Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing

The human brain continuously generates predictions of incoming sensory input and calculates corresponding prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory cortex (area 3b), different cortical layers are involved in receiving the sensory input...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 248; s. 118867
Hlavní autoři: Yu, Yinghua, Huber, Laurentius, Yang, Jiajia, Fukunaga, Masaki, Chai, Yuhui, Jangraw, David C., Chen, Gang, Handwerker, Daniel A., Molfese, Peter J., Ejima, Yoshimichi, Sadato, Norihiro, Wu, Jinglong, Bandettini, Peter A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.03.2022
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The human brain continuously generates predictions of incoming sensory input and calculates corresponding prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory cortex (area 3b), different cortical layers are involved in receiving the sensory input and generation of error signals. It remains unknown, however, how the layers in the human area 3b contribute to the temporal prediction error processing. To investigate prediction error representation in the area 3b across layers, we acquired layer-specific functional magnetic resonance imaging (fMRI) data at 7T from human area 3b during a task of index finger poking with no-delay, short-delay and long-delay touching sequences. We demonstrate that all three tasks increased activity in both superficial and deep layers of area 3b compared to the random sensory input. The fMRI signal was differentially modulated solely in the deep layers rather than the superficial layers of area 3b by the delay time. Compared with the no-delay stimuli, activity was greater in the deep layers of area 3b during the short-delay stimuli but lower during the long-delay stimuli. This difference activity features in the superficial and deep layers suggest distinct functional contributions of area 3b layers to tactile temporal prediction error processing. The functional segregation in area 3b across layers may reflect that the excitatory and inhibitory interplay in the sensory cortex contributions to flexible communication between cortical layers or between cortical areas. [Display omitted]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2021.118867