Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes

Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 20; číslo 48; s. 15686 - 15691
Hlavní autoři: Jastrzebski, Robin, Quesne, Matthew G., Weckhuysen, Bert M., de Visser, Sam P., Bruijnincx, Pieter C. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim WILEY-VCH Verlag 24.11.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate‐determining CO bond formation step. Reaction mechanism: The combination of experimental and computational work has revealed that in catechol intradiol dioxygenation, oxygen binds to iron first, facilitated by partial dissociation and one‐electron oxidation of the substrate (see scheme). The subsequent attack of oxygen on the substrate carbon atom was shown to be the rate‐determining step in this unique reaction.
AbstractList Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining CO bond formation step.
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate‐determining CO bond formation step. Reaction mechanism: The combination of experimental and computational work has revealed that in catechol intradiol dioxygenation, oxygen binds to iron first, facilitated by partial dissociation and one‐electron oxidation of the substrate (see scheme). The subsequent attack of oxygen on the substrate carbon atom was shown to be the rate‐determining step in this unique reaction.
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate‐determining CO bond formation step.
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C=O bond formation step.
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step.Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step.
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C--O bond formation step. Reaction mechanism: The combination of experimental and computational work has revealed that in catechol intradiol dioxygenation, oxygen binds to iron first, facilitated by partial dissociation and one-electron oxidation of the substrate (see scheme). The subsequent attack of oxygen on the substrate carbon atom was shown to be the rate-determining step in this unique reaction.
Author Jastrzebski, Robin
Weckhuysen, Bert M.
de Visser, Sam P.
Quesne, Matthew G.
Bruijnincx, Pieter C. A.
Author_xml – sequence: 1
  givenname: Robin
  surname: Jastrzebski
  fullname: Jastrzebski, Robin
  organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
– sequence: 2
  givenname: Matthew G.
  surname: Quesne
  fullname: Quesne, Matthew G.
  organization: The Manchester Institute for Biotechnology and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN (UK)
– sequence: 3
  givenname: Bert M.
  surname: Weckhuysen
  fullname: Weckhuysen, Bert M.
  organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
– sequence: 4
  givenname: Sam P.
  surname: de Visser
  fullname: de Visser, Sam P.
  email: sam.devisser@manchester.ac.uk
  organization: The Manchester Institute for Biotechnology and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN (UK)
– sequence: 5
  givenname: Pieter C. A.
  surname: Bruijnincx
  fullname: Bruijnincx, Pieter C. A.
  email: p.c.a.bruijnincx@uu.nl
  organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25322920$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiD5gyxKNxKYsJvjt8QYJhdCMaMuGh8TGcjx3GpcZO4wnJVnw33GSNiqVUFe2fL9zfF_H2YEPHrLsJUYjjBB5a-fQjQjCDDFVlk-yI8wJLqgU_CA7QorJQnCqDrPjGK8RQkpQ-iw7JJwSogg6yv5MVgvoXQd-MG1ufJ2PQ7dYDmZwwaeXyY2rwVvIm9DnwxzyC7Bz413s8tDklR96U7vQ5mMzpEC6fHBhtb4CvzXIZ-v8MvhiCh3kVR_8aVVVb7ZftLCC-Dx72pg2wovb8yT7-nHyZTwtzj-fVeP354WVjJfFTFngDRgu6lSRYUIqoKU1ZYkFNzOhkJwRYkChWjQlECEks1QIxiWVCDF6kr3b-S6Wsw5qC5u8W71IhZt-rYNx-t-Id3N9FW40Y0pSIpPB6a1BH34tIQ66c9FC2xoPYRk1lqXASjJGH0dF6j6TXJKEvn6AXodln9q-pVipsEQ4Ua_uJ7_P-m6ICWA7wPYhxh4abd1ugKkW12qM9GZX9GZX9H5Xkmz0QHbn_F-B2gl-uxbWj9B6PJ1c3NcWO62LA6z2WtP_1CINievvl2dacfpN_PhENKV_AWCn4H4
CODEN CEUJED
CitedBy_id crossref_primary_10_1002_chem_201500644
crossref_primary_10_1007_s00775_016_1357_8
crossref_primary_10_1039_C5CP02269J
crossref_primary_10_1021_jacs_5b03836
crossref_primary_10_3389_fchem_2019_00182
crossref_primary_10_3390_ijms161023369
crossref_primary_10_1016_j_poly_2017_02_009
crossref_primary_10_1246_bcsj_20180119
crossref_primary_10_3389_fchem_2018_00513
crossref_primary_10_3390_ma14123250
crossref_primary_10_1039_D2CY00510G
crossref_primary_10_3390_catal8080314
Cites_doi 10.1039/b008511l
10.1002/(SICI)1521-3757(20000103)112:1<202::AID-ANGE202>3.0.CO;2-Q
10.1039/9781849732987
10.1021/ic051173y
10.1021/ic981236v
10.1021/ja00215a002
10.1080/10409230600817422
10.1021/ic700741v
10.1021/ja0641251
10.1002/ange.19951072335
10.1016/S0040-4020(03)00944-X
10.1021/ja00232a021
10.1039/c3cc42423e
10.1002/anie.199526711
10.1002/chem.201202811
10.1021/cr020628n
10.1128/AEM.69.3.1372-1376.2003
10.1021/ja01625a095
10.1002/1099-0682(200109)2001:9<2249::AID-EJIC2249>3.0.CO;2-3
10.1016/S0162-0134(01)00353-1
10.1021/cr0102009
10.1021/cr9900275
10.1039/b707179p
10.1002/(SICI)1521-3757(19980216)110:4<527::AID-ANGE527>3.0.CO;2-B
10.1016/S0969-2126(00)00122-2
10.1002/chem.201303282
10.1002/chem.200400484
10.1038/336403a0
10.1016/j.jinorgbio.2004.12.004
10.1021/ja01018a024
10.1021/ja065671x
10.1002/ejic.201100802
10.1021/ja00024a028
10.1074/jbc.M113.543033
10.1002/(SICI)1521-3773(19980302)37:4<513::AID-ANIE513>3.0.CO;2-Y
10.1002/(SICI)1521-3773(20000103)39:1<196::AID-ANIE196>3.0.CO;2-W
10.1021/ja8029569
ContentType Journal Article
Copyright 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014
Copyright_xml – notice: 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
– notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
– notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2014
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/chem.201404988
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef

MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 15691
ExternalDocumentID PMC4497327
3494742191
25322920
10_1002_chem_201404988
CHEM201404988
ark_67375_WNG_953V6ZK2_3
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BBSRC
– fundername: Funded Access
– fundername: Netherlands Organization for Scientific Research (NWO)
– fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-c7458-b9ce5fea56d947a4679e38ca88165ab6907b22ae90d6f8e26674c366457370043
IEDL.DBID 24P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345234900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Thu Aug 21 14:31:35 EDT 2025
Fri Jul 11 10:27:46 EDT 2025
Thu Jul 10 23:55:00 EDT 2025
Sat Nov 29 14:52:46 EST 2025
Mon Jul 21 05:44:23 EDT 2025
Tue Nov 18 20:52:08 EST 2025
Sat Nov 29 07:16:25 EST 2025
Wed Mar 05 09:12:09 EST 2025
Sun Sep 21 06:17:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords biomimetic models
reactivity
kinetics
enzyme models
density functional theory
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7458-b9ce5fea56d947a4679e38ca88165ab6907b22ae90d6f8e26674c366457370043
Notes istex:566C321FE77942FD4FC1E44E92195BF2ADD51576
Funded Access
ArticleID:CHEM201404988
Netherlands Organization for Scientific Research (NWO)
BBSRC
ark:/67375/WNG-953V6ZK2-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201404988
PMID 25322920
PQID 1624891701
PQPubID 986340
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4497327
proquest_miscellaneous_1786197443
proquest_miscellaneous_1625347572
proquest_journals_1624891701
pubmed_primary_25322920
crossref_citationtrail_10_1002_chem_201404988
crossref_primary_10_1002_chem_201404988
wiley_primary_10_1002_chem_201404988_CHEM201404988
istex_primary_ark_67375_WNG_953V6ZK2_3
PublicationCentury 2000
PublicationDate November 24, 2014
PublicationDateYYYYMMDD 2014-11-24
PublicationDate_xml – month: 11
  year: 2014
  text: November 24, 2014
  day: 24
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References C. G. Swain, E. C. Lupton, J. Am. Chem. Soc. 1968, 90, 4328-4337.
T. Funabiki, T. Yamazaki, A. Fukui, T. Tanaka, S. Yoshida, Angew. Chem. Int. Ed. 1998, 37, 513-515
A. Alfreider, C. Vogt, W. Babel, Appl. Environ. Microbiol. 2003, 69, 1372-1376.
A. Hernandez-Ortega, M. G. Quesne, S. Bui, D. P. H. M. Heuts, R. A. Steiner, D. J. Heyes, S. P. de Visser, N. S. Scrutton, J. Biol. Chem. 2014, 289, 8620-8632.
R. Jastrzebski, B. M. Weckhuysen, P. C. A. Bruijnincx, Chem. Commun. 2013, 49, 6912-6914.
N. Raffard, R. Carina, A. J. Simaan, J. Sainton, E. Rivière, L. Tchertanov, S. Bourcier, G. Bouchoux, M. Delroisse, F. Banse, J. Girerd, Eur. J. Inorg. Chem. 2001, 2001, 2249-2254.
M. Xin, T. D. H. Bugg, J. Am. Chem. Soc. 2008, 130, 10422-10430.
P. Comba, H. Wadepohl, S. Wunderlich, Eur. J. Inorg. Chem. 2011, 2011, 5242-5249.
M. W. Vetting, D. H. Ohlendorf, Structure 2000, 8, 429-440.
P. C. A. Bruijnincx, M. Lutz, A. L. Spek, W. R. Hagen, G. van Koten, R. J. M. Klein Gebbink, Inorg. Chem. 2007, 46, 8391-8402.
Y. Hitomi, M. Yoshida, M. Higuchi, H. Minami, T. Tanaka, T. Funabiki, J. Inorg. Biochem. 2005, 99, 755-763
R. Yamahara, S. Ogo, H. Masuda, Y. Watanabe, J. Inorg. Biochem. 2002, 88, 284-294
M. Higuchi, Y. Hitomi, H. Minami, T. Tanaka, T. Funabiki, Inorg. Chem. 2005, 44, 8810-8821.
Angew. Chem. 2000, 112, 202-204.
C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 2002, 102, 783.
D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1988, 110, 8085-8092.
W. O. Koch, H.-J. Krüger, Angew. Chem. Int. Ed. Engl. 1995, 34, 2671-2674
E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235-350.
H. G. Jang, D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1991, 113, 9200-9204
P. Mialane, L. Tchertanov, F. Banse, J. Sainton, J.-J. Girerd, Inorg. Chem. 2000, 39, 2440-2444
T. Borowski, P. E. M. Siegbahn, J. Am. Chem. Soc. 2006, 128, 12941-12953
M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Chem. Rev. 2004, 104, 939-986
F. H. Vaillancourt, J. T. Bolin, L. D. Eltis, Crit. Rev. Biochem. Mol. Biol. 2006, 41, 241-267
M. Y. M. Pau, M. I. Davis, A. M. Orville, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2007, 129, 1944-1958.
D. H. Ohlendorf, J. D. Lipscomb, P. C. Weber, Nature 1988, 336, 403-405
S. P. de Visser, D. Kumar, (Eds.) Iron-containing enzymes: Versatile catalysts of hydroxylation reaction in nature. RSC Publishing, Cambridge (UK), 2011.
P. C. A. Bruijnincx, G. van Koten, R. J. M. Klein Gebbink, Chem. Soc. Rev. 2008, 37, 2716-2744.
Angew. Chem. 1998, 110, 527-530
R. Latifi, M. A. Sainna, E. V. Rybak-Akimova, S. P. de Visser, Chem. Eur. J. 2013, 19, 4058-4068
A. J. Simaan, M.-L. Boillot, E. Rivière, A. Boussac, J.-J. Girerd, Angew. Chem. Int. Ed. 2000, 39, 196-198
M. Pascaly, M. Duda, F. Schweppe, K. Zurlinden, F. K. Müller, B. Krebs, J. Chem. Soc. Dalton Trans. 2001, 828-837.
T. D. H. Bugg, Tetrahedron 2003, 59, 7075-7101
Angew. Chem. 1995, 107, 2928-2931
O. Hayaishi, M. Katagiri, S. Rothberg, J. Am. Chem. Soc. 1955, 77, 5450-5451
M. G. Quesne, R. Latifi, L. E. Gonzalez-Ovalle, D. Kumar, S. P. de Visser, Chem. Eur. J. 2014, 20, 435-446.
D. D. Cox, S. J. Benkovic, L. M. Bloom, F. C. Bradley, M. J. Nelson, L. Que Jr., D. E. Wallick, J. Am. Chem. Soc. 1988, 110, 2026-2032.
A. J. Simaan, M.-L. Boillot, R. Carrasco, J. Cano, J.-J. Girerd, T. A. Mattioli, J. Ensling, H. Spiering, P. Gütlich, Chem. Eur. J. 2005, 11, 1779-1793.
2007; 129
2004; 104
1991; 113
2013; 49
2000 2000; 39 112
2011
2000; 8
2008; 37
2003; 59
2005; 44
1998 1998; 37 110
2014; 20
2013; 19
2011; 2011
2006; 41
2000; 39
2001
1995 1995; 34 107
2002; 102
2002; 88
2003; 69
1988; 110
1968; 90
2000; 100
2006; 128
2005; 99
2005; 11
2008; 130
2007; 46
2001; 2001
1955; 77
1988; 336
2014; 289
e_1_2_3_19_2
e_1_2_3_1_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_37_3
e_1_2_3_38_2
e_1_2_3_4_2
e_1_2_3_15_3
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_30_2
e_1_2_3_30_3
e_1_2_3_32_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_26_2
e_1_2_3_27_2
e_1_2_3_28_2
e_1_2_3_29_2
e_1_2_3_22_2
e_1_2_3_23_2
e_1_2_3_44_2
e_1_2_3_24_2
e_1_2_3_25_2
e_1_2_3_41_2
e_1_2_3_40_2
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_21_2
e_1_2_3_42_2
References_xml – reference: M. Pascaly, M. Duda, F. Schweppe, K. Zurlinden, F. K. Müller, B. Krebs, J. Chem. Soc. Dalton Trans. 2001, 828-837.
– reference: P. C. A. Bruijnincx, M. Lutz, A. L. Spek, W. R. Hagen, G. van Koten, R. J. M. Klein Gebbink, Inorg. Chem. 2007, 46, 8391-8402.
– reference: A. Hernandez-Ortega, M. G. Quesne, S. Bui, D. P. H. M. Heuts, R. A. Steiner, D. J. Heyes, S. P. de Visser, N. S. Scrutton, J. Biol. Chem. 2014, 289, 8620-8632.
– reference: F. H. Vaillancourt, J. T. Bolin, L. D. Eltis, Crit. Rev. Biochem. Mol. Biol. 2006, 41, 241-267;
– reference: E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235-350.
– reference: C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 2002, 102, 783.
– reference: R. Latifi, M. A. Sainna, E. V. Rybak-Akimova, S. P. de Visser, Chem. Eur. J. 2013, 19, 4058-4068;
– reference: S. P. de Visser, D. Kumar, (Eds.) Iron-containing enzymes: Versatile catalysts of hydroxylation reaction in nature. RSC Publishing, Cambridge (UK), 2011.
– reference: D. H. Ohlendorf, J. D. Lipscomb, P. C. Weber, Nature 1988, 336, 403-405;
– reference: T. D. H. Bugg, Tetrahedron 2003, 59, 7075-7101;
– reference: M. G. Quesne, R. Latifi, L. E. Gonzalez-Ovalle, D. Kumar, S. P. de Visser, Chem. Eur. J. 2014, 20, 435-446.
– reference: M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Chem. Rev. 2004, 104, 939-986;
– reference: T. Borowski, P. E. M. Siegbahn, J. Am. Chem. Soc. 2006, 128, 12941-12953;
– reference: P. Mialane, L. Tchertanov, F. Banse, J. Sainton, J.-J. Girerd, Inorg. Chem. 2000, 39, 2440-2444;
– reference: D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1988, 110, 8085-8092.
– reference: A. J. Simaan, M.-L. Boillot, R. Carrasco, J. Cano, J.-J. Girerd, T. A. Mattioli, J. Ensling, H. Spiering, P. Gütlich, Chem. Eur. J. 2005, 11, 1779-1793.
– reference: A. J. Simaan, M.-L. Boillot, E. Rivière, A. Boussac, J.-J. Girerd, Angew. Chem. Int. Ed. 2000, 39, 196-198;
– reference: Angew. Chem. 1998, 110, 527-530;
– reference: P. Comba, H. Wadepohl, S. Wunderlich, Eur. J. Inorg. Chem. 2011, 2011, 5242-5249.
– reference: D. D. Cox, S. J. Benkovic, L. M. Bloom, F. C. Bradley, M. J. Nelson, L. Que Jr., D. E. Wallick, J. Am. Chem. Soc. 1988, 110, 2026-2032.
– reference: Y. Hitomi, M. Yoshida, M. Higuchi, H. Minami, T. Tanaka, T. Funabiki, J. Inorg. Biochem. 2005, 99, 755-763;
– reference: M. Xin, T. D. H. Bugg, J. Am. Chem. Soc. 2008, 130, 10422-10430.
– reference: O. Hayaishi, M. Katagiri, S. Rothberg, J. Am. Chem. Soc. 1955, 77, 5450-5451;
– reference: T. Funabiki, T. Yamazaki, A. Fukui, T. Tanaka, S. Yoshida, Angew. Chem. Int. Ed. 1998, 37, 513-515;
– reference: R. Jastrzebski, B. M. Weckhuysen, P. C. A. Bruijnincx, Chem. Commun. 2013, 49, 6912-6914.
– reference: M. Higuchi, Y. Hitomi, H. Minami, T. Tanaka, T. Funabiki, Inorg. Chem. 2005, 44, 8810-8821.
– reference: H. G. Jang, D. D. Cox, L. Que Jr., J. Am. Chem. Soc. 1991, 113, 9200-9204;
– reference: N. Raffard, R. Carina, A. J. Simaan, J. Sainton, E. Rivière, L. Tchertanov, S. Bourcier, G. Bouchoux, M. Delroisse, F. Banse, J. Girerd, Eur. J. Inorg. Chem. 2001, 2001, 2249-2254.
– reference: R. Yamahara, S. Ogo, H. Masuda, Y. Watanabe, J. Inorg. Biochem. 2002, 88, 284-294;
– reference: M. Y. M. Pau, M. I. Davis, A. M. Orville, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2007, 129, 1944-1958.
– reference: W. O. Koch, H.-J. Krüger, Angew. Chem. Int. Ed. Engl. 1995, 34, 2671-2674;
– reference: Angew. Chem. 1995, 107, 2928-2931;
– reference: C. G. Swain, E. C. Lupton, J. Am. Chem. Soc. 1968, 90, 4328-4337.
– reference: Angew. Chem. 2000, 112, 202-204.
– reference: P. C. A. Bruijnincx, G. van Koten, R. J. M. Klein Gebbink, Chem. Soc. Rev. 2008, 37, 2716-2744.
– reference: M. W. Vetting, D. H. Ohlendorf, Structure 2000, 8, 429-440.
– reference: A. Alfreider, C. Vogt, W. Babel, Appl. Environ. Microbiol. 2003, 69, 1372-1376.
– year: 2011
– volume: 110
  start-page: 8085
  year: 1988
  end-page: 8092
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 755
  year: 2005
  end-page: 763
  publication-title: J. Inorg. Biochem.
– volume: 2011
  start-page: 5242
  year: 2011
  end-page: 5249
  publication-title: Eur. J. Inorg. Chem.
– volume: 128
  start-page: 12941
  year: 2006
  end-page: 12953
  publication-title: J. Am. Chem. Soc.
– volume: 2001
  start-page: 2249
  year: 2001
  end-page: 2254
  publication-title: Eur. J. Inorg. Chem.
– volume: 130
  start-page: 10422
  year: 2008
  end-page: 10430
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 1944
  year: 2007
  end-page: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 4058
  year: 2013
  end-page: 4068
  publication-title: Chem. Eur. J.
– volume: 46
  start-page: 8391
  year: 2007
  end-page: 8402
  publication-title: Inorg. Chem.
– volume: 37
  start-page: 2716
  year: 2008
  end-page: 2744
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 7075
  year: 2003
  end-page: 7101
  publication-title: Tetrahedron
– volume: 8
  start-page: 429
  year: 2000
  end-page: 440
  publication-title: Structure
– volume: 69
  start-page: 1372
  year: 2003
  end-page: 1376
  publication-title: Appl. Environ. Microbiol.
– volume: 49
  start-page: 6912
  year: 2013
  end-page: 6914
  publication-title: Chem. Commun.
– volume: 104
  start-page: 939
  year: 2004
  end-page: 986
  publication-title: Chem. Rev.
– start-page: 828
  year: 2001
  end-page: 837
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 11
  start-page: 1779
  year: 2005
  end-page: 1793
  publication-title: Chem. Eur. J.
– volume: 100
  start-page: 235
  year: 2000
  end-page: 350
  publication-title: Chem. Rev.
– volume: 39
  start-page: 2440
  year: 2000
  end-page: 2444
  publication-title: Inorg. Chem.
– volume: 77
  start-page: 5450
  year: 1955
  end-page: 5451
  publication-title: J. Am. Chem. Soc.
– volume: 90
  start-page: 4328
  year: 1968
  end-page: 4337
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 2026
  year: 1988
  end-page: 2032
  publication-title: J. Am. Chem. Soc.
– volume: 34 107
  start-page: 2671 2928
  year: 1995 1995
  end-page: 2674 2931
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 336
  start-page: 403
  year: 1988
  end-page: 405
  publication-title: Nature
– volume: 88
  start-page: 284
  year: 2002
  end-page: 294
  publication-title: J. Inorg. Biochem.
– volume: 39 112
  start-page: 196 202
  year: 2000 2000
  end-page: 198 204
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 102
  start-page: 783
  year: 2002
  publication-title: Chem. Rev.
– volume: 20
  start-page: 435
  year: 2014
  end-page: 446
  publication-title: Chem. Eur. J.
– volume: 37 110
  start-page: 513 527
  year: 1998 1998
  end-page: 515 530
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 289
  start-page: 8620
  year: 2014
  end-page: 8632
  publication-title: J. Biol. Chem.
– volume: 113
  start-page: 9200
  year: 1991
  end-page: 9204
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 8810
  year: 2005
  end-page: 8821
  publication-title: Inorg. Chem.
– volume: 41
  start-page: 241
  year: 2006
  end-page: 267
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– ident: e_1_2_3_38_2
  doi: 10.1039/b008511l
– ident: e_1_2_3_39_2
– ident: e_1_2_3_30_3
  doi: 10.1002/(SICI)1521-3757(20000103)112:1<202::AID-ANGE202>3.0.CO;2-Q
– ident: e_1_2_3_5_2
  doi: 10.1039/9781849732987
– ident: e_1_2_3_36_2
– ident: e_1_2_3_23_2
  doi: 10.1021/ic051173y
– ident: e_1_2_3_40_2
  doi: 10.1021/ic981236v
– ident: e_1_2_3_35_2
  doi: 10.1021/ja00215a002
– ident: e_1_2_3_4_2
  doi: 10.1080/10409230600817422
– ident: e_1_2_3_43_2
  doi: 10.1021/ic700741v
– ident: e_1_2_3_14_2
– ident: e_1_2_3_32_2
  doi: 10.1021/ja0641251
– ident: e_1_2_3_37_3
  doi: 10.1002/ange.19951072335
– ident: e_1_2_3_2_2
  doi: 10.1016/S0040-4020(03)00944-X
– ident: e_1_2_3_19_2
  doi: 10.1021/ja00232a021
– ident: e_1_2_3_17_2
  doi: 10.1039/c3cc42423e
– ident: e_1_2_3_10_2
– ident: e_1_2_3_37_2
  doi: 10.1002/anie.199526711
– ident: e_1_2_3_27_2
  doi: 10.1002/chem.201202811
– ident: e_1_2_3_6_2
– ident: e_1_2_3_3_2
  doi: 10.1021/cr020628n
– ident: e_1_2_3_16_2
  doi: 10.1128/AEM.69.3.1372-1376.2003
– ident: e_1_2_3_7_2
  doi: 10.1021/ja01625a095
– ident: e_1_2_3_21_2
– ident: e_1_2_3_42_2
  doi: 10.1002/1099-0682(200109)2001:9<2249::AID-EJIC2249>3.0.CO;2-3
– ident: e_1_2_3_12_2
  doi: 10.1016/S0162-0134(01)00353-1
– ident: e_1_2_3_24_2
  doi: 10.1021/cr0102009
– ident: e_1_2_3_1_2
– ident: e_1_2_3_18_2
– ident: e_1_2_3_9_2
  doi: 10.1021/cr9900275
– ident: e_1_2_3_13_2
  doi: 10.1039/b707179p
– ident: e_1_2_3_15_3
  doi: 10.1002/(SICI)1521-3757(19980216)110:4<527::AID-ANGE527>3.0.CO;2-B
– ident: e_1_2_3_44_2
  doi: 10.1016/S0969-2126(00)00122-2
– ident: e_1_2_3_28_2
  doi: 10.1002/chem.201303282
– ident: e_1_2_3_29_2
  doi: 10.1002/chem.200400484
– ident: e_1_2_3_8_2
  doi: 10.1038/336403a0
– ident: e_1_2_3_22_2
  doi: 10.1016/j.jinorgbio.2004.12.004
– ident: e_1_2_3_25_2
  doi: 10.1021/ja01018a024
– ident: e_1_2_3_34_2
  doi: 10.1021/ja065671x
– ident: e_1_2_3_41_2
  doi: 10.1002/ejic.201100802
– ident: e_1_2_3_31_2
– ident: e_1_2_3_11_2
  doi: 10.1021/ja00024a028
– ident: e_1_2_3_26_2
– ident: e_1_2_3_20_2
  doi: 10.1074/jbc.M113.543033
– ident: e_1_2_3_15_2
  doi: 10.1002/(SICI)1521-3773(19980302)37:4<513::AID-ANIE513>3.0.CO;2-Y
– ident: e_1_2_3_30_2
  doi: 10.1002/(SICI)1521-3773(20000103)39:1<196::AID-ANIE196>3.0.CO;2-W
– ident: e_1_2_3_33_2
  doi: 10.1021/ja8029569
SSID ssj0009633
Score 2.25716
Snippet Catechol intradiol dioxygenation is a unique reaction catalyzed by iron‐dependent enzymes and non‐heme iron(III) complexes. The mechanism by which these...
Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15686
SubjectTerms biomimetic models
Bonding
Carbon
Catalysis
Catechol
Catechols
Chemical reactions
Chemistry
Cleavage
Communications
Computation
Computers, Molecular
density functional theory
enzyme models
Ferric Compounds - chemistry
Iron
Kinetics
Models, Molecular
Molecular Structure
Oxygen - chemistry
reactivity
Title Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes
URI https://api.istex.fr/ark:/67375/WNG-953V6ZK2-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201404988
https://www.ncbi.nlm.nih.gov/pubmed/25322920
https://www.proquest.com/docview/1624891701
https://www.proquest.com/docview/1625347572
https://www.proquest.com/docview/1786197443
https://pubmed.ncbi.nlm.nih.gov/PMC4497327
Volume 20
WOSCitedRecordID wos000345234900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Jb9QwFMct6CDBhb0QKJWREMsh6sR7jmjaoSPKqEIURlwsx3FExDRBkxZNT_AR-Ix8EvyydUZsElyiLM9ZXp6T58T-_RF6JB1JJaVJyLnIQp9Su1D5FaFl1qfnKU2pqSGuB3I6VbNZfLgyir_hQ_Qf3KBm1M9rqOAmqXbOoaH-mmAkOeBhYqUuokEUUQXiDYQdnmN3RSsmz2QIENYO2zgkO-vl115LA_Dw8lc5589dJ1dT2vqdNL72_1dzHV1t81H8vAmgG-iCK26iy6NOBu4W-rK3ogGATZHiRgii_YiIO1lS7LNf7LNJ_MrBYOK8OsZlhidw_mlezvHIAC7Wz-zm5fLMh229A5yc4WlZfP_6bd8dOzxZlMXTyWTyrD7I3C1ddRsdjffejPbDVrUhtJJxFSaxdTxzhovUe934B3HsqLJGqUhwk0BrPCHEuHiYikw5nyBIZqkQjEsKrH26iTaKsnB3EVbCWBdDLzNCfTPJGiOiTEkbuyjJVDQMUNjdNG1bpDkoa8x1A2MmGtyqe7cG6Elv_6mBefzW8nEdA72ZWXyELnCS63fTFzrm9K14_5JoGqCtLkh0W_srHQnCVAyk-wA97Df7-wY_Y0zhytPahlMmuSR_sJHKt28lY_4wd5q460_IlyagNBYguRaRvQFww9e3FPmHmh_OGCCaZIBIHZF_cYUGNke_dO9fCt1HV2AehnAStoU2Than7gG6ZD-f5NViu66xfipnahsNdl-Pjw5-ACvCRFI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Jb9QwFIAtaJHKhX0JFDASYjlEnXjPEQ0tE3Ua9VCg4mI5jiMipgmaadH0BD-B38gvwS9bO2KTELcsz0n8_Gw_O_b3EHoiHcklpVnIuShC71K7UPkLoWXWu-c5zalpIK5Tmabq8DDe71YTwl6Ylg8xTLhBzWjaa6jgMCG9dUYN9ZmCreTAh4mVuojWme9qwNQJ2z_j7ooumjyTIVBYe27jiGytpl_pl9ZBxctfOZ0_r50879M2ndLO1f-QnWvoSueR4petCV1HF1x1A22M-0BwN9GX7XNRALCpctyGguimEXEfmBR7_xd7fxLvOdhOXC6OcF3gBDKQl_UMjw0AY_3Bq7JennrDbR6As1Oc1tX3r98m7sjhZF5Xz5MkedG8ZOaWbnELvdnZPhhPwi5uQ2gl4yrMYut44QwXuVe78U1x7KiyRqlIcJPBeDwjxLh4lItCOe8iSGapEIxLCrR9ehutVXXl7iKshLEuhnVmhPqBkjVGRIWSNnZRVqhoFKCwLzVtO6g5xNaY6RbHTDSoVQ9qDdCzQf5Ti_P4reTTxggGMTP_CIvgJNfv0tc65vSteL9LNA3QZm8luqv_Cx0JwlQMrPsAPR5u-3KD3zGmcvVJI8Mpk1ySP8hI5Ue4kjH_mjut4Q0f5FMTiDUWILlikoMAkMNX71Tlh4YgzhhAmmSASGOSf1GFBjrHcHbvXxI9QhuTg72pnibp7n10Ga7Dhk7CNtHa8fzEPUCX7OfjcjF_2FTfH6YFRbU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Jb9NAFMdHkCDgwr4YCgwSYjlYTWb3ESUNtRqiClGouIzG47GwSO0qaVF6go_AZ-STMM9bG7FJiJuX52We34zf2DO_P0JPpCOppDQJORdZ6FNqFyq_IbTM-vQ8pSk1FcR1Kmcztb8f7TajCWEuTM2H6D64Qc2o2muo4O4wzTZPqaG-UDCVHPgwkVLnUZ-BkkwP9cdvJnvTU_KuaPTkmQyBw9qSGwdkc_0Ma2-mPjh59au08-fRk2ez2uq1NLn6Hwp0DV1pclL8sg6i6-icK26gS6NWCu4m-rJ1RgcAmyLFtRhE8yERt9Kk2GfA2GeU-LWDCcX58gCXGY6hAGlezvHIADLWL4zzcnXiQ7c6AU5O8Kwsvn_9tu0OHI4XZfE8juMX1UXmbuWWt9DeZOvtaDtslBtCKxlXYRJZxzNnuEi9241vjCNHlTVKDQU3CfTIE0KMiwapyJTzSYJklgrBuKTA26e3Ua8oC3cXYSWMdRGMNCPUd5WsMWKYKWkjN0wyNRwEKGyfmrYN1hzUNea6BjITDW7VnVsD9KyzP6yBHr-1fFoFQWdmFp9gGJzk-v3slY44fSc-7BBNA7TRRoluWoClHgrCVAS0-wA97nb75wY_ZEzhyuPKhlMmuSR_sJHK93ElY_4yd-rA627IH01AbSxAci0kOwNgh6_vKfKPFUOcMcA0yQCRKiT_4goNfI5u7d6_HPQIXdwdT_Q0nu3cR5dhM8zoJGwD9Y4Wx-4BumA_H-XLxcOm_v4As_9Gyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+Computational+Evidence+for+the+Mechanism+of+Intradiol+Catechol+Dioxygenation+by+Non%E2%80%90Heme+Iron%28III%29+Complexes&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jastrzebski%2C+Robin&rft.au=Quesne%2C+Matthew+G.&rft.au=Weckhuysen%2C+Bert+M.&rft.au=de+Visser%2C+Sam+P.&rft.date=2014-11-24&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=48&rft.spage=15686&rft.epage=15691&rft_id=info:doi/10.1002%2Fchem.201404988&rft.externalDBID=10.1002%252Fchem.201404988&rft.externalDocID=CHEM201404988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon