ-nBoZOjF1EhC4X-UW7HZGEOmWmZ2U-Bp1OzS0l6i2Fwse96JlQ0dyntA2WlIU49pV0fQdJxJBwiFcehbsdKYRtcGqiv7YhQWP-mEMM3R3FOemWKKMDBwllSf4KhkZBB4xCq6QUbQnFQgUV8oQiRJOZcGdxvJ7ZTkBZtTIAnXGJ3oBoks_O5LPPte06W59J0-T7tbu8-8FjCYvR_XH3dXL9RAuowNFR6Px4T3YpHVuDud2YLCYL819uKS_L2bV_EEbGhh8vGhX-g2qSKWF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+cold+storage+and+processing+traits+in+potato+through+targeted+gene+knockout&rft.jtitle=Plant+biotechnology+journal&rft.au=Clasen%2C+Benjamin+M&rft.au=Stoddard%2C+Thomas+J&rft.au=Luo%2C+Song&rft.au=Demorest%2C+Zachary+L&rft.date=2016-01-01&rft.issn=1467-7644&rft.volume=14&rft.issue=1+p.169-176&rft.spage=169&rft.epage=176&rft_id=info:doi/10.1111%2Fpbi.12370&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon