Ultrafast Jahn‐Teller Photoswitching in Cobalt Single‐Ion Magnets
Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. He...
Gespeichert in:
| Veröffentlicht in: | Advanced science Jg. 10; H. 21; S. e2206880 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
John Wiley & Sons, Inc
01.07.2023
Wiley Open Access Wiley John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 2198-3844, 2198-3844 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
Combined optical and X‐ray spectroscopy experiments complemented by theoretical calculations reveal the photoinduced Jahn‐Teller photoswitching between two spin multiplicities in a Co(II)‐based molecular complex, which occurs on the femtosecond timescale. Unveiling the associated transient magnetic anisotropy will assist the development of such systems into light‐driven multifunctional single‐ion magnets and qubits. |
|---|---|
| AbstractList | Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. Single–ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and display technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical SIM complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″-terpyridine) in solution phase. The combined measurements and their analysis supported by DFT, TD-DFT and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally-elongated doublet state to a tetragonally-compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for Jahn-Teller photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetisation with optical photons. Abstract Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. Combined optical and X‐ray spectroscopy experiments complemented by theoretical calculations reveal the photoinduced Jahn‐Teller photoswitching between two spin multiplicities in a Co(II)‐based molecular complex, which occurs on the femtosecond timescale. Unveiling the associated transient magnetic anisotropy will assist the development of such systems into light‐driven multifunctional single‐ion magnets and qubits. Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. Combined optical and X‐ray spectroscopy experiments complemented by theoretical calculations reveal the photoinduced Jahn‐Teller photoswitching between two spin multiplicities in a Co(II)‐based molecular complex, which occurs on the femtosecond timescale. Unveiling the associated transient magnetic anisotropy will assist the development of such systems into light‐driven multifunctional single‐ion magnets and qubits. Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy) ] (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy) 2 ] 2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons. |
| Author | Choi, Tae‐Kyu Zalden, Peter Otte, Florian Retegan, Marius Pápai, Mátyás Gawelda, Wojciech Biednov, Mykola Rahaman, Ahibur Gosztola, David J. Khakhulin, Dmitry Zheng, Kaibo Milne, Christopher Frankenberger, Paul Knoll, Martin Jiang, Yifeng Lima, Frederico A. Møller, Klaus B. Canton, Sophie E. |
| AuthorAffiliation | 8 Chemical Physics and NanoLund Lund University Box 124 Lund 22100 Sweden 2 Department of Chemistry Technical University of Denmark Kongens Lyngby DK‐2800 Denmark 5 Departamento de Química Universidad Autónoma de Madrid Madrid 28049 Spain 6 IMDEA‐Nanociencia Calle Faraday 9 Madrid 28049 Spain 4 XFEL Division Pohang Accelerator Laboratory Jigok‐ro 127‐80 Pohang 37673 Republic of Korea 10 European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble 38000 France 9 Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA 3 Wigner Research Centre for Physics P.O. Box 49 Budapest H‐1525 Hungary 7 Faculty of Physics Adam Mickiewicz University Poznan 61‐614 Poland 1 European XFEL Holzkoppel 4 22869 Schenefeld Germany |
| AuthorAffiliation_xml | – name: 1 European XFEL Holzkoppel 4 22869 Schenefeld Germany – name: 2 Department of Chemistry Technical University of Denmark Kongens Lyngby DK‐2800 Denmark – name: 9 Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA – name: 6 IMDEA‐Nanociencia Calle Faraday 9 Madrid 28049 Spain – name: 7 Faculty of Physics Adam Mickiewicz University Poznan 61‐614 Poland – name: 3 Wigner Research Centre for Physics P.O. Box 49 Budapest H‐1525 Hungary – name: 4 XFEL Division Pohang Accelerator Laboratory Jigok‐ro 127‐80 Pohang 37673 Republic of Korea – name: 8 Chemical Physics and NanoLund Lund University Box 124 Lund 22100 Sweden – name: 5 Departamento de Química Universidad Autónoma de Madrid Madrid 28049 Spain – name: 10 European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble 38000 France |
| Author_xml | – sequence: 1 givenname: Sophie E. orcidid: 0000-0003-4337-8129 surname: Canton fullname: Canton, Sophie E. email: sophie.canton@xfel.eu organization: Technical University of Denmark – sequence: 2 givenname: Mykola surname: Biednov fullname: Biednov, Mykola organization: European XFEL – sequence: 3 givenname: Mátyás surname: Pápai fullname: Pápai, Mátyás organization: Wigner Research Centre for Physics – sequence: 4 givenname: Frederico A. surname: Lima fullname: Lima, Frederico A. organization: European XFEL – sequence: 5 givenname: Tae‐Kyu surname: Choi fullname: Choi, Tae‐Kyu organization: Pohang Accelerator Laboratory – sequence: 6 givenname: Florian surname: Otte fullname: Otte, Florian organization: European XFEL – sequence: 7 givenname: Yifeng surname: Jiang fullname: Jiang, Yifeng organization: European XFEL – sequence: 8 givenname: Paul surname: Frankenberger fullname: Frankenberger, Paul organization: European XFEL – sequence: 9 givenname: Martin surname: Knoll fullname: Knoll, Martin organization: European XFEL – sequence: 10 givenname: Peter surname: Zalden fullname: Zalden, Peter organization: European XFEL – sequence: 11 givenname: Wojciech surname: Gawelda fullname: Gawelda, Wojciech organization: Adam Mickiewicz University – sequence: 12 givenname: Ahibur surname: Rahaman fullname: Rahaman, Ahibur organization: Lund University – sequence: 13 givenname: Klaus B. surname: Møller fullname: Møller, Klaus B. organization: Technical University of Denmark – sequence: 14 givenname: Christopher surname: Milne fullname: Milne, Christopher organization: European XFEL – sequence: 15 givenname: David J. surname: Gosztola fullname: Gosztola, David J. organization: Argonne National Laboratory – sequence: 16 givenname: Kaibo surname: Zheng fullname: Zheng, Kaibo organization: Lund University – sequence: 17 givenname: Marius surname: Retegan fullname: Retegan, Marius organization: European Synchrotron Radiation Facility – sequence: 18 givenname: Dmitry surname: Khakhulin fullname: Khakhulin, Dmitry email: dmitry.khakhulin@xfel.eu organization: European XFEL |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37196414$$D View this record in MEDLINE/PubMed https://hal.science/hal-05078002$$DView record in HAL https://www.osti.gov/biblio/1974081$$D View this record in Osti.gov |
| BookMark | eNqFks9u1DAQxiNUREvplSNawQUOu_hf1s6pqkqhRUUgteU6cpzJxiuvXWxvq954BJ6RJ8HbLVW3l56SOL_5Ps_M97La8sFjVb2mZEIJYR91d5UmjDBGpkqRZ9UOo40acyXE1oP37WovpTkhhNZcCqpeVNtc0mYqqNipji5cjrrXKY--6sH__f3nHJ3DOPoxhBzStc1msH42sn50GFrt8uisfDos4Enwo2965jGnV9XzXruEe3fP3eri89H54fH49PuXk8OD07GRQpJxU5drdthSTQ3Xiuqp4gKlRNNywvi0RiX6hnSMN7SnTImm7RkqSmvsjGYN361O1rpd0HO4jHah4w0EbeH2IMQZ6JitcQgaiyYKQaRWolWdIkUPiSS96ZkiKy291krXeLlsN9QuQ8zaQcSEOpoB3BISQqGcNTrb4BOYlnQNaxVMe2xBKM6hoaoH0dJaYE1N08nisb_2KKWL0gP6Mmy3abXxx9sBZuEKKOGyLjsqCm_XCiFlC8nYjGYwwXs0GWgjBVG0QB_W0PBI_PjgFFZnpCZSlcRcrdj3d1eK4dcSU4aFTabsXHsMywRM0ZqJaVNWs1u9e4TOwzL6suBCCSYF54oV6s3DHu_9_2esAJM1YGJIKWJ_j1ACqxzDKsdwn-NSIB4VlLZvx15mZN2TZdfW4c0TJnDw6edZzTnh_wB7Vwa9 |
| CitedBy_id | crossref_primary_10_1002_smll_202500121 crossref_primary_10_1038_s41598_023_46256_z crossref_primary_10_1107_S1600577523008159 crossref_primary_10_1107_S1600577525001389 crossref_primary_10_1016_j_nima_2023_168540 crossref_primary_10_1107_S1600577524002200 crossref_primary_10_1021_acs_jpclett_5c00383 crossref_primary_10_3390_magnetochemistry10120107 crossref_primary_10_1016_j_molstruc_2024_139840 crossref_primary_10_3390_ijms241713371 crossref_primary_10_1021_acs_inorgchem_5c02857 crossref_primary_10_1021_jacs_3c04099 crossref_primary_10_1039_D4QI01218F |
| Cites_doi | 10.1039/c1cs15047b 10.1039/B714715E 10.1038/ncomms10467 10.1021/jacs.8b11374 10.1126/science.aav0652 10.1039/C6SC01105E 10.1039/D0CC03357J 10.1021/acs.inorgchem.0c01620 10.1021/jp5003963 10.1021/ja00058a027 10.1038/365141a0 10.1038/35071024 10.1039/C7SC05464E 10.1039/b913279c 10.1039/C4CS00439F 10.1039/D2DT00889K 10.1038/nchem.1067 10.1016/j.xcrp.2021.100404 10.1039/C7CC04785A 10.1021/acs.inorgchem.8b02685 10.1038/s41557-019-0232-y 10.1038/nature23447 10.1021/jp5117068 10.1021/acs.jpclett.7b02497 10.1021/jacs.7b07008 10.1063/1.1450813 10.1021/ic701365t 10.1038/nature13252 10.1103/PhysRevLett.107.230502 10.1039/C5CS00933B 10.1146/annurev-conmatphys-070909-104053 10.1021/jp0615961 10.1039/D0CC01854F 10.1103/PhysRevLett.117.013002 10.1126/science.1117039 10.1038/ncomms7359 10.1107/S1600577519006647 10.1002/wcms.1606 10.1021/acscentsci.5b00384 10.1038/418493a 10.3390/app10030995 10.1002/chem.201705761 10.1021/acs.inorgchem.0c00818 10.1038/s41557-020-0431-6 10.1039/C6SC05188J 10.1016/j.poly.2021.115386 10.1039/D1CS00101A 10.1039/C5SC04461H 10.1039/D1TC01487K 10.1021/ja029629n 10.1038/s41578-019-0146-8 10.1021/acs.chemrev.6b00831 10.1039/C6SC02170K 10.1039/c0cs00166j 10.1021/acs.jctc.1c00419 10.1088/1742-6596/712/1/012001 10.1038/nmat2133 10.1002/anie.201303005 10.1039/C9CC03952J 10.1038/s42004-022-00796-z 10.1088/1361-648X/ab82d1 10.1021/ja105291x 10.1039/C5SC03224E 10.1002/anie.201403672 10.1021/ja00015a057 10.1071/CH9831537 10.1016/S0020-1693(00)86449-X 10.1107/S0567740880007893 10.1021/jp5117189 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) LU Profile Area: Light and Materials Lunds universitets profilområden Naturvetenskapliga fakulteten Physical and theoretical chemistry Faculty of Engineering, LTH Lunds Tekniska Högskola LTH Profile areas Department of Chemistry Strategiska forskningsområden (SFO) NanoLund: Centre for Nanoscience Enheten för fysikalisk och teoretisk kemi Kemisk fysik Lunds universitet Profile areas and other strong research environments LTH profilområden Faculty of Science Lund University LTH Profile Area: Nanoscience and Semiconductor Technology Kemiska institutionen Lund University Profile areas LU profilområde: Ljus och material Chemical Physics LTH profilområde: Avancerade ljuskällor LTH Profile Area: Photon Science and Technology Strategic research areas (SRA) Profilområden och andra starka forskningsmiljöer LTH profilområde: Nanovetenskap och halvledarteknologi |
| CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: Physical and theoretical chemistry – name: Department of Chemistry – name: LU profilområde: Ljus och material – name: LTH Profile Area: Photon Science and Technology – name: LTH profilområde: Nanovetenskap och halvledarteknologi – name: Enheten för fysikalisk och teoretisk kemi – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Lund University Profile areas – name: Faculty of Engineering, LTH – name: Lund University – name: Kemisk fysik – name: NanoLund: Centre for Nanoscience – name: Profile areas and other strong research environments – name: LTH Profile Area: Nanoscience and Semiconductor Technology – name: Kemiska institutionen – name: LTH profilområde: Avancerade ljuskällor – name: Faculty of Science – name: Lunds universitet – name: Chemical Physics – name: Lunds universitets profilområden – name: Profilområden och andra starka forskningsmiljöer – name: LTH Profile areas – name: LTH profilområden – name: LU Profile Area: Light and Materials |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES OTOTI 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
| DOI | 10.1002/advs.202206880 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection (via ProQuest) Research Library Science Database (via ProQuest SciTech Premium Collection) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_aeb30e4407a84b8d80284e070fcf2809 oai_portal_research_lu_se_publications_cb0d92b8_6feb_4833_918f_4b154e51c9d7 PMC10375196 1974081 oai:HAL:hal-05078002v1 37196414 10_1002_advs_202206880 ADVS5330 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: U.S. Department of Energy funderid: DE‐AC02‐ 06CH11357; 77424 – fundername: National Research, Development and Innovation Fund funderid: NKFIH PD 134976 – fundername: Severo Ochoa Programme for Centers of Excellence in R&D funderid: CEX2020‐001039‐S – fundername: Ayudas Beatriz Galindo funderid: BEAGAL18/00092 – fundername: SONATA BIS 6 funderid: 2016/22/E/ST4/00543 – fundername: Danish Council for Independent Research funderid: 4002‐00272; 8021‐00347B – fundername: Swedish Research Council funderid: 2017‐05337 – fundername: U.S. Department of Energy grantid: DE-AC02- 06CH11357 – fundername: Ayudas Beatriz Galindo grantid: BEAGAL18/00092 – fundername: Danish Council for Independent Research grantid: 4002-00272 – fundername: SONATA BIS 6 grantid: 2016/22/E/ST4/00543 – fundername: National Research, Development and Innovation Fund grantid: NKFIH PD 134976 – fundername: U.S. Department of Energy grantid: 77424 – fundername: Severo Ochoa Programme for Centers of Excellence in R&D grantid: CEX2020-001039-S – fundername: Danish Council for Independent Research grantid: 8021-00347B – fundername: Swedish Research Council grantid: 2017-05337 – fundername: Danish Council for Independent Research grantid: 4002‐00272; 8021‐00347B – fundername: ; grantid: DE‐AC02‐ 06CH11357; 77424 – fundername: ; grantid: NKFIH PD 134976 – fundername: Severo Ochoa Programme for Centers of Excellence in R&D grantid: CEX2020‐001039‐S – fundername: ; grantid: 2017‐05337 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM AAYXX AFFHD CITATION EJD WIN NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE OTOTI 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c7470-95880deb1a1c3a81a6834e77ecb302365e84f90d2391f12849bf2e8115edca293 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000989613100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:50:34 EDT 2025 Tue Dec 02 03:10:43 EST 2025 Tue Nov 04 02:06:18 EST 2025 Mon Mar 31 02:25:40 EDT 2025 Tue Oct 14 20:08:34 EDT 2025 Thu Sep 04 15:46:08 EDT 2025 Mon Jul 14 08:20:34 EDT 2025 Mon Jul 21 05:56:34 EDT 2025 Tue Nov 18 21:45:43 EST 2025 Sat Nov 29 07:21:44 EST 2025 Sun Jul 06 04:45:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | single-ion-magnets photoswitching Jahn-Teller effect XFEL science |
| Language | English |
| License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c7470-95880deb1a1c3a81a6834e77ecb302365e84f90d2391f12849bf2e8115edca293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Danish Council for Independent Research Hungarian National Research, Development and Innovation Fund USDOE Office of Science (SC) AC02-06CH11357; CEX2020-001039-S; 2016/22/E/ST4/00543; 4002-00272; 8021-00347B; 7026-0037B; 2017-05337; DE‐AC02‐ 06CH11357; 77424 Ministry of Economic Affairs and Digital Transformation of Spain (MINECO) Swedish Research Council (SRC) USDOE National Science Centre Poland (NCN) |
| ORCID | 0000-0003-4337-8129 |
| OpenAccessLink | https://www.proquest.com/docview/2842743382?pq-origsite=%requestingapplication% |
| PMID | 37196414 |
| PQID | 2842743382 |
| PQPubID | 4365299 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aeb30e4407a84b8d80284e070fcf2809 swepub_primary_oai_portal_research_lu_se_publications_cb0d92b8_6feb_4833_918f_4b154e51c9d7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10375196 osti_scitechconnect_1974081 hal_primary_oai_HAL_hal_05078002v1 proquest_miscellaneous_2815246968 proquest_journals_2842743382 pubmed_primary_37196414 crossref_primary_10_1002_advs_202206880 crossref_citationtrail_10_1002_advs_202206880 wiley_primary_10_1002_advs_202206880_ADVS5330 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley Open Access Wiley John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Open Access – name: Wiley – name: John Wiley and Sons Inc |
| References | 2018; 362 2021; 208 2019; 2019 2017; 8 1991; 113 2019; 55 2023; 6 2019; 11 2019; 58 2020; 59 2008; 7 2020; 56 2020; 12 2020; 10 1993; 365 2017; 117 2018; 47 2001; 410 2018; 9 2020; 5 2010; 1 2020; 94 2016; 712 2015; 44 2019; 26 2013; 52 2005; 309 2016; 117 2002; 91 2003; 125 2014; 164 2006; 122 2014; 126 2014; 118 2021; 9 2015; 1 1986; 114 2015; 6 2021; 2 2022; 51 2010; 39 2011; 40 2008 2007 2006; 110 2002; 418 2020; 32 2021; 50 2019; 141 2011; 3 1983; 36 2017; 139 2018; 24 2017; 548 2017; 53 2016; 7 2011; 107 2014; 509 2021; 17 1980; B36 2010; 132 2022; 12 2015; 119 2021; 60 1993; 115 2007; 46 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Váhovská L. (e_1_2_9_15_1) 2019; 2019 e_1_2_9_71_1 Kobayashi F. (e_1_2_9_44_1) 2020; 94 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 Figgis B. N. (e_1_2_9_45_1) 1983; 36 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_60_1 e_1_2_9_2_1 Azzolina G. (e_1_2_9_69_1) 2021; 60 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 Cornia A. (e_1_2_9_6_1) 2006 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_38_1 Gatteschi D. (e_1_2_9_4_1) 2007 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 Milios C. J. (e_1_2_9_19_1) 2014 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 50 start-page: 6832 year: 2021 publication-title: Chem. Soc. Rev. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 2019 start-page: 250 year: 2019 publication-title: Volume – volume: 1 start-page: 109 year: 2010 publication-title: Annu. Rev. Condens. Matter Phys. – volume: 712 year: 2016 publication-title: J. Phys.: Conf. Ser. – volume: 9 start-page: 6773 year: 2021 publication-title: J. Mater. Chem. C – volume: 7 year: 2016 publication-title: Nat.Commun. – volume: 11 start-page: 301 year: 2019 publication-title: Nat. Chem. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 59 year: 2020 publication-title: Inorg. Chem. – start-page: 52 year: 2008 publication-title: Chem. Commun. – volume: B36 start-page: 2042 year: 1980 publication-title: Acta Cryst. – volume: 126 year: 2014 publication-title: Angew. Chem. – volume: 365 start-page: 141 year: 1993 publication-title: Nature – volume: 46 year: 2007 publication-title: Inorg. Chem. – volume: 36 start-page: 1527 year: 1983 publication-title: J. Chem. – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem. – volume: 7 start-page: 2470 year: 2016 publication-title: Chem. Sci. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 40 start-page: 3266 year: 2011 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 8359 year: 2019 publication-title: Chem. Commun. – volume: 7 start-page: 6160 year: 2016 publication-title: Chem. Sci. – volume: 44 start-page: 2135 year: 2015 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 6359 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 1432 year: 2019 publication-title: J. Synchrotron Radiat. – volume: 12 year: 2022 publication-title: WIREs Comput. Mol. Sci. – volume: 24 start-page: 7574 year: 2018 publication-title: Chemistry – volume: 91 start-page: 7382 year: 2002 publication-title: J. Appl. Phys. – volume: 58 start-page: 2330 year: 2019 publication-title: Inorg. Chem. – volume: 114 start-page: 165 year: 1986 publication-title: Inorg. Chim. Acta – volume: 17 start-page: 4392 year: 2021 publication-title: J. Chem. Theory Comput. – volume: 56 start-page: 6711 year: 2020 publication-title: Chem. Commun. – volume: 39 start-page: 1986 year: 2010 publication-title: Chem. Soc. Rev. – volume: 32 year: 2020 publication-title: J. Phys.: Condens. Matter – volume: 122 year: 2006 – volume: 362 start-page: 1400 year: 2018 publication-title: Science – volume: 1 start-page: 473 year: 2015 publication-title: ACS Cent. Sci. – volume: 51 year: 2022 publication-title: Dalton Trans. – volume: 40 start-page: 3336 year: 2011 publication-title: Chem. Soc. Rev. – year: 2007 – volume: 115 start-page: 1804 year: 1993 publication-title: J. Am. Chem. Soc. – volume: 418 start-page: 493 year: 2002 publication-title: Nature – volume: 8 start-page: 3694 year: 2017 publication-title: Chem. Sci. – volume: 5 start-page: 87 year: 2020 publication-title: Nat. Rev. Mater. – volume: 36 start-page: 1537 year: 1983 publication-title: Aust. J. Chem. – volume: 119 start-page: 3322 year: 2015 publication-title: J. Phys. Chem. C – volume: 113 start-page: 5873 year: 1991 publication-title: J. Am. Chem. Soc. – volume: 164 year: 2014 – volume: 2 year: 2021 publication-title: Cell. Rep. Phys. Sci. – volume: 3 start-page: 564 year: 2011 publication-title: Nat. Chem. – volume: 118 start-page: 4536 year: 2014 publication-title: J. Phys. Chem. C – volume: 47 start-page: 501 year: 2018 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 2997 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5587 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 2286 year: 2016 publication-title: Chem. Sci. – volume: 548 start-page: 439 year: 2017 publication-title: Nature – volume: 410 start-page: 789 year: 2001 publication-title: Nature – volume: 110 year: 2006 publication-title: J. Phys. Chem. B – volume: 119 start-page: 3312 year: 2015 publication-title: J. Phys. Chem. C – volume: 7 start-page: 179 year: 2008 publication-title: Nat. Mater. – volume: 10 start-page: 995 year: 2020 publication-title: Appl. Sci. – volume: 6 start-page: 7 year: 2023 publication-title: Commun. Chem. – volume: 12 start-page: 452 year: 2020 publication-title: Nat. Chem. – volume: 309 start-page: 1501 year: 2005 publication-title: Science – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 125 start-page: 8694 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 9304 year: 2017 publication-title: Chem. Commun. – volume: 509 start-page: 345 year: 2014 publication-title: Nature – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 94 start-page: 1 year: 2020 publication-title: Bull. Chem. Soc. Jpn. – volume: 208 year: 2021 publication-title: Polyhedron – volume: 9 start-page: 3265 year: 2018 publication-title: Chem. Sci. – volume: 7 start-page: 7061 year: 2016 publication-title: Chem. Sci. – ident: e_1_2_9_16_1 doi: 10.1039/c1cs15047b – ident: e_1_2_9_21_1 doi: 10.1039/B714715E – ident: e_1_2_9_18_1 doi: 10.1038/ncomms10467 – ident: e_1_2_9_8_1 doi: 10.1021/jacs.8b11374 – ident: e_1_2_9_17_1 doi: 10.1126/science.aav0652 – ident: e_1_2_9_41_1 doi: 10.1039/C6SC01105E – ident: e_1_2_9_34_1 doi: 10.1039/D0CC03357J – ident: e_1_2_9_56_1 doi: 10.1021/acs.inorgchem.0c01620 – ident: e_1_2_9_58_1 doi: 10.1021/jp5003963 – ident: e_1_2_9_2_1 doi: 10.1021/ja00058a027 – ident: e_1_2_9_28_1 doi: 10.1038/365141a0 – ident: e_1_2_9_29_1 doi: 10.1038/35071024 – volume-title: Molecular Nanomagnets year: 2007 ident: e_1_2_9_4_1 – ident: e_1_2_9_32_1 doi: 10.1039/C7SC05464E – ident: e_1_2_9_76_1 doi: 10.1039/b913279c – ident: e_1_2_9_12_1 doi: 10.1039/C4CS00439F – ident: e_1_2_9_71_1 doi: 10.1039/D2DT00889K – ident: e_1_2_9_39_1 doi: 10.1038/nchem.1067 – ident: e_1_2_9_77_1 doi: 10.1016/j.xcrp.2021.100404 – ident: e_1_2_9_14_1 doi: 10.1039/C7CC04785A – ident: e_1_2_9_33_1 doi: 10.1021/acs.inorgchem.8b02685 – ident: e_1_2_9_65_1 doi: 10.1038/s41557-019-0232-y – ident: e_1_2_9_26_1 doi: 10.1038/nature23447 – volume: 36 start-page: 1527 year: 1983 ident: e_1_2_9_45_1 publication-title: J. Chem. – ident: e_1_2_9_60_1 doi: 10.1021/jp5117068 – ident: e_1_2_9_74_1 doi: 10.1021/acs.jpclett.7b02497 – ident: e_1_2_9_37_1 doi: 10.1021/jacs.7b07008 – ident: e_1_2_9_22_1 doi: 10.1063/1.1450813 – ident: e_1_2_9_20_1 doi: 10.1021/ic701365t – ident: e_1_2_9_50_1 doi: 10.1038/nature13252 – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevLett.107.230502 – ident: e_1_2_9_64_1 doi: 10.1039/C5CS00933B – ident: e_1_2_9_10_1 doi: 10.1146/annurev-conmatphys-070909-104053 – ident: e_1_2_9_53_1 doi: 10.1021/jp0615961 – ident: e_1_2_9_13_1 doi: 10.1039/D0CC01854F – ident: e_1_2_9_61_1 doi: 10.1103/PhysRevLett.117.013002 – ident: e_1_2_9_27_1 doi: 10.1126/science.1117039 – ident: e_1_2_9_52_1 doi: 10.1038/ncomms7359 – ident: e_1_2_9_48_1 doi: 10.1107/S1600577519006647 – ident: e_1_2_9_57_1 doi: 10.1002/wcms.1606 – ident: e_1_2_9_66_1 doi: 10.1021/acscentsci.5b00384 – ident: e_1_2_9_5_1 doi: 10.1038/418493a – ident: e_1_2_9_49_1 doi: 10.3390/app10030995 – ident: e_1_2_9_11_1 doi: 10.1002/chem.201705761 – ident: e_1_2_9_43_1 doi: 10.1021/acs.inorgchem.0c00818 – volume: 94 start-page: 1 year: 2020 ident: e_1_2_9_44_1 publication-title: Bull. Chem. Soc. Jpn. – ident: e_1_2_9_72_1 doi: 10.1038/s41557-020-0431-6 – volume-title: Molecular Nanomagnets and Related Phenomena. Structure and Bonding year: 2014 ident: e_1_2_9_19_1 – ident: e_1_2_9_35_1 doi: 10.1039/C6SC05188J – ident: e_1_2_9_68_1 doi: 10.1016/j.poly.2021.115386 – ident: e_1_2_9_7_1 doi: 10.1039/D1CS00101A – ident: e_1_2_9_36_1 doi: 10.1039/C5SC04461H – ident: e_1_2_9_54_1 – ident: e_1_2_9_70_1 doi: 10.1039/D1TC01487K – ident: e_1_2_9_25_1 doi: 10.1021/ja029629n – ident: e_1_2_9_24_1 doi: 10.1038/s41578-019-0146-8 – volume: 60 year: 2021 ident: e_1_2_9_69_1 publication-title: Angew. Chem. – ident: e_1_2_9_51_1 doi: 10.1021/acs.chemrev.6b00831 – ident: e_1_2_9_38_1 doi: 10.1039/C6SC02170K – ident: e_1_2_9_9_1 doi: 10.1039/c0cs00166j – ident: e_1_2_9_75_1 doi: 10.1021/acs.jctc.1c00419 – ident: e_1_2_9_55_1 doi: 10.1088/1742-6596/712/1/012001 – ident: e_1_2_9_63_1 doi: 10.1038/nmat2133 – volume-title: Single‐Molecule Magnets and Related Phenomena, Structure and Bonding year: 2006 ident: e_1_2_9_6_1 – volume: 2019 start-page: 250 year: 2019 ident: e_1_2_9_15_1 publication-title: Volume – ident: e_1_2_9_42_1 doi: 10.1002/anie.201303005 – ident: e_1_2_9_40_1 doi: 10.1039/C9CC03952J – ident: e_1_2_9_62_1 doi: 10.1038/s42004-022-00796-z – ident: e_1_2_9_67_1 doi: 10.1088/1361-648X/ab82d1 – ident: e_1_2_9_23_1 doi: 10.1021/ja105291x – ident: e_1_2_9_31_1 doi: 10.1039/C5SC03224E – ident: e_1_2_9_73_1 doi: 10.1002/anie.201403672 – ident: e_1_2_9_3_1 doi: 10.1021/ja00015a057 – ident: e_1_2_9_46_1 doi: 10.1071/CH9831537 – ident: e_1_2_9_47_1 doi: 10.1016/S0020-1693(00)86449-X – ident: e_1_2_9_1_1 doi: 10.1107/S0567740880007893 – ident: e_1_2_9_59_1 doi: 10.1021/jp5117189 |
| SSID | ssj0001537418 |
| Score | 2.3654563 |
| Snippet | Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering... Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering... Abstract Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently... Single–ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering... Abstract Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently... |
| SourceID | doaj swepub pubmedcentral osti hal proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2206880 |
| SubjectTerms | Condensed Matter Physics (including Material Physics, Nano Physics) Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik) Fysik Jahn-Teller effect Ligands MATERIALS SCIENCE Natural Sciences Naturvetenskap photoswitching Physical Sciences Physics single-ion magnets Spectrum analysis XFEL science |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQigMXRPkMLSggJOAQNXa8iXMsVauCSlWprVRxGTmO3ay0SqpNdrnyE_iN_BJm4uxqI0C9cEwya9me58yb7PiZsXdFabSVsYlSI6eRxAwiKlSZRCItMdw7l1ndq-ufZmdn6vo6P9866otqwrw8sJ-4fY3ZXmyxkUwric0oDIjSIlCdcUL5rXtxlm8lU35_cEKyLGuVxljs63JF6txC0Ckr8SgK9WL9GFsqKoWcNLi0_kY3_6yaHLRFx7S2j0vHj9jDgVCGB34gO-yerR-znWHJtuGHQVf64xN2dDXHFp1uu_CLrupfP35e0lf7RXheNV3Tfp91fV1lOKvDQ1IJ6cILvJxbNPzc1OFXfVPbrn3Kro6PLg9PouEUhchgqhBH-RTHW-IrWXOTaMV1qhJps8yagg4MSqdWSZfHpUhy7iha5YUTViFTxKFqZAPP2KRuavuChRLDvRFlZrkwsohL7LIu0BdcIRSETQMWrWcVzCAxTiddzMGLIwsgL8DGCwF7v7G_9eIa_7T8RE7aWJEodn8DoQIDVOAuqATsLbp41MbJwSnQvRhpMVHnFQ_YLiEAkICQiq6hciPTAce8C9lTwPbWwIBhsWMvlcTcHnN9EbA3m8e4TOm_F13bZkk2SJQkKREF7LnH0aYjSUaqaFwGTI0QNurp-Ek9q3opcNrliRwcZ_6bB-P4N30GB4NsVAXzJbQWbre-B4NBN-aiUJA6W4BUSQI5Vw5kgdzaTrnJywzd2gP8Dh8BEqkLKlZ--T-ctcseYMuJr4zeY5NusbSv2H2z6mbt4nW_2n8D9T9ZQA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXQwoELUD5DCwoICThEjT82cY6lalVQqVZqK1VcLNuxm5VWSbXJLld-Ar-RX8JMkk0bAUKI4zqz0cTzbL9xJs-EvDG51U7ENkqsmEYCMojIyJxHLMlhufc-dbpV1z9OT07kxUU2u_EVf6cPMWy44cho52sc4NrUu9eioTpfo9w2Y3hsCiTttynlKeKaidn1LsuUozwLnjAH2XXEpRAb5caY7Y5vMVqZWgF_WG8KLI-cVDDcfkdBf62k7PVGx1S3XasO7___Uz4g93qeGu51wNoit1z5kGz1M0Edvuvlqt8_IgfnC3DK67oJP-mi_PHt-xm-DFiGs6JqqvrrvGnLNcN5Ge6j-EgTnsLPhQPDj1UZftaXpWvqx-T88OBs_yjqD2eILGQgcZRNwZ8cZnpNLdeS6kRy4dLUWYPnECVTJ4XP4pzxjHpcBDPjmZNAQKG3NJCMJ2RSVqV7RkIBLMKyPHWUWWHiHFzWxgH3kYAw5pKARJvAKNsrl-MBGgvVaS4zhb2khl4KyNvB_qrT7Pij5QeM82CFWtttQ7W8VP3QVdrBEzmAcaqlACBLoGQC3Iu99UzGWUBeA0pG9zjaO1bYFgPbRka-pgHZRhAp4DUozmuxisk2ikI6B6QsIDsbbKl-DgEvpWDA77hkAXk1XIbRj690dOmqFdoA_xIocBSQpx0UB0d4imJrVAREjkA68nR8pZwXrcI4fjwK1B56_kuH5_F_2sRQ9WpUhVqsVO3U1Y1tZmUhjBkzUiXeGSUk5yqj0ithgLK7KbVZnkJYW-T_JUYK-Nkp1kA__0f7bXIXGnlXW71DJs1y5V6QO3bdzOvly3ae-AlbNGqA priority: 102 providerName: Wiley-Blackwell |
| Title | Ultrafast Jahn‐Teller Photoswitching in Cobalt Single‐Ion Magnets |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206880 https://www.ncbi.nlm.nih.gov/pubmed/37196414 https://www.proquest.com/docview/2842743382 https://www.proquest.com/docview/2815246968 https://hal.science/hal-05078002 https://www.osti.gov/biblio/1974081 https://pubmed.ncbi.nlm.nih.gov/PMC10375196 https://doaj.org/article/aeb30e4407a84b8d80284e070fcf2809 |
| Volume | 10 |
| WOSCitedRecordID | wos000989613100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYywMvwPgMG1VASMBDtMRxE-cJddOmFa0lYpsovFiO46yVqqQ0afn3uUvcQMTXAy-RkjjVxXc-_-5y_R0hr5JUSc1c5QSKDR0GEYST8NR3aJDCdp9loZY1u_5FOJ3y2SyKTcKtNGWVO59YO-q0UJgjPwI3CgEUBFT03eqrg12j8OuqaaGxR_qAbDws6ZrQ-EeOZegjOcuOq9GlRzLdIkc3pdhrxe3sRTVlP-wwcyyI7BWwwH4HOn-tnTQMo11wW-9OZ_f-973uk7sGl9qjxpD2yS2dPyD7ZuWX9htDT_32IRldL0GkTJaV_V7Oc-cKU_9rO54XVVF-W1R1caa9yO0TpBqp7Es4XWpnXOT2RN7kuiofkeuz06uTc8c0YnAURBuuEw1hslLw6tJTvuSeDLjPdBhqlWDPoWCoOcsiN6V-5GW44UVJRjUHlcA8SQAUj0kvL3L9lNgMEIOiaag9qljipiCuTDTgHA7WRHVgEWenEqEMSzk2y1iKhl-ZClShaFVokdft-FXDz_HHkceo4XYU8mrXF4r1jTDLVEgNb6TBZEPJGRgtB_jFQDw3UxnlbmSRl2Afnd84H10IvOYCskb0vfUscoDmIwDDIBGvwoolVQkPQjcAYBY53BmCMP4CpGytwCIv2tuw0vHzjcx1scExgLUYkhlZ5EljhK0gfojEah6zCO-YZ0fS7p18Ma_ZxPGPogDjYea_NJbcfaYOAoVhnpqL5UaUWqx-SikLBWqMaMJFkOlEMO77IvJ4JlgC8FwPPRWlIai1Xh3_0JEALHaJ9c7P_j5JB-QOPOM3ZdOHpFetN_o5ua221aJcD8geZTEcwxkfkP7x6TT-OKhzLQN0Dx_qI9zvx-NJ_BnOPo2n3wFKdWwO |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VAQkuQHmaFjAIBBxWtdcbe31AKBSqhqZRpKZSxWVZr9dNpMgOsZOKP8VvZMYvsHideuAYex3t45vZb9bjbwh5HsVaGe5o6mvepxwiCBqJ2KPMj2G7T5LAqFJdfxSMx-LsLJxskW_NtzCYVtn4xNJRx5nGM_I9cKMQQEFAxd4uv1CsGoVvV5sSGhUsjszXCwjZ8jfD97C-Lxg7-DDdP6R1VQGqgTo7NOwDZGNwUcrVnhKu8oXHTRAYHWEBHb9vBE9CJ2Ze6CbovcMoYUYAczIwLobiS-Dyr3BUFsNUQTb5cabT91AMptGGdNieijeoCc4Y1nZxOntfWSIAdrQZJmD2MjDo35HcX3M1a0XTLpkud8ODm__bPN4iN2rebQ8qQ9kmWya9TbZrz5bbr2r57dd3yOB0AVOQqLywP6pZSqf4amNlT2ZZkeUX86JMPrXnqb2PUiqFfQI_F4YOs9Q-VuepKfK75PRShnKP9NIsNQ-IzYERaRYHxmWaR04M3VWRAR4nwFqY8S1CGwhIXauwYzGQhaz0o5lEyMgWMhZ52bZfVvojf2z5DhHVtkLd8PJCtjqXtRuSysCIDGJXCQ5GKYBecuiek-iECSe0yDPAY-c_DgcjidcciBwwuti4FtlBuErgaCg0rDEjSxfShdAUCKZFdhvgydofQi9b1FnkaXsbPBm-nlKpydbYBrgkR7Emi9yvQN92xAtQOM7lFhEdc-j0tHsnnc9KtXT8EBbCFJj5T5XldJ8pg1xZK2vN5GItcyOXPx2ZSw3LGLJISD8xkeTC82ToikTyCMIP03d1GAewrKU1_mONJHDNE8znfvj3SXpCrh1Oj0dyNBwf7ZDr8LxXpYjvkl6xWptH5KreFPN89bh0QDb5fNmW-h17Or7c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NHUK8AOMzbEBAIOAhauK4jfOAUNmoVtZNlbZJGy_GcZy1UpWUJu3Ev8Zfx12SFiK-nvbAYxInOtt359_Zl98BvIhirQx3tdPVvONwjCCcSMS-w7oxLvdJEhhVsusPg6MjcXYWjjbg2-pfGEqrXPnE0lHHmaY98ja6UQygMKBi7aROixjt9d_NvjhUQYpOWlflNCoVOTBfLzF8y98O9nCuXzLW_3Cyu-_UFQYcjTDadcIOqm-M7kp52lfCU13hcxMERkdUTKfbMYInoRszP_QS8uRhlDAjEEUZ7CMjIiZ0_5v4Lc5asDkaHI7Of-zwdHyihlkxRbqsreIlMYQzRpVe3MZKWBYMwPVtTOmYrQzN-3eQ99fMzZrftAmty7Wxf-t_HtXbcLNG5HavMqEt2DDpHdiqfV5uv66Jud_chd7pFIcjUXlhf1Tj1DmhQ4-5PRpnRZZfTooyLdWepPYukawU9jFeTo0zyFL7UF2kpsjvwemVdOU-tNIsNQ_B5oiVNIsD4zHNIzdGcVVkEOEJtCNmuhY4K3WQuuZnpzIhU1kxSzNJ6iPX6mPBq3X7WcVM8seW70m71q2IUby8kc0vZO2gpDLYI4PGGijB0VwFAk-O4rmJTphwQwueo242vrHfG0q652JMQXHH0rNgm1RXInojCmJNuVq6kB4GrQg9LdhZKaGsPSVKudZAC56tH6OPo4MrlZpsQW0QZXKicbLgQWUAa0H8gCjlPG6BaJhGQ9Lmk3QyLnnU6RdZDGBw5D9VVtR8pwx_Zc25NZbThcyNnP20mS41TmPIIiG7iYkkF74vQ08kkkcYmJiOp8M4wGktLfMfcyQRhR5Tpvejvw_SU7iOBiqHg6ODbbiBr_tV7vgOtIr5wjyGa3pZTPL5k9ob2fD5qk31O_CAySU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Jahn-Teller+Photoswitching+in+Cobalt+Single-Ion+Magnets&rft.jtitle=Advanced+science&rft.au=Canton%2C+Sophie+E.&rft.au=Biednov%2C+Mykola&rft.au=P%C3%A1pai%2C+M%C3%A1ty%C3%A1s&rft.au=Lima%2C+Frederico+A&rft.date=2023-07-01&rft.pub=Wiley&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=21&rft_id=info:doi/10.1002%2Fadvs.202206880&rft.externalDocID=1974081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |