Effects of light intensity on growth and lipid production in microalgae grown in wastewater

Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (par...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology for biofuels Vol. 13; no. 1; p. 4
Main Authors: Nzayisenga, Jean Claude, Farge, Xavier, Groll, Sophia Leticia, Sellstedt, Anita
Format: Journal Article
Language:English
Published: London BioMed Central 07.01.2020
BioMed Central Ltd
Nature Publishing Group
BMC
Subjects:
ISSN:1754-6834, 1754-6834, 2731-3654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m −2 s −1 ). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus . Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
AbstractList Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m-2 s-1).BACKGROUNDCultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m-2 s-1).Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium.RESULTSIncreases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium.The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.CONCLUSIONThe results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 [mu]E m.sup.-2 s.sup.-1). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content. Keywords: Biodiesel, Biorefinery, FTIR, Light intensity, Lipids, Microalgae
Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m −2 s −1 ). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus . Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
BACKGROUND: Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m⁻² s⁻¹). RESULTS: Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. CONCLUSION: The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m s ). Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both sp. and . Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
Abstract Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m−2 s−1). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 [mu]E m.sup.-2 s.sup.-1). Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 mu E m(-2) s(-1)). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m−2 s−1). Results Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
ArticleNumber 4
Audience Academic
Author Farge, Xavier
Nzayisenga, Jean Claude
Groll, Sophia Leticia
Sellstedt, Anita
Author_xml – sequence: 1
  givenname: Jean Claude
  surname: Nzayisenga
  fullname: Nzayisenga, Jean Claude
  organization: Department of Plant Physiology, UPSC, Umea University
– sequence: 2
  givenname: Xavier
  surname: Farge
  fullname: Farge, Xavier
  organization: Department of Plant Physiology, UPSC, Umea University, Graduate School of Biotechnology of Strasbourg (ESBS), Unistra
– sequence: 3
  givenname: Sophia Leticia
  surname: Groll
  fullname: Groll, Sophia Leticia
  organization: Department of Plant Physiology, UPSC, Umea University
– sequence: 4
  givenname: Anita
  surname: Sellstedt
  fullname: Sellstedt, Anita
  email: Anita.sellstedt@umu.se
  organization: Department of Plant Physiology, UPSC, Umea University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31921352$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-168569$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNqFkl9rFDEUxQep2D_6AXyRAV_qw9RkJrmZeRGWWrVQELT44kPIZpJpymyyJhm3_fbe3W21W1AZwoSb3zlc7j2HxZ4P3hTFS0pOKG3hbaINgbYitKsoMKhunhQHVHBWQduwvQf3_eIwpWtCgAoinhX7De1q2vD6oPh-Zq3ROZXBlqMbrnLpfDY-uXxbBl8OMazyVal8j69L15fLGPpJZ4dvzpcLp2NQ46DMhtzUVipls1LZxOfFU6vGZF7c_Y-Kyw9nl6efqovPH89PZxeVFgxyJRSAta1mYFnfN4JAry1YarRlTDcd51ArQRWFeT9nTBkgpNN1axqleq6bo-J8a9sHdS2X0S1UvJVBObkphDhIFbPTo5FMaNpABzV0jOFFEUqJ7iwneq7xoFe19Uors5zmO27v3bfZxm1aTJJCy6FD_t2WR3hhem18jmrcke2-eHclh_BTYgOcAUWD4zuDGH5MJmW5cEmbcVTehCnJmnVtzWsOzf_RpoGaCUE4oq8foddhih6XgBSjVLQdXxuebKlB4WyctwFb1Pj1BheLUbMO6zOgreACWkDBmx0BMtnc5EFNKcnzr1922VcPJ_N7JPfRQ0BsAYxQStFYqV1W62RhF26UlMh1yOU25BJDLtchlzeopI-U9-b_0tR3i0XWDyb-mcjfRb8ACtwOgg
CitedBy_id crossref_primary_10_1002_ieam_4946
crossref_primary_10_1016_j_scitotenv_2021_150585
crossref_primary_10_1016_j_cbd_2024_101346
crossref_primary_10_1016_j_jenvman_2024_121138
crossref_primary_10_1186_s40643_023_00699_4
crossref_primary_10_1016_j_biortech_2022_127991
crossref_primary_10_1111_ppl_70186
crossref_primary_10_1007_s10811_021_02503_2
crossref_primary_10_1016_j_aquaculture_2025_742956
crossref_primary_10_1007_s11027_025_10249_2
crossref_primary_10_1016_j_scitotenv_2020_141599
crossref_primary_10_1007_s13399_021_01537_3
crossref_primary_10_1016_j_jclepro_2022_130998
crossref_primary_10_1016_j_aquaeng_2025_102539
crossref_primary_10_1186_s12934_025_02685_1
crossref_primary_10_32615_ps_2022_044
crossref_primary_10_1007_s11157_021_09571_3
crossref_primary_10_1016_j_jece_2025_117187
crossref_primary_10_1016_j_jece_2021_105765
crossref_primary_10_3390_app10228181
crossref_primary_10_1016_j_cclet_2022_08_001
crossref_primary_10_1016_j_jece_2025_117996
crossref_primary_10_3390_md21060331
crossref_primary_10_33693_2313_223X_2023_10_3_11_25
crossref_primary_10_1016_j_bcab_2024_103205
crossref_primary_10_1080_15435075_2021_1983726
crossref_primary_10_1021_acsfoodscitech_4c01032
crossref_primary_10_1016_j_jbiotec_2022_11_007
crossref_primary_10_3390_microorganisms13010044
crossref_primary_10_1016_j_enconman_2022_116400
crossref_primary_10_1016_j_rser_2021_111464
crossref_primary_10_1016_j_jwpe_2023_104666
crossref_primary_10_1016_j_pecs_2023_101071
crossref_primary_10_1016_j_jclepro_2021_126640
crossref_primary_10_1016_j_scitotenv_2024_170918
crossref_primary_10_1038_s41598_024_72381_4
crossref_primary_10_1007_s13399_021_01755_9
crossref_primary_10_1016_j_biortech_2023_128901
crossref_primary_10_1016_j_algal_2021_102544
crossref_primary_10_3390_en13030697
crossref_primary_10_1016_j_biortech_2021_124855
crossref_primary_10_1007_s11274_022_03275_8
crossref_primary_10_3390_jmse11091673
crossref_primary_10_1007_s13399_024_06380_w
crossref_primary_10_1016_j_chemosphere_2023_137987
crossref_primary_10_1016_j_jclepro_2021_127094
crossref_primary_10_3390_microorganisms8081254
crossref_primary_10_1002_jctb_7369
crossref_primary_10_1016_j_cscee_2024_100756
crossref_primary_10_1002_jctb_7256
crossref_primary_10_1016_j_rineng_2025_104316
crossref_primary_10_1016_j_algal_2025_103992
crossref_primary_10_1016_j_nexus_2022_100129
crossref_primary_10_1016_j_heliyon_2023_e12801
crossref_primary_10_3390_biology13110901
crossref_primary_10_1016_j_biortech_2024_131250
crossref_primary_10_1016_j_chemosphere_2023_140337
crossref_primary_10_1016_j_chemosphere_2022_135375
crossref_primary_10_32604_biocell_2024_050540
crossref_primary_10_4236_cweee_2020_94012
crossref_primary_10_1002_lipd_12343
crossref_primary_10_1016_j_biortech_2022_126746
crossref_primary_10_1016_j_algal_2024_103541
crossref_primary_10_1016_j_biortech_2021_124953
crossref_primary_10_3390_foods10051018
crossref_primary_10_1007_s10811_021_02641_7
crossref_primary_10_3389_fbioe_2021_804608
crossref_primary_10_1016_j_biortech_2024_130451
crossref_primary_10_1016_j_cej_2023_148056
crossref_primary_10_3390_foods10123002
crossref_primary_10_1007_s10098_024_02808_z
crossref_primary_10_1016_j_algal_2024_103550
crossref_primary_10_1016_j_algal_2025_104224
crossref_primary_10_1016_j_fuel_2022_123192
crossref_primary_10_1016_j_biortech_2021_124850
crossref_primary_10_3389_fmars_2023_1095590
crossref_primary_10_1016_j_jwpe_2023_103927
crossref_primary_10_1016_j_jwpe_2020_101767
crossref_primary_10_1186_s13068_025_02679_6
crossref_primary_10_1007_s13205_021_02792_x
crossref_primary_10_3390_fermentation8110650
crossref_primary_10_3390_foods14142500
crossref_primary_10_24857_rgsa_v19n8_044
crossref_primary_10_1016_j_cej_2025_163585
crossref_primary_10_1080_15226514_2022_2027865
crossref_primary_10_1007_s11306_024_02170_7
crossref_primary_10_1007_s43153_025_00567_y
crossref_primary_10_1007_s10529_021_03077_2
crossref_primary_10_1016_j_rser_2021_111270
crossref_primary_10_1051_ocl_2024019
crossref_primary_10_1016_j_algal_2021_102228
crossref_primary_10_1016_j_renene_2025_124061
crossref_primary_10_1016_j_algal_2022_102630
crossref_primary_10_1007_s10811_021_02605_x
crossref_primary_10_1002_jobm_202300092
crossref_primary_10_1016_j_fuel_2022_126438
crossref_primary_10_1016_j_chemosphere_2022_135164
crossref_primary_10_3390_en14071817
crossref_primary_10_1002_clen_202100286
crossref_primary_10_33693_2313_223X_2023_10_2_60_69
crossref_primary_10_1002_biot_202100603
crossref_primary_10_1016_j_bcab_2024_103144
crossref_primary_10_1016_j_bej_2024_109555
crossref_primary_10_1016_j_algal_2025_104004
crossref_primary_10_1016_j_fuel_2021_121148
crossref_primary_10_3390_su13063063
crossref_primary_10_1007_s13369_024_09601_6
crossref_primary_10_1016_j_algal_2024_103532
crossref_primary_10_1016_j_envpol_2024_123796
crossref_primary_10_1016_j_bcab_2024_103383
crossref_primary_10_1007_s00284_025_04248_4
crossref_primary_10_3390_w17182674
crossref_primary_10_1016_j_tibtech_2021_06_005
crossref_primary_10_3390_pr12122770
crossref_primary_10_1186_s12934_021_01667_3
crossref_primary_10_1051_ocl_2021045
crossref_primary_10_1016_j_renene_2022_06_061
crossref_primary_10_3390_en17205218
crossref_primary_10_1007_s13399_021_01338_8
crossref_primary_10_1016_j_scitotenv_2022_159281
crossref_primary_10_20473_jipk_v16i1_46193
crossref_primary_10_3389_fpls_2021_752634
crossref_primary_10_3390_su13169081
crossref_primary_10_31545_intagr_210214
crossref_primary_10_1016_j_biombioe_2024_107278
crossref_primary_10_1007_s10098_021_02199_5
crossref_primary_10_1016_j_algal_2022_102780
crossref_primary_10_3390_su16083148
crossref_primary_10_1016_j_algal_2023_103214
crossref_primary_10_1186_s44315_025_00029_7
crossref_primary_10_1016_j_biotechadv_2024_108493
crossref_primary_10_3390_fermentation9060529
crossref_primary_10_1016_j_bcab_2024_103299
crossref_primary_10_1016_j_envres_2023_117403
crossref_primary_10_1186_s12864_023_09183_x
crossref_primary_10_1016_j_biortech_2022_127933
crossref_primary_10_1007_s12155_025_10851_x
crossref_primary_10_1016_j_scitotenv_2023_163005
crossref_primary_10_1007_s43153_025_00571_2
crossref_primary_10_1016_j_renene_2025_123728
crossref_primary_10_1016_j_scitotenv_2023_165546
crossref_primary_10_3390_life15091427
crossref_primary_10_3390_ijms24021346
crossref_primary_10_1016_j_enconman_2022_115360
crossref_primary_10_1016_j_jenvman_2025_127263
crossref_primary_10_1007_s42452_025_06588_z
crossref_primary_10_1016_j_cej_2020_128138
crossref_primary_10_1016_j_cej_2024_149619
crossref_primary_10_3390_agronomy12030580
crossref_primary_10_1002_jctb_7411
crossref_primary_10_1016_j_biteb_2022_101158
crossref_primary_10_1007_s12033_023_00969_8
crossref_primary_10_1016_j_biombioe_2025_107638
crossref_primary_10_1016_j_algal_2023_103315
crossref_primary_10_1186_s13068_025_02656_z
crossref_primary_10_1016_j_biotechadv_2021_107885
crossref_primary_10_1016_j_jece_2022_108444
crossref_primary_10_1016_j_jwpe_2020_101702
crossref_primary_10_1007_s12088_024_01213_w
crossref_primary_10_1002_appl_202200127
crossref_primary_10_1016_j_watres_2022_118165
crossref_primary_10_1088_1742_6596_1858_1_012038
crossref_primary_10_1016_j_envres_2023_115320
crossref_primary_10_1080_09593330_2020_1829087
crossref_primary_10_1016_j_jece_2025_116576
crossref_primary_10_1016_j_algal_2020_101911
crossref_primary_10_1002_bab_2379
crossref_primary_10_1007_s11356_023_25779_y
crossref_primary_10_1016_j_jece_2021_106491
crossref_primary_10_1039_D4RA02904F
crossref_primary_10_1016_j_ijhydene_2023_02_028
crossref_primary_10_1016_j_algal_2024_103389
crossref_primary_10_1016_j_chemosphere_2022_135346
crossref_primary_10_1016_j_watres_2025_124561
crossref_primary_10_1016_j_ecmx_2025_101082
crossref_primary_10_1016_j_algal_2021_102616
crossref_primary_10_3390_app132312753
crossref_primary_10_1007_s13399_022_03033_8
crossref_primary_10_1016_j_algal_2021_102612
crossref_primary_10_1080_09593330_2025_2474254
crossref_primary_10_1007_s11783_025_2051_2
crossref_primary_10_1016_j_cej_2024_154175
crossref_primary_10_1039_D2SE00574C
crossref_primary_10_1016_j_chemosphere_2021_132580
crossref_primary_10_1007_s11274_022_03245_0
crossref_primary_10_1016_j_bcab_2025_103619
crossref_primary_10_1007_s10811_024_03318_7
crossref_primary_10_3390_w16192782
crossref_primary_10_3390_plants12162898
crossref_primary_10_1016_j_biortech_2021_125194
crossref_primary_10_1016_j_enconman_2024_118511
crossref_primary_10_1007_s10811_025_03643_5
crossref_primary_10_1016_j_jenvman_2022_116520
crossref_primary_10_1007_s10854_024_13885_7
crossref_primary_10_3390_jmse12020245
crossref_primary_10_3390_biology10101060
crossref_primary_10_1016_j_fuproc_2025_108199
crossref_primary_10_1016_j_rser_2022_112969
crossref_primary_10_1002_er_6447
crossref_primary_10_1007_s10811_024_03426_4
crossref_primary_10_1016_j_jenvman_2022_116757
crossref_primary_10_1007_s42770_024_01389_9
crossref_primary_10_3390_resources11020020
crossref_primary_10_1016_j_cscee_2024_101087
crossref_primary_10_1007_s10750_022_04810_2
crossref_primary_10_1007_s10811_025_03632_8
crossref_primary_10_1016_j_biortech_2022_127445
crossref_primary_10_1007_s12649_024_02874_w
crossref_primary_10_1016_j_protis_2024_126035
crossref_primary_10_1016_j_biteb_2021_100916
crossref_primary_10_1016_j_renene_2023_03_103
crossref_primary_10_1016_j_biombioe_2022_106522
crossref_primary_10_1016_j_fuel_2022_125639
crossref_primary_10_1088_1755_1315_584_1_012040
crossref_primary_10_3390_plants12223876
Cites_doi 10.1016/j.biortech.2014.12.079
10.4319/lo.1984.29.4.0731
10.1016/j.biortech.2017.08.020
10.1007/s10295-016-1741-y
10.1089/omi.2013.0025
10.1016/j.biortech.2013.10.092
10.1016/B978-0-12-800776-1.00032-7
10.1016/j.energy.2008.04.001
10.1016/j.biortech.2015.07.043
10.1016/j.biortech.2015.05.021
10.1007/s00253-012-3915-5
10.1016/j.biortech.2012.01.125
10.1016/j.jbiotec.2016.11.029
10.1016/j.biortech.2014.08.086
10.1016/j.renene.2017.04.001
10.1134/S1021443712020161
10.1016/j.biortech.2018.02.085
10.1016/j.bbalip.2016.02.008
10.1039/C5RA09555G
10.1089/ees.2014.0219
10.1039/b903941d
10.1007/s11274-015-2003-2
10.1002/elsc.201400174
10.1038/nprot.2015.008
10.1016/j.biortech.2015.01.005
10.1016/j.biotechadv.2007.02.001
10.1111/j.1365-313X.2008.03492.x
10.1016/j.biortech.2015.11.042
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SP
7ST
7TB
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
L7M
LK8
M0S
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
SOI
7X8
7S9
L.6
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1186/s13068-019-1646-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
PubMed



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1754-6834
2731-3654
EndPage 4
ExternalDocumentID oai_doaj_org_article_47c1369626944369a0110c9f50cbc0cb
oai_DiVA_org_umu_168569
PMC6945461
A618757686
31921352
10_1186_s13068_019_1646_x
Genre Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Energimyndigheten
  grantid: 2013-06259
  funderid: http://dx.doi.org/10.13039/501100004527
– fundername: Svenska Forskningsrådet Formas
  grantid: 942-2015-92
  funderid: http://dx.doi.org/10.13039/501100001862
– fundername: ;
  grantid: 2013-06259
– fundername: ;
  grantid: 942-2015-92
GroupedDBID 23N
2WC
2XV
5GY
5VS
6J9
7X7
8FE
8FG
8FH
AAFWJ
AAHBH
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BPHCQ
BVXVI
C6C
CS3
DIK
DU5
E3Z
EBS
ECGQY
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAG
IAO
IEA
IEP
ISR
ITC
KQ8
L6V
L8X
LK8
M48
ML0
M~E
O5R
O5S
OVT
P2P
P62
PGMZT
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RVI
SCM
TR2
TUS
~8M
AAYXX
CITATION
2VQ
4.4
AHSBF
ALIPV
C1A
EJD
H13
IPNFZ
NPM
RIG
0R~
3V.
7QO
7SP
7ST
7TB
7XB
8FD
8FI
8FJ
8FK
AAJSJ
AASML
ABJCF
ADUKV
AEUYN
AFKRA
AZQEC
BGLVJ
BMC
C1K
CCPQU
DWQXO
EBLON
FR3
GNUQQ
HMCUK
K9.
L7M
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PTHSS
RSV
SOI
SOJ
UKHRP
7X8
7S9
L.6
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ID FETCH-LOGICAL-c746t-7a66ff8c46f4dd3706dcf6f1ecf44c395562a71a16bdb44ae6009c28e3aad5c3
IEDL.DBID M7P
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513167900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1754-6834
IngestDate Fri Oct 03 12:43:38 EDT 2025
Tue Nov 04 17:04:09 EST 2025
Tue Nov 04 02:01:06 EST 2025
Sun Nov 09 12:49:27 EST 2025
Thu Sep 04 18:37:19 EDT 2025
Thu Nov 27 13:42:59 EST 2025
Sat Nov 29 10:29:05 EST 2025
Wed Nov 26 09:31:47 EST 2025
Mon Jul 21 06:03:52 EDT 2025
Sat Nov 29 06:27:37 EST 2025
Tue Nov 18 21:50:34 EST 2025
Sat Sep 06 07:32:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Light intensity
Lipids
Biorefinery
Microalgae
Biodiesel
FTIR
Language English
License The Author(s) 2020.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c746t-7a66ff8c46f4dd3706dcf6f1ecf44c395562a71a16bdb44ae6009c28e3aad5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2341178953?pq-origsite=%requestingapplication%
PMID 31921352
PQID 2341178953
PQPubID 55236
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_47c1369626944369a0110c9f50cbc0cb
swepub_primary_oai_DiVA_org_umu_168569
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6945461
proquest_miscellaneous_2498252563
proquest_miscellaneous_2336247705
proquest_journals_2341178953
gale_infotracacademiconefile_A618757686
gale_incontextgauss_ISR_A618757686
pubmed_primary_31921352
crossref_citationtrail_10_1186_s13068_019_1646_x
crossref_primary_10_1186_s13068_019_1646_x
springer_journals_10_1186_s13068_019_1646_x
PublicationCentury 2000
PublicationDate 2020-01-07
PublicationDateYYYYMMDD 2020-01-07
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biotechnology for biofuels
PublicationTitleAbbrev Biotechnol Biofuels
PublicationTitleAlternate Biotechnol Biofuels
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Nature Publishing Group
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Nature Publishing Group
– name: BMC
References G Breuer (1646_CR16) 2013; 80
I Krzemińska (1646_CR30) 2015; 15
JC Nzayisenga (1646_CR24) 2018; 257
T Li (1646_CR28) 2015; 180
SH Seo (1646_CR9) 2017; 244
RL Cuhel (1646_CR25) 1984; 29
SN Zhu (1646_CR27) 2014; 152
SR Chia (1646_CR5) 2018; 129
K Zienkiewicz (1646_CR12) 2016; 1861
B Cheirsilp (1646_CR20) 2012; 110
B George (1646_CR21) 2014; 171
QY Meng (1646_CR1) 2008; 33
G Breuer (1646_CR26) 2015; 9
P Choudhary (1646_CR10) 2015
Directive Hat (1646_CR33) 2003; 50
GH Gim (1646_CR13) 2016; 43
IM Monirul (1646_CR31) 2015; 5
KJ Chavan (1646_CR6) 2014; 31
Q Hu (1646_CR11) 2008; 54
L Ferro (1646_CR34) 2018; 32
R Dai (1646_CR3) 2016; 32
J Felten (1646_CR23) 2015; 10
B Cheirsilp (1646_CR7) 2012; 110
G Knothe (1646_CR32) 2009; 2
SK Mandotra (1646_CR17) 2016; 201
P Pribyl (1646_CR18) 2012; 94
I Krzeminska (1646_CR22) 2015; 196
LD Zhu (1646_CR29) 2016; 2016
I Pancha (1646_CR8) 2015; 179
Q He (1646_CR14) 2015; 191
AE Solovchenko (1646_CR19) 2012; 59
T Luangpipat (1646_CR4) 2016; 257
N Misra (1646_CR15) 2013; 17
Y Chisti (1646_CR2) 2007; 25
References_xml – volume: 179
  start-page: 565
  year: 2015
  ident: 1646_CR8
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2014.12.079
– volume: 29
  start-page: 731
  issue: 4
  year: 1984
  ident: 1646_CR25
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1984.29.4.0731
– volume: 244
  start-page: 621
  year: 2017
  ident: 1646_CR9
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2017.08.020
– volume: 43
  start-page: 605
  issue: 5
  year: 2016
  ident: 1646_CR13
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-016-1741-y
– volume: 17
  start-page: 537
  issue: 11
  year: 2013
  ident: 1646_CR15
  publication-title: OMICS
  doi: 10.1089/omi.2013.0025
– volume: 152
  start-page: 292
  year: 2014
  ident: 1646_CR27
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.10.092
– start-page: 483
  volume-title: Handbook of marine microalgae
  year: 2015
  ident: 1646_CR10
  doi: 10.1016/B978-0-12-800776-1.00032-7
– volume: 33
  start-page: 1179
  issue: 8
  year: 2008
  ident: 1646_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2008.04.001
– volume: 196
  start-page: 72
  year: 2015
  ident: 1646_CR22
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.07.043
– volume: 32
  start-page: 44
  year: 2018
  ident: 1646_CR34
  publication-title: Algal Res Biomass Biofuels Bioprod
– volume: 191
  start-page: 219
  year: 2015
  ident: 1646_CR14
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.05.021
– volume: 94
  start-page: 549
  issue: 2
  year: 2012
  ident: 1646_CR18
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-3915-5
– volume: 110
  start-page: 510
  year: 2012
  ident: 1646_CR20
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.01.125
– volume: 257
  start-page: 47
  year: 2016
  ident: 1646_CR4
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2016.11.029
– volume: 171
  start-page: 367
  year: 2014
  ident: 1646_CR21
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.08.086
– volume: 129
  start-page: 838
  year: 2018
  ident: 1646_CR5
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.001
– volume: 110
  start-page: 510
  year: 2012
  ident: 1646_CR7
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2012.01.125
– volume: 59
  start-page: 167
  issue: 2
  year: 2012
  ident: 1646_CR19
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443712020161
– volume: 257
  start-page: 260
  year: 2018
  ident: 1646_CR24
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.02.085
– volume: 1861
  start-page: 1269
  issue: 9 Pt B
  year: 2016
  ident: 1646_CR12
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2016.02.008
– volume: 5
  start-page: 86631
  issue: 105
  year: 2015
  ident: 1646_CR31
  publication-title: RSC Adv
  doi: 10.1039/C5RA09555G
– volume: 9
  start-page: 254
  year: 2015
  ident: 1646_CR26
  publication-title: Algal Res Biomass Biofuels Bioprod
– volume: 31
  start-page: 602
  issue: 11
  year: 2014
  ident: 1646_CR6
  publication-title: Environ Eng Sci
  doi: 10.1089/ees.2014.0219
– volume: 80
  start-page: 50628
  year: 2013
  ident: 1646_CR16
  publication-title: J Vis Exp
– volume: 2
  start-page: 759
  issue: 7
  year: 2009
  ident: 1646_CR32
  publication-title: Energy Environ Sci
  doi: 10.1039/b903941d
– volume: 32
  start-page: 51
  issue: 3
  year: 2016
  ident: 1646_CR3
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-015-2003-2
– volume: 15
  start-page: 533
  issue: 5
  year: 2015
  ident: 1646_CR30
  publication-title: Eng Life Sci
  doi: 10.1002/elsc.201400174
– volume: 2016
  start-page: 8792548
  year: 2016
  ident: 1646_CR29
  publication-title: Biomed Res Int
– volume: 10
  start-page: 217
  issue: 2
  year: 2015
  ident: 1646_CR23
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.008
– volume: 180
  start-page: 250
  year: 2015
  ident: 1646_CR28
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.01.005
– volume: 50
  start-page: 1
  issue: 284
  year: 2003
  ident: 1646_CR33
  publication-title: Regulation (EC)
– volume: 25
  start-page: 294
  issue: 3
  year: 2007
  ident: 1646_CR2
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 54
  start-page: 621
  issue: 4
  year: 2008
  ident: 1646_CR11
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03492.x
– volume: 201
  start-page: 222
  year: 2016
  ident: 1646_CR17
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.11.042
SSID ssj0061707
ssj0002769473
Score 2.6419244
Snippet Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to...
Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable...
Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to...
BACKGROUND: Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to...
Abstract Background Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Acid production
Algae
Biodiesel
Biodiesel fuels
Biofuels
Biomass
Biorefinery
Biotechnology
Carbohydrates
Cell division
Chemical properties
Chemistry
Chemistry and Materials Science
Composition
Cultivation
culture media
Diesel
Environmental effects
Environmental Engineering/Biotechnology
Environmental factors
Fatty acid composition
Fatty acids
Fourier transforms
FTIR
Glycerol
Growth
Infrared analysis
Light
Light intensity
Lipid synthesis
Lipids
Luminous intensity
Methods
Microalgae
Microbiological synthesis
Microbiology
Nitrogen
Northern Hemisphere
Observations
Optical properties
Phosphorus
Plant Breeding/Biotechnology
protein content
Proteins
Renewable and Green Energy
Renewable energy
Scenedesmus obliquus
Sewage treatment
Spectrometry
spectroscopy
wastewater
Wastewater treatment
Waterborne diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9y-KAP4rc9T6kiCkq5ZJsmzeP6cejLIXrIgQ8hTZq7wl27XFs9_3tnmm7dnrC--FBYmmm7mZlMZpLJbwh5YQ0DwUJYUhSeJtxShUkAKpGuhGFpBF0Ufig2IQ8P8-Nj9Xmj1BfmhAV44MC4fS4tw5pzeOKSww-DE5ZVPqO2sHCh9aVSrYOpYIMRZVyOe5gsF_stWGqBSVsqQTyt5HI2Cw1g_X-b5I056Wq-5LRpegVgdJiUDm6TW6M3GS9DL-6Qa2V9l9zcwBi8R74HfOI2bnx8hpF4XIWs9e5X3NTxCYTh3Wlsagetq8rFqwABC-ICwvgc8_XwuEc5UA73fpoWV9xAIPfJ0cGHo3cfk7GiQmIlF10CzBfe55YLz51LJRXOeuFZaT3nNlUZeENGMsNE4QrOTQnukLKLvEyNcZlNH5CduqnLRyQ2qXQ-89ax3HDmqaHwJuqzFGSrrHARoWsGazuijWPRizM9RB250EEmGmSiUSb6MiKvp0dWAWpjG_FblNpEiCjZww3QHT3qjv6X7kTkOcpcIw5GjYk2J6ZvW_3p6xe9FAyh_kUuIvJqJPIN9MCa8dwC8AGhs2aUe2vd0aMlaPUC3AQmc5WlEXk2NcMYxo0ZU5dNjzTgRnApabaFhisI5sFBhfc8DOo4dR5HGwNPOiJypqgz7sxb6up0wBIHzmRcsIi8Wav0n7--hfkvg9bPPvC--rYc2N-f90CYZ0Lt_g8pPSY3FrjIgeteco_sdBd9-YRctz-6qr14Ooz7330lXAI
  priority: 102
  providerName: Directory of Open Access Journals
Title Effects of light intensity on growth and lipid production in microalgae grown in wastewater
URI https://link.springer.com/article/10.1186/s13068-019-1646-x
https://www.ncbi.nlm.nih.gov/pubmed/31921352
https://www.proquest.com/docview/2341178953
https://www.proquest.com/docview/2336247705
https://www.proquest.com/docview/2498252563
https://pubmed.ncbi.nlm.nih.gov/PMC6945461
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-168569
https://doaj.org/article/47c1369626944369a0110c9f50cbc0cb
Volume 13
WOSCitedRecordID wos000513167900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061707
  issn: 1754-6834
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0061707
  issn: 1754-6834
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0061707
  issn: 1754-6834
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1754-6834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002769473
  issn: 1754-6834
  databaseCode: RSV
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYxgM88P0RGFVACCRQtHw4dvKEOujEHqiibUKDPViOHXeVtqQ0LYwX_nbunDRbhtQXHmpV8TVp7s7n8_n8O0JeKxmAYGFZkufG96jyU0wCSD2uCxiWkvlhbmyxCT4eJ8fHadYG3Oo2rXJlE62h1pXCGPlOCOY24EkaRx9mPzysGoW7q20JjQ2yhSgJoU3dy7oYS8hZSnnUbmYGCdupwWQzzN5KPQTW8i5605FF7f_XNl-ZnK4nTna7p9eQRu3stHf3f9_rHrnT-qXusFGk--RGUT4gt6-gFT4kJw3Sce1Wxj3DNb07bfLfF7_dqnQnsKBfnLqy1NA7m2p31oDJguCB0D3HzD88OFJYSnvtl6wxdgeifUSO9kZHHz97bW0GT3HKFh6IkRmTKMoM1TriPtPKMBMUylCqojQGv0ryQAYs1zmlsgDHKlVhUkRS6lhFj8lmWZXFU-LKiGsTG6WDRNLA-NKHO_kmjkBLUsW0Q_yVhIRqccuxfMaZsOuXhIlGqAKEKlCo4sIh77qfzBrQjnXEuyj2jhDxtu2Faj4R7fAVlKsAKx_iuV8KXyS6TSo1sa9yBR-HvEKlEYioUWLKzkQu61rsHx6IIQuwaABLmEPetkSmgjdQsj0BAXxAEK4e5fZKWURrU2pxqSkOedl1gzXALR5ZFtUSacAhoZz78RoamiZhDK4u3OdJo8_dy-O4DcAndwjvaXqPO_2ecnpqUcmBMzFlgUPer8bE5V9fw_w3zbDpPeDT9OvQsn95vgTCJGbps_UceU5uhRgIwdgY3yabi_myeEFuqp-LaT0fkA1-zG2bDMjW7micHQxs8GVg7YVtD7H9M4I2i78DVbb_Jfv2F5aIdQw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGhwQ88P0RGBAQHxIoWj4cO35AqDCmVduqCio0xIPlOHFXaUtK09Ltj-J_5C5fW4fUtz3wEKmKL258-d35fD7fEfJKKw8-LCxL4ti4DtWuwCAA4fAkBbFUzPVjUxab4P1-dHAgBmvkT3MWBsMqG51YKuok1-gj3_RB3Xo8EmHwcfLLwapRuLvalNCoYLGbni5gyVZ86G3B933t-9tfhp93nLqqgKM5ZTMHXoAZE2nKDE2SgLss0YYZL9WGUh2IECwCxT3lsTiJKVUpmARC-1EaKJWEOoBur5B1iljvkPVBb3_wo3Xq-JwJyoN699SL2GYBcwTDcDHhYCYv52Rp_ivLBPw7GZybDS9GarbbtRdSm5bT4fat_4yRt8nN2u62u5Wg3CFraXaX3DiXjfEe-Vllci7s3NhH6LOwx1V8_-zUzjN7NM0Xs0NbZQm0TsaJPamS5QKwgdA-xshGPBiTlpTlvYUq0DcJ0L1PhpcxuAekk-VZ-ojYKuCJCY1OvEhRz7jKhZ5cEwYgBUKzxCJuAwip67zsWB7kSJbrs4jJCkMSMCQRQ_LEIu_aRyZVUpJVxJ8QZS0h5hMvb-TTkazVk6Rce1jZEc81U_ih0CzUwoSujjVcFnmJGJWYMSTDkKSRmheF7H37KrvMw6IILGIWeVsTmRxGoFV9wgP4gEnGlig3GmzKWmcW8gyYFnnRNoO2wy0slaX5HGnA4KKcu-EKGioiPwRTHvp5WIlPO3jUSx6sOSzClwRriTvLLdn4sMy6DpwJKfMs8r4RwbNXX8H8N5WULv3B1vh7t2T__HgOhFHIxOPVHHlOru0M9_fkXq-_-4Rc99Hpg35AvkE6s-k8fUqu6t-zcTF9Vqskm8hLlt2_BSPLoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+light+intensity+on+growth+and+lipid+production+in+microalgae+grown+in+wastewater&rft.jtitle=Biotechnology+for+biofuels&rft.au=Nzayisenga%2C+Jean+Claude&rft.au=Farge%2C+Xavier&rft.au=Groll%2C+Sophia+Leticia&rft.au=Sellstedt%2C+Anita&rft.date=2020-01-07&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2Fs13068-019-1646-x&rft.externalDocID=oai_DiVA_org_umu_168569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon