Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis

•First machine learning mega-analysis to investigate predictors of real-time fMRI neurofeedback success.•Inclusion of a pre-training no feedback was associated with higher neurofeedback performance.•Patients were associated with higher neurofeedback performance than healthy individuals.•More data (s...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage Vol. 237; p. 118207
Main Authors: Haugg, Amelie, Renz, Fabian M., Nicholson, Andrew A., Lor, Cindy, Götzendorfer, Sebastian J., Sladky, Ronald, Skouras, Stavros, McDonald, Amalia, Craddock, Cameron, Hellrung, Lydia, Kirschner, Matthias, Herdener, Marcus, Koush, Yury, Papoutsi, Marina, Keynan, Jackob, Hendler, Talma, Cohen Kadosh, Kathrin, Zich, Catharina, Kohl, Simon H., Hallschmid, Manfred, MacInnes, Jeff, Adcock, R. Alison, Dickerson, Kathryn C., Chen, Nan-Kuei, Young, Kymberly, Bodurka, Jerzy, Marxen, Michael, Yao, Shuxia, Becker, Benjamin, Auer, Tibor, Schweizer, Renate, Pamplona, Gustavo, Lanius, Ruth A., Emmert, Kirsten, Haller, Sven, Van De Ville, Dimitri, Kim, Dong-Youl, Lee, Jong-Hwan, Marins, Theo, Megumi, Fukuda, Sorger, Bettina, Kamp, Tabea, Liew, Sook-Lei, Veit, Ralf, Spetter, Maartje, Weiskopf, Nikolaus, Scharnowski, Frank, Steyrl, David
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 15.08.2021
Elsevier BV
Elsevier Limited
Elsevier
Subjects:
ISSN:1053-8119, 1095-9572, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first