Effects of light intensity on growth and lipid production in microalgae grown in wastewater
Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (par...
Saved in:
| Published in: | Biotechnology for biofuels Vol. 13; no. 1; p. 4 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
07.01.2020
BioMed Central Ltd Nature Publishing Group BMC |
| Subjects: | |
| ISSN: | 1754-6834, 1754-6834, 2731-3654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m
−2
s
−1
).
Results
Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both
Desmodesmus
sp. and
Scenedesmus obliquus
. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium.
Conclusion
The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. |
|---|---|
| AbstractList | Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m-2 s-1).BACKGROUNDCultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m-2 s-1).Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium.RESULTSIncreases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium.The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.CONCLUSIONThe results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 [mu]E m.sup.-2 s.sup.-1). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Keywords: Biodiesel, Biorefinery, FTIR, Light intensity, Lipids, Microalgae Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m −2 s −1 ). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus . Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. BACKGROUND: Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m⁻² s⁻¹). RESULTS: Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. CONCLUSION: The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m s ). Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both sp. and . Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Abstract Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m−2 s−1). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 [mu]E m.sup.-2 s.sup.-1). Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 mu E m(-2) s(-1)). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m−2 s−1). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. |
| ArticleNumber | 4 |
| Audience | Academic |
| Author | Farge, Xavier Nzayisenga, Jean Claude Groll, Sophia Leticia Sellstedt, Anita |
| Author_xml | – sequence: 1 givenname: Jean Claude surname: Nzayisenga fullname: Nzayisenga, Jean Claude organization: Department of Plant Physiology, UPSC, Umea University – sequence: 2 givenname: Xavier surname: Farge fullname: Farge, Xavier organization: Department of Plant Physiology, UPSC, Umea University, Graduate School of Biotechnology of Strasbourg (ESBS), Unistra – sequence: 3 givenname: Sophia Leticia surname: Groll fullname: Groll, Sophia Leticia organization: Department of Plant Physiology, UPSC, Umea University – sequence: 4 givenname: Anita surname: Sellstedt fullname: Sellstedt, Anita email: Anita.sellstedt@umu.se organization: Department of Plant Physiology, UPSC, Umea University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31921352$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-168569$$DView record from Swedish Publication Index (Umeå universitet) |
| BookMark | eNqFkl9rFDEUxQep2D_6AXyRAV_qw9RkJrmZeRGWWrVQELT44kPIZpJpymyyJhm3_fbe3W21W1AZwoSb3zlc7j2HxZ4P3hTFS0pOKG3hbaINgbYitKsoMKhunhQHVHBWQduwvQf3_eIwpWtCgAoinhX7De1q2vD6oPh-Zq3ROZXBlqMbrnLpfDY-uXxbBl8OMazyVal8j69L15fLGPpJZ4dvzpcLp2NQ46DMhtzUVipls1LZxOfFU6vGZF7c_Y-Kyw9nl6efqovPH89PZxeVFgxyJRSAta1mYFnfN4JAry1YarRlTDcd51ArQRWFeT9nTBkgpNN1axqleq6bo-J8a9sHdS2X0S1UvJVBObkphDhIFbPTo5FMaNpABzV0jOFFEUqJ7iwneq7xoFe19Uors5zmO27v3bfZxm1aTJJCy6FD_t2WR3hhem18jmrcke2-eHclh_BTYgOcAUWD4zuDGH5MJmW5cEmbcVTehCnJmnVtzWsOzf_RpoGaCUE4oq8foddhih6XgBSjVLQdXxuebKlB4WyctwFb1Pj1BheLUbMO6zOgreACWkDBmx0BMtnc5EFNKcnzr1922VcPJ_N7JPfRQ0BsAYxQStFYqV1W62RhF26UlMh1yOU25BJDLtchlzeopI-U9-b_0tR3i0XWDyb-mcjfRb8ACtwOgg |
| CitedBy_id | crossref_primary_10_1002_ieam_4946 crossref_primary_10_1016_j_scitotenv_2021_150585 crossref_primary_10_1016_j_cbd_2024_101346 crossref_primary_10_1016_j_jenvman_2024_121138 crossref_primary_10_1186_s40643_023_00699_4 crossref_primary_10_1016_j_biortech_2022_127991 crossref_primary_10_1111_ppl_70186 crossref_primary_10_1007_s10811_021_02503_2 crossref_primary_10_1016_j_aquaculture_2025_742956 crossref_primary_10_1007_s11027_025_10249_2 crossref_primary_10_1016_j_scitotenv_2020_141599 crossref_primary_10_1007_s13399_021_01537_3 crossref_primary_10_1016_j_jclepro_2022_130998 crossref_primary_10_1016_j_aquaeng_2025_102539 crossref_primary_10_1186_s12934_025_02685_1 crossref_primary_10_32615_ps_2022_044 crossref_primary_10_1007_s11157_021_09571_3 crossref_primary_10_1016_j_jece_2025_117187 crossref_primary_10_1016_j_jece_2021_105765 crossref_primary_10_3390_app10228181 crossref_primary_10_1016_j_cclet_2022_08_001 crossref_primary_10_1016_j_jece_2025_117996 crossref_primary_10_3390_md21060331 crossref_primary_10_33693_2313_223X_2023_10_3_11_25 crossref_primary_10_1016_j_bcab_2024_103205 crossref_primary_10_1080_15435075_2021_1983726 crossref_primary_10_1021_acsfoodscitech_4c01032 crossref_primary_10_1016_j_jbiotec_2022_11_007 crossref_primary_10_3390_microorganisms13010044 crossref_primary_10_1016_j_enconman_2022_116400 crossref_primary_10_1016_j_rser_2021_111464 crossref_primary_10_1016_j_jwpe_2023_104666 crossref_primary_10_1016_j_pecs_2023_101071 crossref_primary_10_1016_j_jclepro_2021_126640 crossref_primary_10_1016_j_scitotenv_2024_170918 crossref_primary_10_1038_s41598_024_72381_4 crossref_primary_10_1007_s13399_021_01755_9 crossref_primary_10_1016_j_biortech_2023_128901 crossref_primary_10_1016_j_algal_2021_102544 crossref_primary_10_3390_en13030697 crossref_primary_10_1016_j_biortech_2021_124855 crossref_primary_10_1007_s11274_022_03275_8 crossref_primary_10_3390_jmse11091673 crossref_primary_10_1007_s13399_024_06380_w crossref_primary_10_1016_j_chemosphere_2023_137987 crossref_primary_10_1016_j_jclepro_2021_127094 crossref_primary_10_3390_microorganisms8081254 crossref_primary_10_1002_jctb_7369 crossref_primary_10_1016_j_cscee_2024_100756 crossref_primary_10_1002_jctb_7256 crossref_primary_10_1016_j_rineng_2025_104316 crossref_primary_10_1016_j_algal_2025_103992 crossref_primary_10_1016_j_nexus_2022_100129 crossref_primary_10_1016_j_heliyon_2023_e12801 crossref_primary_10_3390_biology13110901 crossref_primary_10_1016_j_biortech_2024_131250 crossref_primary_10_1016_j_chemosphere_2023_140337 crossref_primary_10_1016_j_chemosphere_2022_135375 crossref_primary_10_32604_biocell_2024_050540 crossref_primary_10_4236_cweee_2020_94012 crossref_primary_10_1002_lipd_12343 crossref_primary_10_1016_j_biortech_2022_126746 crossref_primary_10_1016_j_algal_2024_103541 crossref_primary_10_1016_j_biortech_2021_124953 crossref_primary_10_3390_foods10051018 crossref_primary_10_1007_s10811_021_02641_7 crossref_primary_10_3389_fbioe_2021_804608 crossref_primary_10_1016_j_biortech_2024_130451 crossref_primary_10_1016_j_cej_2023_148056 crossref_primary_10_3390_foods10123002 crossref_primary_10_1007_s10098_024_02808_z crossref_primary_10_1016_j_algal_2024_103550 crossref_primary_10_1016_j_algal_2025_104224 crossref_primary_10_1016_j_fuel_2022_123192 crossref_primary_10_1016_j_biortech_2021_124850 crossref_primary_10_3389_fmars_2023_1095590 crossref_primary_10_1016_j_jwpe_2023_103927 crossref_primary_10_1016_j_jwpe_2020_101767 crossref_primary_10_1186_s13068_025_02679_6 crossref_primary_10_1007_s13205_021_02792_x crossref_primary_10_3390_fermentation8110650 crossref_primary_10_3390_foods14142500 crossref_primary_10_24857_rgsa_v19n8_044 crossref_primary_10_1016_j_cej_2025_163585 crossref_primary_10_1080_15226514_2022_2027865 crossref_primary_10_1007_s11306_024_02170_7 crossref_primary_10_1007_s43153_025_00567_y crossref_primary_10_1007_s10529_021_03077_2 crossref_primary_10_1016_j_rser_2021_111270 crossref_primary_10_1051_ocl_2024019 crossref_primary_10_1016_j_algal_2021_102228 crossref_primary_10_1016_j_renene_2025_124061 crossref_primary_10_1016_j_algal_2022_102630 crossref_primary_10_1007_s10811_021_02605_x crossref_primary_10_1002_jobm_202300092 crossref_primary_10_1016_j_fuel_2022_126438 crossref_primary_10_1016_j_chemosphere_2022_135164 crossref_primary_10_3390_en14071817 crossref_primary_10_1002_clen_202100286 crossref_primary_10_33693_2313_223X_2023_10_2_60_69 crossref_primary_10_1002_biot_202100603 crossref_primary_10_1016_j_bcab_2024_103144 crossref_primary_10_1016_j_bej_2024_109555 crossref_primary_10_1016_j_algal_2025_104004 crossref_primary_10_1016_j_fuel_2021_121148 crossref_primary_10_3390_su13063063 crossref_primary_10_1007_s13369_024_09601_6 crossref_primary_10_1016_j_algal_2024_103532 crossref_primary_10_1016_j_envpol_2024_123796 crossref_primary_10_1016_j_bcab_2024_103383 crossref_primary_10_1007_s00284_025_04248_4 crossref_primary_10_3390_w17182674 crossref_primary_10_1016_j_tibtech_2021_06_005 crossref_primary_10_3390_pr12122770 crossref_primary_10_1186_s12934_021_01667_3 crossref_primary_10_1051_ocl_2021045 crossref_primary_10_1016_j_renene_2022_06_061 crossref_primary_10_3390_en17205218 crossref_primary_10_1007_s13399_021_01338_8 crossref_primary_10_1016_j_scitotenv_2022_159281 crossref_primary_10_20473_jipk_v16i1_46193 crossref_primary_10_3389_fpls_2021_752634 crossref_primary_10_3390_su13169081 crossref_primary_10_31545_intagr_210214 crossref_primary_10_1016_j_biombioe_2024_107278 crossref_primary_10_1007_s10098_021_02199_5 crossref_primary_10_1016_j_algal_2022_102780 crossref_primary_10_3390_su16083148 crossref_primary_10_1016_j_algal_2023_103214 crossref_primary_10_1186_s44315_025_00029_7 crossref_primary_10_1016_j_biotechadv_2024_108493 crossref_primary_10_3390_fermentation9060529 crossref_primary_10_1016_j_bcab_2024_103299 crossref_primary_10_1016_j_envres_2023_117403 crossref_primary_10_1186_s12864_023_09183_x crossref_primary_10_1016_j_biortech_2022_127933 crossref_primary_10_1007_s12155_025_10851_x crossref_primary_10_1016_j_scitotenv_2023_163005 crossref_primary_10_1007_s43153_025_00571_2 crossref_primary_10_1016_j_renene_2025_123728 crossref_primary_10_1016_j_scitotenv_2023_165546 crossref_primary_10_3390_life15091427 crossref_primary_10_3390_ijms24021346 crossref_primary_10_1016_j_enconman_2022_115360 crossref_primary_10_1016_j_jenvman_2025_127263 crossref_primary_10_1007_s42452_025_06588_z crossref_primary_10_1016_j_cej_2020_128138 crossref_primary_10_1016_j_cej_2024_149619 crossref_primary_10_3390_agronomy12030580 crossref_primary_10_1002_jctb_7411 crossref_primary_10_1016_j_biteb_2022_101158 crossref_primary_10_1007_s12033_023_00969_8 crossref_primary_10_1016_j_biombioe_2025_107638 crossref_primary_10_1016_j_algal_2023_103315 crossref_primary_10_1186_s13068_025_02656_z crossref_primary_10_1016_j_biotechadv_2021_107885 crossref_primary_10_1016_j_jece_2022_108444 crossref_primary_10_1016_j_jwpe_2020_101702 crossref_primary_10_1007_s12088_024_01213_w crossref_primary_10_1002_appl_202200127 crossref_primary_10_1016_j_watres_2022_118165 crossref_primary_10_1088_1742_6596_1858_1_012038 crossref_primary_10_1016_j_envres_2023_115320 crossref_primary_10_1080_09593330_2020_1829087 crossref_primary_10_1016_j_jece_2025_116576 crossref_primary_10_1016_j_algal_2020_101911 crossref_primary_10_1002_bab_2379 crossref_primary_10_1007_s11356_023_25779_y crossref_primary_10_1016_j_jece_2021_106491 crossref_primary_10_1039_D4RA02904F crossref_primary_10_1016_j_ijhydene_2023_02_028 crossref_primary_10_1016_j_algal_2024_103389 crossref_primary_10_1016_j_chemosphere_2022_135346 crossref_primary_10_1016_j_watres_2025_124561 crossref_primary_10_1016_j_ecmx_2025_101082 crossref_primary_10_1016_j_algal_2021_102616 crossref_primary_10_3390_app132312753 crossref_primary_10_1007_s13399_022_03033_8 crossref_primary_10_1016_j_algal_2021_102612 crossref_primary_10_1080_09593330_2025_2474254 crossref_primary_10_1007_s11783_025_2051_2 crossref_primary_10_1016_j_cej_2024_154175 crossref_primary_10_1039_D2SE00574C crossref_primary_10_1016_j_chemosphere_2021_132580 crossref_primary_10_1007_s11274_022_03245_0 crossref_primary_10_1016_j_bcab_2025_103619 crossref_primary_10_1007_s10811_024_03318_7 crossref_primary_10_3390_w16192782 crossref_primary_10_3390_plants12162898 crossref_primary_10_1016_j_biortech_2021_125194 crossref_primary_10_1016_j_enconman_2024_118511 crossref_primary_10_1007_s10811_025_03643_5 crossref_primary_10_1016_j_jenvman_2022_116520 crossref_primary_10_1007_s10854_024_13885_7 crossref_primary_10_3390_jmse12020245 crossref_primary_10_3390_biology10101060 crossref_primary_10_1016_j_fuproc_2025_108199 crossref_primary_10_1016_j_rser_2022_112969 crossref_primary_10_1002_er_6447 crossref_primary_10_1007_s10811_024_03426_4 crossref_primary_10_1016_j_jenvman_2022_116757 crossref_primary_10_1007_s42770_024_01389_9 crossref_primary_10_3390_resources11020020 crossref_primary_10_1016_j_cscee_2024_101087 crossref_primary_10_1007_s10750_022_04810_2 crossref_primary_10_1007_s10811_025_03632_8 crossref_primary_10_1016_j_biortech_2022_127445 crossref_primary_10_1007_s12649_024_02874_w crossref_primary_10_1016_j_protis_2024_126035 crossref_primary_10_1016_j_biteb_2021_100916 crossref_primary_10_1016_j_renene_2023_03_103 crossref_primary_10_1016_j_biombioe_2022_106522 crossref_primary_10_1016_j_fuel_2022_125639 crossref_primary_10_1088_1755_1315_584_1_012040 crossref_primary_10_3390_plants12223876 |
| Cites_doi | 10.1016/j.biortech.2014.12.079 10.4319/lo.1984.29.4.0731 10.1016/j.biortech.2017.08.020 10.1007/s10295-016-1741-y 10.1089/omi.2013.0025 10.1016/j.biortech.2013.10.092 10.1016/B978-0-12-800776-1.00032-7 10.1016/j.energy.2008.04.001 10.1016/j.biortech.2015.07.043 10.1016/j.biortech.2015.05.021 10.1007/s00253-012-3915-5 10.1016/j.biortech.2012.01.125 10.1016/j.jbiotec.2016.11.029 10.1016/j.biortech.2014.08.086 10.1016/j.renene.2017.04.001 10.1134/S1021443712020161 10.1016/j.biortech.2018.02.085 10.1016/j.bbalip.2016.02.008 10.1039/C5RA09555G 10.1089/ees.2014.0219 10.1039/b903941d 10.1007/s11274-015-2003-2 10.1002/elsc.201400174 10.1038/nprot.2015.008 10.1016/j.biortech.2015.01.005 10.1016/j.biotechadv.2007.02.001 10.1111/j.1365-313X.2008.03492.x 10.1016/j.biortech.2015.11.042 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SP 7ST 7TB 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V L7M LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS SOI 7X8 7S9 L.6 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC DOA |
| DOI | 10.1186/s13068-019-1646-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1754-6834 2731-3654 |
| EndPage | 4 |
| ExternalDocumentID | oai_doaj_org_article_47c1369626944369a0110c9f50cbc0cb oai_DiVA_org_umu_168569 PMC6945461 A618757686 31921352 10_1186_s13068_019_1646_x |
| Genre | Journal Article |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GrantInformation_xml | – fundername: Energimyndigheten grantid: 2013-06259 funderid: http://dx.doi.org/10.13039/501100004527 – fundername: Svenska Forskningsrådet Formas grantid: 942-2015-92 funderid: http://dx.doi.org/10.13039/501100001862 – fundername: ; grantid: 2013-06259 – fundername: ; grantid: 942-2015-92 |
| GroupedDBID | 23N 2WC 2XV 5GY 5VS 6J9 7X7 8FE 8FG 8FH AAFWJ AAHBH ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BPHCQ BVXVI C6C CS3 DIK DU5 E3Z EBS ECGQY ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAG IAO IEA IEP ISR ITC KQ8 L6V L8X LK8 M48 ML0 M~E O5R O5S OVT P2P P62 PGMZT PQQKQ PROAC PUEGO RBZ RNS ROL RPM RVI SCM TR2 TUS ~8M AAYXX CITATION 2VQ 4.4 AHSBF ALIPV C1A EJD H13 IPNFZ NPM RIG 0R~ 3V. 7QO 7SP 7ST 7TB 7XB 8FD 8FI 8FJ 8FK AAJSJ AASML ABJCF ADUKV AEUYN AFKRA AZQEC BGLVJ BMC C1K CCPQU DWQXO EBLON FR3 GNUQQ HMCUK K9. L7M M7P M7S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PTHSS RSV SOI SOJ UKHRP 7X8 7S9 L.6 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC |
| ID | FETCH-LOGICAL-c746t-7a66ff8c46f4dd3706dcf6f1ecf44c395562a71a16bdb44ae6009c28e3aad5c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 228 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513167900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1754-6834 |
| IngestDate | Fri Oct 03 12:43:38 EDT 2025 Tue Nov 04 17:04:09 EST 2025 Tue Nov 04 02:01:06 EST 2025 Sun Nov 09 12:49:27 EST 2025 Thu Sep 04 18:37:19 EDT 2025 Thu Nov 27 13:42:59 EST 2025 Sat Nov 29 10:29:05 EST 2025 Wed Nov 26 09:31:47 EST 2025 Mon Jul 21 06:03:52 EDT 2025 Sat Nov 29 06:27:37 EST 2025 Tue Nov 18 21:50:34 EST 2025 Sat Sep 06 07:32:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Light intensity Lipids Biorefinery Microalgae Biodiesel FTIR |
| Language | English |
| License | The Author(s) 2020. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c746t-7a66ff8c46f4dd3706dcf6f1ecf44c395562a71a16bdb44ae6009c28e3aad5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2341178953?pq-origsite=%requestingapplication% |
| PMID | 31921352 |
| PQID | 2341178953 |
| PQPubID | 55236 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_47c1369626944369a0110c9f50cbc0cb swepub_primary_oai_DiVA_org_umu_168569 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6945461 proquest_miscellaneous_2498252563 proquest_miscellaneous_2336247705 proquest_journals_2341178953 gale_infotracacademiconefile_A618757686 gale_incontextgauss_ISR_A618757686 pubmed_primary_31921352 crossref_citationtrail_10_1186_s13068_019_1646_x crossref_primary_10_1186_s13068_019_1646_x springer_journals_10_1186_s13068_019_1646_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-07 |
| PublicationDateYYYYMMDD | 2020-01-07 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Biotechnology for biofuels |
| PublicationTitleAbbrev | Biotechnol Biofuels |
| PublicationTitleAlternate | Biotechnol Biofuels |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Nature Publishing Group BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Nature Publishing Group – name: BMC |
| References | G Breuer (1646_CR16) 2013; 80 I Krzemińska (1646_CR30) 2015; 15 JC Nzayisenga (1646_CR24) 2018; 257 T Li (1646_CR28) 2015; 180 SH Seo (1646_CR9) 2017; 244 RL Cuhel (1646_CR25) 1984; 29 SN Zhu (1646_CR27) 2014; 152 SR Chia (1646_CR5) 2018; 129 K Zienkiewicz (1646_CR12) 2016; 1861 B Cheirsilp (1646_CR20) 2012; 110 B George (1646_CR21) 2014; 171 QY Meng (1646_CR1) 2008; 33 G Breuer (1646_CR26) 2015; 9 P Choudhary (1646_CR10) 2015 Directive Hat (1646_CR33) 2003; 50 GH Gim (1646_CR13) 2016; 43 IM Monirul (1646_CR31) 2015; 5 KJ Chavan (1646_CR6) 2014; 31 Q Hu (1646_CR11) 2008; 54 L Ferro (1646_CR34) 2018; 32 R Dai (1646_CR3) 2016; 32 J Felten (1646_CR23) 2015; 10 B Cheirsilp (1646_CR7) 2012; 110 G Knothe (1646_CR32) 2009; 2 SK Mandotra (1646_CR17) 2016; 201 P Pribyl (1646_CR18) 2012; 94 I Krzeminska (1646_CR22) 2015; 196 LD Zhu (1646_CR29) 2016; 2016 I Pancha (1646_CR8) 2015; 179 Q He (1646_CR14) 2015; 191 AE Solovchenko (1646_CR19) 2012; 59 T Luangpipat (1646_CR4) 2016; 257 N Misra (1646_CR15) 2013; 17 Y Chisti (1646_CR2) 2007; 25 |
| References_xml | – volume: 179 start-page: 565 year: 2015 ident: 1646_CR8 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2014.12.079 – volume: 29 start-page: 731 issue: 4 year: 1984 ident: 1646_CR25 publication-title: Limnol Oceanogr doi: 10.4319/lo.1984.29.4.0731 – volume: 244 start-page: 621 year: 2017 ident: 1646_CR9 publication-title: Biores Technol doi: 10.1016/j.biortech.2017.08.020 – volume: 43 start-page: 605 issue: 5 year: 2016 ident: 1646_CR13 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-016-1741-y – volume: 17 start-page: 537 issue: 11 year: 2013 ident: 1646_CR15 publication-title: OMICS doi: 10.1089/omi.2013.0025 – volume: 152 start-page: 292 year: 2014 ident: 1646_CR27 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.10.092 – start-page: 483 volume-title: Handbook of marine microalgae year: 2015 ident: 1646_CR10 doi: 10.1016/B978-0-12-800776-1.00032-7 – volume: 33 start-page: 1179 issue: 8 year: 2008 ident: 1646_CR1 publication-title: Energy doi: 10.1016/j.energy.2008.04.001 – volume: 196 start-page: 72 year: 2015 ident: 1646_CR22 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.07.043 – volume: 32 start-page: 44 year: 2018 ident: 1646_CR34 publication-title: Algal Res Biomass Biofuels Bioprod – volume: 191 start-page: 219 year: 2015 ident: 1646_CR14 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.05.021 – volume: 94 start-page: 549 issue: 2 year: 2012 ident: 1646_CR18 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-3915-5 – volume: 110 start-page: 510 year: 2012 ident: 1646_CR20 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.01.125 – volume: 257 start-page: 47 year: 2016 ident: 1646_CR4 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2016.11.029 – volume: 171 start-page: 367 year: 2014 ident: 1646_CR21 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.08.086 – volume: 129 start-page: 838 year: 2018 ident: 1646_CR5 publication-title: Renew Energy doi: 10.1016/j.renene.2017.04.001 – volume: 110 start-page: 510 year: 2012 ident: 1646_CR7 publication-title: Biores Technol doi: 10.1016/j.biortech.2012.01.125 – volume: 59 start-page: 167 issue: 2 year: 2012 ident: 1646_CR19 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443712020161 – volume: 257 start-page: 260 year: 2018 ident: 1646_CR24 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.02.085 – volume: 1861 start-page: 1269 issue: 9 Pt B year: 2016 ident: 1646_CR12 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2016.02.008 – volume: 5 start-page: 86631 issue: 105 year: 2015 ident: 1646_CR31 publication-title: RSC Adv doi: 10.1039/C5RA09555G – volume: 9 start-page: 254 year: 2015 ident: 1646_CR26 publication-title: Algal Res Biomass Biofuels Bioprod – volume: 31 start-page: 602 issue: 11 year: 2014 ident: 1646_CR6 publication-title: Environ Eng Sci doi: 10.1089/ees.2014.0219 – volume: 80 start-page: 50628 year: 2013 ident: 1646_CR16 publication-title: J Vis Exp – volume: 2 start-page: 759 issue: 7 year: 2009 ident: 1646_CR32 publication-title: Energy Environ Sci doi: 10.1039/b903941d – volume: 32 start-page: 51 issue: 3 year: 2016 ident: 1646_CR3 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-015-2003-2 – volume: 15 start-page: 533 issue: 5 year: 2015 ident: 1646_CR30 publication-title: Eng Life Sci doi: 10.1002/elsc.201400174 – volume: 2016 start-page: 8792548 year: 2016 ident: 1646_CR29 publication-title: Biomed Res Int – volume: 10 start-page: 217 issue: 2 year: 2015 ident: 1646_CR23 publication-title: Nat Protoc doi: 10.1038/nprot.2015.008 – volume: 180 start-page: 250 year: 2015 ident: 1646_CR28 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.01.005 – volume: 50 start-page: 1 issue: 284 year: 2003 ident: 1646_CR33 publication-title: Regulation (EC) – volume: 25 start-page: 294 issue: 3 year: 2007 ident: 1646_CR2 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.02.001 – volume: 54 start-page: 621 issue: 4 year: 2008 ident: 1646_CR11 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03492.x – volume: 201 start-page: 222 year: 2016 ident: 1646_CR17 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.11.042 |
| SSID | ssj0061707 ssj0002769473 |
| Score | 2.6419244 |
| Snippet | Background
Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to... Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable... Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to... BACKGROUND: Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to... Abstract Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the... |
| SourceID | doaj swepub pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4 |
| SubjectTerms | Acid production Algae Biodiesel Biodiesel fuels Biofuels Biomass Biorefinery Biotechnology Carbohydrates Cell division Chemical properties Chemistry Chemistry and Materials Science Composition Cultivation culture media Diesel Environmental effects Environmental Engineering/Biotechnology Environmental factors Fatty acid composition Fatty acids Fourier transforms FTIR Glycerol Growth Infrared analysis Light Light intensity Lipid synthesis Lipids Luminous intensity Methods Microalgae Microbiological synthesis Microbiology Nitrogen Northern Hemisphere Observations Optical properties Phosphorus Plant Breeding/Biotechnology protein content Proteins Renewable and Green Energy Renewable energy Scenedesmus obliquus Sewage treatment Spectrometry spectroscopy wastewater Wastewater treatment Waterborne diseases |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9y-KAP4rc9T6kiCkq5ZJsmzeP6cejLIXrIgQ8hTZq7wl27XFs9_3tnmm7dnrC--FBYmmm7mZlMZpLJbwh5YQ0DwUJYUhSeJtxShUkAKpGuhGFpBF0Ufig2IQ8P8-Nj9Xmj1BfmhAV44MC4fS4tw5pzeOKSww-DE5ZVPqO2sHCh9aVSrYOpYIMRZVyOe5gsF_stWGqBSVsqQTyt5HI2Cw1g_X-b5I056Wq-5LRpegVgdJiUDm6TW6M3GS9DL-6Qa2V9l9zcwBi8R74HfOI2bnx8hpF4XIWs9e5X3NTxCYTh3Wlsagetq8rFqwABC-ICwvgc8_XwuEc5UA73fpoWV9xAIPfJ0cGHo3cfk7GiQmIlF10CzBfe55YLz51LJRXOeuFZaT3nNlUZeENGMsNE4QrOTQnukLKLvEyNcZlNH5CduqnLRyQ2qXQ-89ax3HDmqaHwJuqzFGSrrHARoWsGazuijWPRizM9RB250EEmGmSiUSb6MiKvp0dWAWpjG_FblNpEiCjZww3QHT3qjv6X7kTkOcpcIw5GjYk2J6ZvW_3p6xe9FAyh_kUuIvJqJPIN9MCa8dwC8AGhs2aUe2vd0aMlaPUC3AQmc5WlEXk2NcMYxo0ZU5dNjzTgRnApabaFhisI5sFBhfc8DOo4dR5HGwNPOiJypqgz7sxb6up0wBIHzmRcsIi8Wav0n7--hfkvg9bPPvC--rYc2N-f90CYZ0Lt_g8pPSY3FrjIgeteco_sdBd9-YRctz-6qr14Ooz7330lXAI priority: 102 providerName: Directory of Open Access Journals |
| Title | Effects of light intensity on growth and lipid production in microalgae grown in wastewater |
| URI | https://link.springer.com/article/10.1186/s13068-019-1646-x https://www.ncbi.nlm.nih.gov/pubmed/31921352 https://www.proquest.com/docview/2341178953 https://www.proquest.com/docview/2336247705 https://www.proquest.com/docview/2498252563 https://pubmed.ncbi.nlm.nih.gov/PMC6945461 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-168569 https://doaj.org/article/47c1369626944369a0110c9f50cbc0cb |
| Volume | 13 |
| WOSCitedRecordID | wos000513167900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061707 issn: 1754-6834 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1754-6834 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0061707 issn: 1754-6834 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1754-6834 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0061707 issn: 1754-6834 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: M7S dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1754-6834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002769473 issn: 1754-6834 databaseCode: RSV dateStart: 20081201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYxgM88P0RGFVACCRQtHw4dvKEOujEHqiibUKDPViOHXeVtqQ0LYwX_nbunDRbhtQXHmpV8TVp7s7n8_n8O0JeKxmAYGFZkufG96jyU0wCSD2uCxiWkvlhbmyxCT4eJ8fHadYG3Oo2rXJlE62h1pXCGPlOCOY24EkaRx9mPzysGoW7q20JjQ2yhSgJoU3dy7oYS8hZSnnUbmYGCdupwWQzzN5KPQTW8i5605FF7f_XNl-ZnK4nTna7p9eQRu3stHf3f9_rHrnT-qXusFGk--RGUT4gt6-gFT4kJw3Sce1Wxj3DNb07bfLfF7_dqnQnsKBfnLqy1NA7m2p31oDJguCB0D3HzD88OFJYSnvtl6wxdgeifUSO9kZHHz97bW0GT3HKFh6IkRmTKMoM1TriPtPKMBMUylCqojQGv0ryQAYs1zmlsgDHKlVhUkRS6lhFj8lmWZXFU-LKiGsTG6WDRNLA-NKHO_kmjkBLUsW0Q_yVhIRqccuxfMaZsOuXhIlGqAKEKlCo4sIh77qfzBrQjnXEuyj2jhDxtu2Faj4R7fAVlKsAKx_iuV8KXyS6TSo1sa9yBR-HvEKlEYioUWLKzkQu61rsHx6IIQuwaABLmEPetkSmgjdQsj0BAXxAEK4e5fZKWURrU2pxqSkOedl1gzXALR5ZFtUSacAhoZz78RoamiZhDK4u3OdJo8_dy-O4DcAndwjvaXqPO_2ecnpqUcmBMzFlgUPer8bE5V9fw_w3zbDpPeDT9OvQsn95vgTCJGbps_UceU5uhRgIwdgY3yabi_myeEFuqp-LaT0fkA1-zG2bDMjW7micHQxs8GVg7YVtD7H9M4I2i78DVbb_Jfv2F5aIdQw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGhwQ88P0RGBAQHxIoWj4cO35AqDCmVduqCio0xIPlOHFXaUtK09Ltj-J_5C5fW4fUtz3wEKmKL258-d35fD7fEfJKKw8-LCxL4ti4DtWuwCAA4fAkBbFUzPVjUxab4P1-dHAgBmvkT3MWBsMqG51YKuok1-gj3_RB3Xo8EmHwcfLLwapRuLvalNCoYLGbni5gyVZ86G3B933t-9tfhp93nLqqgKM5ZTMHXoAZE2nKDE2SgLss0YYZL9WGUh2IECwCxT3lsTiJKVUpmARC-1EaKJWEOoBur5B1iljvkPVBb3_wo3Xq-JwJyoN699SL2GYBcwTDcDHhYCYv52Rp_ivLBPw7GZybDS9GarbbtRdSm5bT4fat_4yRt8nN2u62u5Wg3CFraXaX3DiXjfEe-Vllci7s3NhH6LOwx1V8_-zUzjN7NM0Xs0NbZQm0TsaJPamS5QKwgdA-xshGPBiTlpTlvYUq0DcJ0L1PhpcxuAekk-VZ-ojYKuCJCY1OvEhRz7jKhZ5cEwYgBUKzxCJuAwip67zsWB7kSJbrs4jJCkMSMCQRQ_LEIu_aRyZVUpJVxJ8QZS0h5hMvb-TTkazVk6Rce1jZEc81U_ih0CzUwoSujjVcFnmJGJWYMSTDkKSRmheF7H37KrvMw6IILGIWeVsTmRxGoFV9wgP4gEnGlig3GmzKWmcW8gyYFnnRNoO2wy0slaX5HGnA4KKcu-EKGioiPwRTHvp5WIlPO3jUSx6sOSzClwRriTvLLdn4sMy6DpwJKfMs8r4RwbNXX8H8N5WULv3B1vh7t2T__HgOhFHIxOPVHHlOru0M9_fkXq-_-4Rc99Hpg35AvkE6s-k8fUqu6t-zcTF9Vqskm8hLlt2_BSPLoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+light+intensity+on+growth+and+lipid+production+in+microalgae+grown+in+wastewater&rft.jtitle=Biotechnology+for+biofuels&rft.au=Nzayisenga%2C+Jean+Claude&rft.au=Farge%2C+Xavier&rft.au=Groll%2C+Sophia+Leticia&rft.au=Sellstedt%2C+Anita&rft.date=2020-01-07&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2Fs13068-019-1646-x&rft.externalDocID=oai_DiVA_org_umu_168569 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon |