Population Structure and Eigenanalysis

Current methods for inferring population structure from genetic data do not provide formal significance tests for population differentiation. We discuss an approach to studying population structure (principal components analysis) that was first applied to genetic data by Cavalli-Sforza and colleague...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS genetics Ročník 2; číslo 12; s. e190
Hlavní autori: Patterson, Nick, Price, Alkes L., Reich, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 01.12.2006
Public Library of Science (PLoS)
Predmet:
ISSN:1553-7390, 1553-7404, 1553-7404
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Current methods for inferring population structure from genetic data do not provide formal significance tests for population differentiation. We discuss an approach to studying population structure (principal components analysis) that was first applied to genetic data by Cavalli-Sforza and colleagues. We place the method on a solid statistical footing, using results from modern statistics to develop formal significance tests. We also uncover a general "phase change" phenomenon about the ability to detect structure in genetic data, which emerges from the statistical theory we use, and has an important implication for the ability to discover structure in genetic data: for a fixed but large dataset size, divergence between two populations (as measured, for example, by a statistic like FST) below a threshold is essentially undetectable, but a little above threshold, detection will be easy. This means that we can predict the dataset size needed to detect structure.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1553-7390
1553-7404
1553-7404
DOI:10.1371/journal.pgen.0020190