Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational...
Uloženo v:
| Vydáno v: | Chemistry : a European journal Ročník 20; číslo 48; s. 15686 - 15691 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
WILEY-VCH Verlag
24.11.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate‐determining CO bond formation step.
Reaction mechanism: The combination of experimental and computational work has revealed that in catechol intradiol dioxygenation, oxygen binds to iron first, facilitated by partial dissociation and one‐electron oxidation of the substrate (see scheme). The subsequent attack of oxygen on the substrate carbon atom was shown to be the rate‐determining step in this unique reaction. |
|---|---|
| AbstractList | Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining CO bond formation step. Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate‐determining CO bond formation step. Reaction mechanism: The combination of experimental and computational work has revealed that in catechol intradiol dioxygenation, oxygen binds to iron first, facilitated by partial dissociation and one‐electron oxidation of the substrate (see scheme). The subsequent attack of oxygen on the substrate carbon atom was shown to be the rate‐determining step in this unique reaction. Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate‐determining CO bond formation step. Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C=O bond formation step. Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step.Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step. Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C--O bond formation step. Reaction mechanism: The combination of experimental and computational work has revealed that in catechol intradiol dioxygenation, oxygen binds to iron first, facilitated by partial dissociation and one-electron oxidation of the substrate (see scheme). The subsequent attack of oxygen on the substrate carbon atom was shown to be the rate-determining step in this unique reaction. |
| Author | Jastrzebski, Robin Weckhuysen, Bert M. de Visser, Sam P. Quesne, Matthew G. Bruijnincx, Pieter C. A. |
| Author_xml | – sequence: 1 givenname: Robin surname: Jastrzebski fullname: Jastrzebski, Robin organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands) – sequence: 2 givenname: Matthew G. surname: Quesne fullname: Quesne, Matthew G. organization: The Manchester Institute for Biotechnology and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN (UK) – sequence: 3 givenname: Bert M. surname: Weckhuysen fullname: Weckhuysen, Bert M. organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands) – sequence: 4 givenname: Sam P. surname: de Visser fullname: de Visser, Sam P. email: sam.devisser@manchester.ac.uk organization: The Manchester Institute for Biotechnology and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN (UK) – sequence: 5 givenname: Pieter C. A. surname: Bruijnincx fullname: Bruijnincx, Pieter C. A. email: p.c.a.bruijnincx@uu.nl organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25322920$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktvEzEUhUeoiD5gyxKNxKYsJvjt8QYJhdCMaMuGh8TGcjx3GpcZO4wnJVnw33GSNiqVUFe2fL9zfF_H2YEPHrLsJUYjjBB5a-fQjQjCDDFVlk-yI8wJLqgU_CA7QorJQnCqDrPjGK8RQkpQ-iw7JJwSogg6yv5MVgvoXQd-MG1ufJ2PQ7dYDmZwwaeXyY2rwVvIm9DnwxzyC7Bz413s8tDklR96U7vQ5mMzpEC6fHBhtb4CvzXIZ-v8MvhiCh3kVR_8aVVVb7ZftLCC-Dx72pg2wovb8yT7-nHyZTwtzj-fVeP354WVjJfFTFngDRgu6lSRYUIqoKU1ZYkFNzOhkJwRYkChWjQlECEks1QIxiWVCDF6kr3b-S6Wsw5qC5u8W71IhZt-rYNx-t-Id3N9FW40Y0pSIpPB6a1BH34tIQ66c9FC2xoPYRk1lqXASjJGH0dF6j6TXJKEvn6AXodln9q-pVipsEQ4Ua_uJ7_P-m6ICWA7wPYhxh4abd1ugKkW12qM9GZX9GZX9H5Xkmz0QHbn_F-B2gl-uxbWj9B6PJ1c3NcWO62LA6z2WtP_1CINievvl2dacfpN_PhENKV_AWCn4H4 |
| CODEN | CEUJED |
| CitedBy_id | crossref_primary_10_1002_chem_201500644 crossref_primary_10_1007_s00775_016_1357_8 crossref_primary_10_1039_C5CP02269J crossref_primary_10_1021_jacs_5b03836 crossref_primary_10_3389_fchem_2019_00182 crossref_primary_10_3390_ijms161023369 crossref_primary_10_1016_j_poly_2017_02_009 crossref_primary_10_1246_bcsj_20180119 crossref_primary_10_3389_fchem_2018_00513 crossref_primary_10_3390_ma14123250 crossref_primary_10_1039_D2CY00510G crossref_primary_10_3390_catal8080314 |
| Cites_doi | 10.1039/b008511l 10.1002/(SICI)1521-3757(20000103)112:1<202::AID-ANGE202>3.0.CO;2-Q 10.1039/9781849732987 10.1021/ic051173y 10.1021/ic981236v 10.1021/ja00215a002 10.1080/10409230600817422 10.1021/ic700741v 10.1021/ja0641251 10.1002/ange.19951072335 10.1016/S0040-4020(03)00944-X 10.1021/ja00232a021 10.1039/c3cc42423e 10.1002/anie.199526711 10.1002/chem.201202811 10.1021/cr020628n 10.1128/AEM.69.3.1372-1376.2003 10.1021/ja01625a095 10.1002/1099-0682(200109)2001:9<2249::AID-EJIC2249>3.0.CO;2-3 10.1016/S0162-0134(01)00353-1 10.1021/cr0102009 10.1021/cr9900275 10.1039/b707179p 10.1002/(SICI)1521-3757(19980216)110:4<527::AID-ANGE527>3.0.CO;2-B 10.1016/S0969-2126(00)00122-2 10.1002/chem.201303282 10.1002/chem.200400484 10.1038/336403a0 10.1016/j.jinorgbio.2004.12.004 10.1021/ja01018a024 10.1021/ja065671x 10.1002/ejic.201100802 10.1021/ja00024a028 10.1074/jbc.M113.543033 10.1002/(SICI)1521-3773(19980302)37:4<513::AID-ANIE513>3.0.CO;2-Y 10.1002/(SICI)1521-3773(20000103)39:1<196::AID-ANIE196>3.0.CO;2-W 10.1021/ja8029569 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014 |
| Copyright_xml | – notice: 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. – notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. – notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014 |
| DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| DOI | 10.1002/chem.201404988 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 15691 |
| ExternalDocumentID | PMC4497327 3494742191 25322920 10_1002_chem_201404988 CHEM201404988 ark_67375_WNG_953V6ZK2_3 |
| Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: BBSRC – fundername: Funded Access – fundername: Netherlands Organization for Scientific Research (NWO) – fundername: Biotechnology and Biological Sciences Research Council |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT 24P AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c7458-b9ce5fea56d947a4679e38ca88165ab6907b22ae90d6f8e26674c366457370043 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345234900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Thu Aug 21 14:31:35 EDT 2025 Fri Jul 11 10:27:46 EDT 2025 Thu Jul 10 23:55:00 EDT 2025 Sat Nov 29 14:52:46 EST 2025 Mon Jul 21 05:44:23 EDT 2025 Tue Nov 18 20:52:08 EST 2025 Sat Nov 29 07:16:25 EST 2025 Wed Mar 05 09:12:09 EST 2025 Sun Sep 21 06:17:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Keywords | biomimetic models reactivity kinetics enzyme models density functional theory |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c7458-b9ce5fea56d947a4679e38ca88165ab6907b22ae90d6f8e26674c366457370043 |
| Notes | istex:566C321FE77942FD4FC1E44E92195BF2ADD51576 Funded Access ArticleID:CHEM201404988 Netherlands Organization for Scientific Research (NWO) BBSRC ark:/67375/WNG-953V6ZK2-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201404988 |
| PMID | 25322920 |
| PQID | 1624891701 |
| PQPubID | 986340 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4497327 proquest_miscellaneous_1786197443 proquest_miscellaneous_1625347572 proquest_journals_1624891701 pubmed_primary_25322920 crossref_citationtrail_10_1002_chem_201404988 crossref_primary_10_1002_chem_201404988 wiley_primary_10_1002_chem_201404988_CHEM201404988 istex_primary_ark_67375_WNG_953V6ZK2_3 |
| PublicationCentury | 2000 |
| PublicationDate | November 24, 2014 |
| PublicationDateYYYYMMDD | 2014-11-24 |
| PublicationDate_xml | – month: 11 year: 2014 text: November 24, 2014 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chem. Eur. J |
| PublicationYear | 2014 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | C. G. Swain, E. C. Lupton, J. Am. Chem. Soc. 1968, 90, 4328-4337. T. Funabiki, T. Yamazaki, A. Fukui, T. Tanaka, S. Yoshida, Angew. Chem. Int. Ed. 1998, 37, 513-515 A. Alfreider, C. Vogt, W. Babel, Appl. Environ. Microbiol. 2003, 69, 1372-1376. A. Hernandez-Ortega, M. G. Quesne, S. Bui, D. P. H. M. Heuts, R. A. Steiner, D. J. Heyes, S. P. de Visser, N. S. Scrutton, J. Biol. Chem. 2014, 289, 8620-8632. R. Jastrzebski, B. M. Weckhuysen, P. C. A. Bruijnincx, Chem. Commun. 2013, 49, 6912-6914. N. Raffard, R. Carina, A. J. Simaan, J. Sainton, E. Rivière, L. Tchertanov, S. Bourcier, G. Bouchoux, M. Delroisse, F. Banse, J. Girerd, Eur. J. Inorg. Chem. 2001, 2001, 2249-2254. M. Xin, T. D. H. Bugg, J. Am. Chem. Soc. 2008, 130, 10422-10430. P. Comba, H. Wadepohl, S. Wunderlich, Eur. J. Inorg. Chem. 2011, 2011, 5242-5249. M. W. Vetting, D. H. Ohlendorf, Structure 2000, 8, 429-440. P. C. A. Bruijnincx, M. Lutz, A. L. Spek, W. R. Hagen, G. van Koten, R. J. M. Klein Gebbink, Inorg. Chem. 2007, 46, 8391-8402. Y. Hitomi, M. Yoshida, M. Higuchi, H. Minami, T. Tanaka, T. Funabiki, J. Inorg. Biochem. 2005, 99, 755-763 R. Yamahara, S. Ogo, H. Masuda, Y. Watanabe, J. Inorg. Biochem. 2002, 88, 284-294 M. Higuchi, Y. Hitomi, H. Minami, T. Tanaka, T. Funabiki, Inorg. Chem. 2005, 44, 8810-8821. Angew. Chem. 2000, 112, 202-204. C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 2002, 102, 783. D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1988, 110, 8085-8092. W. O. Koch, H.-J. Krüger, Angew. Chem. Int. Ed. Engl. 1995, 34, 2671-2674 E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235-350. H. G. Jang, D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1991, 113, 9200-9204 P. Mialane, L. Tchertanov, F. Banse, J. Sainton, J.-J. Girerd, Inorg. Chem. 2000, 39, 2440-2444 T. Borowski, P. E. M. Siegbahn, J. Am. Chem. Soc. 2006, 128, 12941-12953 M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Chem. Rev. 2004, 104, 939-986 F. H. Vaillancourt, J. T. Bolin, L. D. Eltis, Crit. Rev. Biochem. Mol. Biol. 2006, 41, 241-267 M. Y. M. Pau, M. I. Davis, A. M. Orville, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2007, 129, 1944-1958. D. H. Ohlendorf, J. D. Lipscomb, P. C. Weber, Nature 1988, 336, 403-405 S. P. de Visser, D. Kumar, (Eds.) Iron-containing enzymes: Versatile catalysts of hydroxylation reaction in nature. RSC Publishing, Cambridge (UK), 2011. P. C. A. Bruijnincx, G. van Koten, R. J. M. Klein Gebbink, Chem. Soc. Rev. 2008, 37, 2716-2744. Angew. Chem. 1998, 110, 527-530 R. Latifi, M. A. Sainna, E. V. Rybak-Akimova, S. P. de Visser, Chem. Eur. J. 2013, 19, 4058-4068 A. J. Simaan, M.-L. Boillot, E. Rivière, A. Boussac, J.-J. Girerd, Angew. Chem. Int. Ed. 2000, 39, 196-198 M. Pascaly, M. Duda, F. Schweppe, K. Zurlinden, F. K. Müller, B. Krebs, J. Chem. Soc. Dalton Trans. 2001, 828-837. T. D. H. Bugg, Tetrahedron 2003, 59, 7075-7101 Angew. Chem. 1995, 107, 2928-2931 O. Hayaishi, M. Katagiri, S. Rothberg, J. Am. Chem. Soc. 1955, 77, 5450-5451 M. G. Quesne, R. Latifi, L. E. Gonzalez-Ovalle, D. Kumar, S. P. de Visser, Chem. Eur. J. 2014, 20, 435-446. D. D. Cox, S. J. Benkovic, L. M. Bloom, F. C. Bradley, M. J. Nelson, L. Que Jr., D. E. Wallick, J. Am. Chem. Soc. 1988, 110, 2026-2032. A. J. Simaan, M.-L. Boillot, R. Carrasco, J. Cano, J.-J. Girerd, T. A. Mattioli, J. Ensling, H. Spiering, P. Gütlich, Chem. Eur. J. 2005, 11, 1779-1793. 2007; 129 2004; 104 1991; 113 2013; 49 2000 2000; 39 112 2011 2000; 8 2008; 37 2003; 59 2005; 44 1998 1998; 37 110 2014; 20 2013; 19 2011; 2011 2006; 41 2000; 39 2001 1995 1995; 34 107 2002; 102 2002; 88 2003; 69 1988; 110 1968; 90 2000; 100 2006; 128 2005; 99 2005; 11 2008; 130 2007; 46 2001; 2001 1955; 77 1988; 336 2014; 289 e_1_2_3_19_2 e_1_2_3_1_2 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_37_3 e_1_2_3_38_2 e_1_2_3_4_2 e_1_2_3_15_3 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_30_2 e_1_2_3_30_3 e_1_2_3_32_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_26_2 e_1_2_3_27_2 e_1_2_3_28_2 e_1_2_3_29_2 e_1_2_3_22_2 e_1_2_3_23_2 e_1_2_3_44_2 e_1_2_3_24_2 e_1_2_3_25_2 e_1_2_3_41_2 e_1_2_3_40_2 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_21_2 e_1_2_3_42_2 |
| References_xml | – reference: M. Pascaly, M. Duda, F. Schweppe, K. Zurlinden, F. K. Müller, B. Krebs, J. Chem. Soc. Dalton Trans. 2001, 828-837. – reference: P. C. A. Bruijnincx, M. Lutz, A. L. Spek, W. R. Hagen, G. van Koten, R. J. M. Klein Gebbink, Inorg. Chem. 2007, 46, 8391-8402. – reference: A. Hernandez-Ortega, M. G. Quesne, S. Bui, D. P. H. M. Heuts, R. A. Steiner, D. J. Heyes, S. P. de Visser, N. S. Scrutton, J. Biol. Chem. 2014, 289, 8620-8632. – reference: F. H. Vaillancourt, J. T. Bolin, L. D. Eltis, Crit. Rev. Biochem. Mol. Biol. 2006, 41, 241-267; – reference: E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235-350. – reference: C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 2002, 102, 783. – reference: R. Latifi, M. A. Sainna, E. V. Rybak-Akimova, S. P. de Visser, Chem. Eur. J. 2013, 19, 4058-4068; – reference: S. P. de Visser, D. Kumar, (Eds.) Iron-containing enzymes: Versatile catalysts of hydroxylation reaction in nature. RSC Publishing, Cambridge (UK), 2011. – reference: D. H. Ohlendorf, J. D. Lipscomb, P. C. Weber, Nature 1988, 336, 403-405; – reference: T. D. H. Bugg, Tetrahedron 2003, 59, 7075-7101; – reference: M. G. Quesne, R. Latifi, L. E. Gonzalez-Ovalle, D. Kumar, S. P. de Visser, Chem. Eur. J. 2014, 20, 435-446. – reference: M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Chem. Rev. 2004, 104, 939-986; – reference: T. Borowski, P. E. M. Siegbahn, J. Am. Chem. Soc. 2006, 128, 12941-12953; – reference: P. Mialane, L. Tchertanov, F. Banse, J. Sainton, J.-J. Girerd, Inorg. Chem. 2000, 39, 2440-2444; – reference: D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1988, 110, 8085-8092. – reference: A. J. Simaan, M.-L. Boillot, R. Carrasco, J. Cano, J.-J. Girerd, T. A. Mattioli, J. Ensling, H. Spiering, P. Gütlich, Chem. Eur. J. 2005, 11, 1779-1793. – reference: A. J. Simaan, M.-L. Boillot, E. Rivière, A. Boussac, J.-J. Girerd, Angew. Chem. Int. Ed. 2000, 39, 196-198; – reference: Angew. Chem. 1998, 110, 527-530; – reference: P. Comba, H. Wadepohl, S. Wunderlich, Eur. J. Inorg. Chem. 2011, 2011, 5242-5249. – reference: D. D. Cox, S. J. Benkovic, L. M. Bloom, F. C. Bradley, M. J. Nelson, L. Que Jr., D. E. Wallick, J. Am. Chem. Soc. 1988, 110, 2026-2032. – reference: Y. Hitomi, M. Yoshida, M. Higuchi, H. Minami, T. Tanaka, T. Funabiki, J. Inorg. Biochem. 2005, 99, 755-763; – reference: M. Xin, T. D. H. Bugg, J. Am. Chem. Soc. 2008, 130, 10422-10430. – reference: O. Hayaishi, M. Katagiri, S. Rothberg, J. Am. Chem. Soc. 1955, 77, 5450-5451; – reference: T. Funabiki, T. Yamazaki, A. Fukui, T. Tanaka, S. Yoshida, Angew. Chem. Int. Ed. 1998, 37, 513-515; – reference: R. Jastrzebski, B. M. Weckhuysen, P. C. A. Bruijnincx, Chem. Commun. 2013, 49, 6912-6914. – reference: M. Higuchi, Y. Hitomi, H. Minami, T. Tanaka, T. Funabiki, Inorg. Chem. 2005, 44, 8810-8821. – reference: H. G. Jang, D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1991, 113, 9200-9204; – reference: N. Raffard, R. Carina, A. J. Simaan, J. Sainton, E. Rivière, L. Tchertanov, S. Bourcier, G. Bouchoux, M. Delroisse, F. Banse, J. Girerd, Eur. J. Inorg. Chem. 2001, 2001, 2249-2254. – reference: R. Yamahara, S. Ogo, H. Masuda, Y. Watanabe, J. Inorg. Biochem. 2002, 88, 284-294; – reference: M. Y. M. Pau, M. I. Davis, A. M. Orville, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2007, 129, 1944-1958. – reference: W. O. Koch, H.-J. Krüger, Angew. Chem. Int. Ed. Engl. 1995, 34, 2671-2674; – reference: Angew. Chem. 1995, 107, 2928-2931; – reference: C. G. Swain, E. C. Lupton, J. Am. Chem. Soc. 1968, 90, 4328-4337. – reference: Angew. Chem. 2000, 112, 202-204. – reference: P. C. A. Bruijnincx, G. van Koten, R. J. M. Klein Gebbink, Chem. Soc. Rev. 2008, 37, 2716-2744. – reference: M. W. Vetting, D. H. Ohlendorf, Structure 2000, 8, 429-440. – reference: A. Alfreider, C. Vogt, W. Babel, Appl. Environ. Microbiol. 2003, 69, 1372-1376. – year: 2011 – volume: 110 start-page: 8085 year: 1988 end-page: 8092 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 755 year: 2005 end-page: 763 publication-title: J. Inorg. Biochem. – volume: 2011 start-page: 5242 year: 2011 end-page: 5249 publication-title: Eur. J. Inorg. Chem. – volume: 128 start-page: 12941 year: 2006 end-page: 12953 publication-title: J. Am. Chem. Soc. – volume: 2001 start-page: 2249 year: 2001 end-page: 2254 publication-title: Eur. J. Inorg. Chem. – volume: 130 start-page: 10422 year: 2008 end-page: 10430 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 1944 year: 2007 end-page: 1958 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 4058 year: 2013 end-page: 4068 publication-title: Chem. Eur. J. – volume: 46 start-page: 8391 year: 2007 end-page: 8402 publication-title: Inorg. Chem. – volume: 37 start-page: 2716 year: 2008 end-page: 2744 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 7075 year: 2003 end-page: 7101 publication-title: Tetrahedron – volume: 8 start-page: 429 year: 2000 end-page: 440 publication-title: Structure – volume: 69 start-page: 1372 year: 2003 end-page: 1376 publication-title: Appl. Environ. Microbiol. – volume: 49 start-page: 6912 year: 2013 end-page: 6914 publication-title: Chem. Commun. – volume: 104 start-page: 939 year: 2004 end-page: 986 publication-title: Chem. Rev. – start-page: 828 year: 2001 end-page: 837 publication-title: J. Chem. Soc. Dalton Trans. – volume: 11 start-page: 1779 year: 2005 end-page: 1793 publication-title: Chem. Eur. J. – volume: 100 start-page: 235 year: 2000 end-page: 350 publication-title: Chem. Rev. – volume: 39 start-page: 2440 year: 2000 end-page: 2444 publication-title: Inorg. Chem. – volume: 77 start-page: 5450 year: 1955 end-page: 5451 publication-title: J. Am. Chem. Soc. – volume: 90 start-page: 4328 year: 1968 end-page: 4337 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 2026 year: 1988 end-page: 2032 publication-title: J. Am. Chem. Soc. – volume: 34 107 start-page: 2671 2928 year: 1995 1995 end-page: 2674 2931 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 336 start-page: 403 year: 1988 end-page: 405 publication-title: Nature – volume: 88 start-page: 284 year: 2002 end-page: 294 publication-title: J. Inorg. Biochem. – volume: 39 112 start-page: 196 202 year: 2000 2000 end-page: 198 204 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 102 start-page: 783 year: 2002 publication-title: Chem. Rev. – volume: 20 start-page: 435 year: 2014 end-page: 446 publication-title: Chem. Eur. J. – volume: 37 110 start-page: 513 527 year: 1998 1998 end-page: 515 530 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 289 start-page: 8620 year: 2014 end-page: 8632 publication-title: J. Biol. Chem. – volume: 113 start-page: 9200 year: 1991 end-page: 9204 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 8810 year: 2005 end-page: 8821 publication-title: Inorg. Chem. – volume: 41 start-page: 241 year: 2006 end-page: 267 publication-title: Crit. Rev. Biochem. Mol. Biol. – ident: e_1_2_3_38_2 doi: 10.1039/b008511l – ident: e_1_2_3_39_2 – ident: e_1_2_3_30_3 doi: 10.1002/(SICI)1521-3757(20000103)112:1<202::AID-ANGE202>3.0.CO;2-Q – ident: e_1_2_3_5_2 doi: 10.1039/9781849732987 – ident: e_1_2_3_36_2 – ident: e_1_2_3_23_2 doi: 10.1021/ic051173y – ident: e_1_2_3_40_2 doi: 10.1021/ic981236v – ident: e_1_2_3_35_2 doi: 10.1021/ja00215a002 – ident: e_1_2_3_4_2 doi: 10.1080/10409230600817422 – ident: e_1_2_3_43_2 doi: 10.1021/ic700741v – ident: e_1_2_3_14_2 – ident: e_1_2_3_32_2 doi: 10.1021/ja0641251 – ident: e_1_2_3_37_3 doi: 10.1002/ange.19951072335 – ident: e_1_2_3_2_2 doi: 10.1016/S0040-4020(03)00944-X – ident: e_1_2_3_19_2 doi: 10.1021/ja00232a021 – ident: e_1_2_3_17_2 doi: 10.1039/c3cc42423e – ident: e_1_2_3_10_2 – ident: e_1_2_3_37_2 doi: 10.1002/anie.199526711 – ident: e_1_2_3_27_2 doi: 10.1002/chem.201202811 – ident: e_1_2_3_6_2 – ident: e_1_2_3_3_2 doi: 10.1021/cr020628n – ident: e_1_2_3_16_2 doi: 10.1128/AEM.69.3.1372-1376.2003 – ident: e_1_2_3_7_2 doi: 10.1021/ja01625a095 – ident: e_1_2_3_21_2 – ident: e_1_2_3_42_2 doi: 10.1002/1099-0682(200109)2001:9<2249::AID-EJIC2249>3.0.CO;2-3 – ident: e_1_2_3_12_2 doi: 10.1016/S0162-0134(01)00353-1 – ident: e_1_2_3_24_2 doi: 10.1021/cr0102009 – ident: e_1_2_3_1_2 – ident: e_1_2_3_18_2 – ident: e_1_2_3_9_2 doi: 10.1021/cr9900275 – ident: e_1_2_3_13_2 doi: 10.1039/b707179p – ident: e_1_2_3_15_3 doi: 10.1002/(SICI)1521-3757(19980216)110:4<527::AID-ANGE527>3.0.CO;2-B – ident: e_1_2_3_44_2 doi: 10.1016/S0969-2126(00)00122-2 – ident: e_1_2_3_28_2 doi: 10.1002/chem.201303282 – ident: e_1_2_3_29_2 doi: 10.1002/chem.200400484 – ident: e_1_2_3_8_2 doi: 10.1038/336403a0 – ident: e_1_2_3_22_2 doi: 10.1016/j.jinorgbio.2004.12.004 – ident: e_1_2_3_25_2 doi: 10.1021/ja01018a024 – ident: e_1_2_3_34_2 doi: 10.1021/ja065671x – ident: e_1_2_3_41_2 doi: 10.1002/ejic.201100802 – ident: e_1_2_3_31_2 – ident: e_1_2_3_11_2 doi: 10.1021/ja00024a028 – ident: e_1_2_3_26_2 – ident: e_1_2_3_20_2 doi: 10.1074/jbc.M113.543033 – ident: e_1_2_3_15_2 doi: 10.1002/(SICI)1521-3773(19980302)37:4<513::AID-ANIE513>3.0.CO;2-Y – ident: e_1_2_3_30_2 doi: 10.1002/(SICI)1521-3773(20000103)39:1<196::AID-ANIE196>3.0.CO;2-W – ident: e_1_2_3_33_2 doi: 10.1021/ja8029569 |
| SSID | ssj0009633 |
| Score | 2.25716 |
| Snippet | Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these... Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15686 |
| SubjectTerms | biomimetic models Bonding Carbon Catalysis Catechol Catechols Chemical reactions Chemistry Cleavage Communications Computation Computers, Molecular density functional theory enzyme models Ferric Compounds - chemistry Iron Kinetics Models, Molecular Molecular Structure Oxygen - chemistry reactivity |
| Title | Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes |
| URI | https://api.istex.fr/ark:/67375/WNG-953V6ZK2-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201404988 https://www.ncbi.nlm.nih.gov/pubmed/25322920 https://www.proquest.com/docview/1624891701 https://www.proquest.com/docview/1625347572 https://www.proquest.com/docview/1786197443 https://pubmed.ncbi.nlm.nih.gov/PMC4497327 |
| Volume | 20 |
| WOSCitedRecordID | wos000345234900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Jb9QwFMct6CDBhb0QKJWREMsh6sR7jmjaoSPKqEIURlwsx3FExDRBkxZNT_AR-Ix8EvyydUZsElyiLM9ZXp6T58T-_RF6JB1JJaVJyLnIQp9Su1D5FaFl1qfnKU2pqSGuB3I6VbNZfLgyir_hQ_Qf3KBm1M9rqOAmqXbOoaH-mmAkOeBhYqUuokEUUQXiDYQdnmN3RSsmz2QIENYO2zgkO-vl115LA_Dw8lc5589dJ1dT2vqdNL72_1dzHV1t81H8vAmgG-iCK26iy6NOBu4W-rK3ogGATZHiRgii_YiIO1lS7LNf7LNJ_MrBYOK8OsZlhidw_mlezvHIAC7Wz-zm5fLMh229A5yc4WlZfP_6bd8dOzxZlMXTyWTyrD7I3C1ddRsdjffejPbDVrUhtJJxFSaxdTxzhovUe934B3HsqLJGqUhwk0BrPCHEuHiYikw5nyBIZqkQjEsKrH26iTaKsnB3EVbCWBdDLzNCfTPJGiOiTEkbuyjJVDQMUNjdNG1bpDkoa8x1A2MmGtyqe7cG6Elv_6mBefzW8nEdA72ZWXyELnCS63fTFzrm9K14_5JoGqCtLkh0W_srHQnCVAyk-wA97Df7-wY_Y0zhytPahlMmuSR_sJHKt28lY_4wd5q460_IlyagNBYguRaRvQFww9e3FPmHmh_OGCCaZIBIHZF_cYUGNke_dO9fCt1HV2AehnAStoU2Than7gG6ZD-f5NViu66xfipnahsNdl-Pjw5-ACvCRFI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Jb9QwFIAtaJHKhX0JFDASYjlEnXjPEQ0tE3Ua9VCg4mI5jiMipgmaadH0BD-B38gvwS9bO2KTELcsz0n8_Gw_O_b3EHoiHcklpVnIuShC71K7UPkLoWXWu-c5zalpIK5Tmabq8DDe71YTwl6Ylg8xTLhBzWjaa6jgMCG9dUYN9ZmCreTAh4mVuojWme9qwNQJ2z_j7ooumjyTIVBYe27jiGytpl_pl9ZBxctfOZ0_r50879M2ndLO1f-QnWvoSueR4petCV1HF1x1A22M-0BwN9GX7XNRALCpctyGguimEXEfmBR7_xd7fxLvOdhOXC6OcF3gBDKQl_UMjw0AY_3Bq7JennrDbR6As1Oc1tX3r98m7sjhZF5Xz5MkedG8ZOaWbnELvdnZPhhPwi5uQ2gl4yrMYut44QwXuVe78U1x7KiyRqlIcJPBeDwjxLh4lItCOe8iSGapEIxLCrR9ehutVXXl7iKshLEuhnVmhPqBkjVGRIWSNnZRVqhoFKCwLzVtO6g5xNaY6RbHTDSoVQ9qDdCzQf5Ti_P4reTTxggGMTP_CIvgJNfv0tc65vSteL9LNA3QZm8luqv_Cx0JwlQMrPsAPR5u-3KD3zGmcvVJI8Mpk1ySP8hI5Ue4kjH_mjut4Q0f5FMTiDUWILlikoMAkMNX71Tlh4YgzhhAmmSASGOSf1GFBjrHcHbvXxI9QhuTg72pnibp7n10Ga7Dhk7CNtHa8fzEPUCX7OfjcjF_2FTfH6YFRbU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Jb9NAFMdHkCDgwr4YCgwSYjlYTWb3ESUNtRqiClGouIzG47GwSO0qaVF6go_AZ-STMM9bG7FJiJuX52We34zf2DO_P0JPpCOppDQJORdZ6FNqFyq_IbTM-vQ8pSk1FcR1Kmcztb8f7TajCWEuTM2H6D64Qc2o2muo4O4wzTZPqaG-UDCVHPgwkVLnUZ-BkkwP9cdvJnvTU_KuaPTkmQyBw9qSGwdkc_0Ma2-mPjh59au08-fRk2ez2uq1NLn6Hwp0DV1pclL8sg6i6-icK26gS6NWCu4m-rJ1RgcAmyLFtRhE8yERt9Kk2GfA2GeU-LWDCcX58gCXGY6hAGlezvHIADLWL4zzcnXiQ7c6AU5O8Kwsvn_9tu0OHI4XZfE8juMX1UXmbuWWt9DeZOvtaDtslBtCKxlXYRJZxzNnuEi9241vjCNHlTVKDQU3CfTIE0KMiwapyJTzSYJklgrBuKTA26e3Ua8oC3cXYSWMdRGMNCPUd5WsMWKYKWkjN0wyNRwEKGyfmrYN1hzUNea6BjITDW7VnVsD9KyzP6yBHr-1fFoFQWdmFp9gGJzk-v3slY44fSc-7BBNA7TRRoluWoClHgrCVAS0-wA97nb75wY_ZEzhyuPKhlMmuSR_sJHK93ElY_4yd-rA627IH01AbSxAci0kOwNgh6_vKfKPFUOcMcA0yQCRKiT_4goNfI5u7d6_HPQIXdwdT_Q0nu3cR5dhM8zoJGwD9Y4Wx-4BumA_H-XLxcOm_v4As_9Gyw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Computational+Evidence+for+the+Mechanism+of+Intradiol+Catechol+Dioxygenation+by+Non%E2%80%90Heme+Iron%28III%29+Complexes&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jastrzebski%2C+Robin&rft.au=Quesne%2C+Matthew+G.&rft.au=Weckhuysen%2C+Bert+M.&rft.au=de+Visser%2C+Sam+P.&rft.date=2014-11-24&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=48&rft.spage=15686&rft.epage=15691&rft_id=info:doi/10.1002%2Fchem.201404988&rft.externalDBID=10.1002%252Fchem.201404988&rft.externalDocID=CHEM201404988 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |