An empirical survey of data augmentation for time series classification with neural networks

In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of add...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PloS one Ročník 16; číslo 7; s. e0254841
Hlavní autori: Iwana, Brian Kenji, Uchida, Seiichi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 15.07.2021
Public Library of Science (PLoS)
Predmet:
ISSN:1932-6203, 1932-6203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.
AbstractList In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.
In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.
Audience Academic
Author Iwana, Brian Kenji
Uchida, Seiichi
AuthorAffiliation Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
Ulm University, GERMANY
AuthorAffiliation_xml – name: Ulm University, GERMANY
– name: Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
Author_xml – sequence: 1
  givenname: Brian Kenji
  orcidid: 0000-0002-5146-6818
  surname: Iwana
  fullname: Iwana, Brian Kenji
– sequence: 2
  givenname: Seiichi
  surname: Uchida
  fullname: Uchida, Seiichi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34264999$$D View this record in MEDLINE/PubMed
BookMark eNqNk22L1DAQx4uceA_6DUQLguiLXdM2zYMvhOXwYeHgQA9fCWGaTnezts2apHfetzd725Xd4xDpi5TJb_6Z-TNzmhz1tsckeZ6RaVbw7N3KDq6HdrqO4SnJSypo9ig5yWSRT1hOiqO9_-Pk1PsVIWUhGHuSHBc0Z1RKeZL8mPUpdmvjjIY29YO7xtvUNmkNAVIYFh32AYKxfdpYlwbTYerRGfSpbsF708S8u-sbE5Zpj4OLMj2GG-t--qfJ4wZaj8_G8yy5-vTx6vzL5OLy8_x8djHRvGBhIkpOSJOXDCrIOSc5ZzWVyItK8wqByroE2nApKEcsRE0BakEpzTJdoJDFWfJyK7turVejL17lZZkTykuZRWK-JWoLK7V2pgN3qywYdRewbqHABaNbVA2TUNWiqnTJqc5y4JUUJBYjo5lQN1Hrw_jaUHVY62hQ7PlA9PCmN0u1sNdK5CLWsyn3zSjg7K8BfVCd8RrbFnq0w7ZuKWnByoi-uoc-3N1ILSA2YPrGxnf1RlTNGBOMUFKKSE0foOJXY2d0HKLGxPhBwtuDhMgE_B0WMHiv5t--_j97-f2Qfb3HLhHasPS2HTZj5A_BF_tO_7V4N70ReL8FtLPeO2yUNttpja2ZVmVEbVZlZ5rarIoaVyUm03vJO_1_pv0BuLAYaQ
CitedBy_id crossref_primary_10_1016_j_jksuci_2022_07_010
crossref_primary_10_1109_JSEN_2024_3414168
crossref_primary_10_3390_app122010365
crossref_primary_10_1016_j_jag_2025_104619
crossref_primary_10_1109_TIA_2023_3262232
crossref_primary_10_3390_fire6110441
crossref_primary_10_3390_electronics12061372
crossref_primary_10_1016_j_patcog_2024_110778
crossref_primary_10_1109_TAES_2024_3482275
crossref_primary_10_1109_TII_2024_3359409
crossref_primary_10_1016_j_ndteint_2025_103390
crossref_primary_10_1021_jacs_4c16325
crossref_primary_10_1038_s41598_025_94351_0
crossref_primary_10_1109_TBDATA_2024_3495509
crossref_primary_10_1371_journal_pone_0316548
crossref_primary_10_1109_JBHI_2023_3281977
crossref_primary_10_1109_JSEN_2024_3371588
crossref_primary_10_3390_su15129652
crossref_primary_10_3390_s23094221
crossref_primary_10_1109_TITS_2024_3355143
crossref_primary_10_1109_TNNLS_2023_3331506
crossref_primary_10_3390_eng5030092
crossref_primary_10_3847_1538_4357_ac6f5a
crossref_primary_10_1177_09544062221097339
crossref_primary_10_1109_JSEN_2023_3296199
crossref_primary_10_1002_cpe_7331
crossref_primary_10_1016_j_chaos_2023_113100
crossref_primary_10_3390_s21206892
crossref_primary_10_1016_j_ijepes_2024_110190
crossref_primary_10_3390_s24072199
crossref_primary_10_1016_j_engappai_2025_112136
crossref_primary_10_3389_frvir_2024_1364207
crossref_primary_10_3390_info12020063
crossref_primary_10_1016_j_adhoc_2024_103412
crossref_primary_10_1109_TIM_2023_3276014
crossref_primary_10_1109_TAI_2023_3262763
crossref_primary_10_1049_cvi2_70014
crossref_primary_10_1038_s41598_022_26343_3
crossref_primary_10_1016_j_engappai_2024_108380
crossref_primary_10_1371_journal_pone_0315343
crossref_primary_10_1016_j_inffus_2023_02_003
crossref_primary_10_4103_jips_jips_149_22
crossref_primary_10_3390_electronics13040747
crossref_primary_10_3390_app122412793
crossref_primary_10_3390_computers14040123
crossref_primary_10_1115_1_4068013
crossref_primary_10_1016_j_procir_2024_08_337
crossref_primary_10_1038_s41598_023_39862_4
crossref_primary_10_3390_s23218942
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_3390_electronics11223795
crossref_primary_10_3390_bdcc9020022
crossref_primary_10_1089_soro_2022_0188
crossref_primary_10_1016_j_ins_2025_121996
crossref_primary_10_1016_j_sna_2024_115335
crossref_primary_10_1016_j_pmcj_2022_101735
crossref_primary_10_1016_j_inffus_2023_102044
crossref_primary_10_3390_s23042312
crossref_primary_10_1109_JPHOT_2023_3259009
crossref_primary_10_1016_j_autcon_2025_106208
crossref_primary_10_3390_stats7020025
crossref_primary_10_1016_j_engappai_2023_106355
crossref_primary_10_1016_j_ijepes_2022_108589
crossref_primary_10_3390_buildings13010005
crossref_primary_10_3390_electronics14091735
crossref_primary_10_1109_TBME_2022_3189617
crossref_primary_10_3847_1538_4365_ad1de0
crossref_primary_10_1016_j_bspc_2025_108005
crossref_primary_10_3390_app14209488
crossref_primary_10_3390_s23052475
crossref_primary_10_3390_s21196412
crossref_primary_10_1186_s40462_022_00324_7
crossref_primary_10_1109_JSEN_2022_3219594
crossref_primary_10_1109_TNSRE_2023_3266810
crossref_primary_10_1109_ACCESS_2023_3263489
crossref_primary_10_1016_j_watres_2024_122471
crossref_primary_10_1109_ACCESS_2023_3264216
crossref_primary_10_2196_66821
crossref_primary_10_1007_s42486_024_00152_1
crossref_primary_10_3390_info15060343
crossref_primary_10_1016_j_knosys_2024_112154
crossref_primary_10_1002_cjce_25562
crossref_primary_10_1016_j_eswa_2025_126402
crossref_primary_10_1109_TNNLS_2023_3273503
crossref_primary_10_1109_ACCESS_2024_3408712
crossref_primary_10_1016_j_eswa_2024_123536
crossref_primary_10_3390_bioengineering9100529
crossref_primary_10_1016_j_cmpb_2024_108323
crossref_primary_10_1016_j_watres_2025_124283
crossref_primary_10_1016_j_engappai_2024_108475
crossref_primary_10_1371_journal_pcbi_1013323
crossref_primary_10_3390_s23020759
crossref_primary_10_1371_journal_pcbi_1012119
crossref_primary_10_1121_10_0028298
crossref_primary_10_1109_ACCESS_2025_3562897
crossref_primary_10_1007_s41060_021_00278_w
crossref_primary_10_1016_j_ijforecast_2022_09_005
crossref_primary_10_3390_app112210723
crossref_primary_10_3389_fbioe_2022_806761
crossref_primary_10_1016_j_bspc_2023_105678
crossref_primary_10_3390_rs16142653
crossref_primary_10_3390_app12010527
crossref_primary_10_1007_s42979_025_03845_1
crossref_primary_10_3390_app12125902
crossref_primary_10_1038_s41467_022_35032_8
crossref_primary_10_1016_j_eja_2024_127387
crossref_primary_10_1016_j_psychres_2021_114261
crossref_primary_10_1016_j_apacoust_2023_109209
crossref_primary_10_1016_j_knosys_2024_111440
crossref_primary_10_3390_ai6050089
crossref_primary_10_1007_s13369_024_09927_1
crossref_primary_10_3390_s24196402
crossref_primary_10_1007_s10115_023_01927_1
crossref_primary_10_1016_j_applthermaleng_2023_121545
crossref_primary_10_1016_j_oceaneng_2023_113620
crossref_primary_10_3847_1538_4365_adfa2a
crossref_primary_10_1007_s13246_022_01189_1
crossref_primary_10_1109_TMC_2025_3548647
crossref_primary_10_1016_j_watres_2024_121999
crossref_primary_10_1016_j_apenergy_2023_122124
crossref_primary_10_1016_j_compbiomed_2022_106299
crossref_primary_10_1021_acssensors_4c02272
crossref_primary_10_3390_electronics12183860
crossref_primary_10_1088_1361_6501_ada570
crossref_primary_10_1002_aisy_202300085
crossref_primary_10_1016_j_cma_2024_116822
crossref_primary_10_1109_TAI_2024_3430236
crossref_primary_10_3390_s22218187
crossref_primary_10_1016_j_jhydrol_2023_130458
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_3390_jimaging9110238
crossref_primary_10_1109_JSEN_2024_3521896
crossref_primary_10_1007_s10489_025_06352_1
crossref_primary_10_1371_journal_pone_0277975
crossref_primary_10_3390_electronics12194077
crossref_primary_10_1111_mice_13478
crossref_primary_10_1016_j_buildenv_2025_112548
crossref_primary_10_1016_j_patcog_2022_109132
crossref_primary_10_1007_s12145_024_01313_7
crossref_primary_10_1145_3711118
crossref_primary_10_3390_s22186881
crossref_primary_10_1016_j_iot_2024_101298
crossref_primary_10_1016_j_iot_2024_101179
crossref_primary_10_3390_s22249900
crossref_primary_10_3390_app13158684
crossref_primary_10_3390_app15094867
crossref_primary_10_3390_s22165969
crossref_primary_10_1371_journal_pone_0304716
crossref_primary_10_1109_TBME_2022_3217711
crossref_primary_10_1109_TMC_2022_3208265
crossref_primary_10_1038_s41598_025_94130_x
crossref_primary_10_1016_j_jbiomech_2024_111998
crossref_primary_10_1016_j_knosys_2025_113462
crossref_primary_10_1111_mice_13321
crossref_primary_10_1371_journal_pone_0327038
crossref_primary_10_1186_s40537_023_00792_7
crossref_primary_10_1109_ACCESS_2025_3591505
crossref_primary_10_1088_1741_2552_acd1b6
crossref_primary_10_1016_j_aei_2025_103297
crossref_primary_10_1109_TMM_2022_3217392
crossref_primary_10_23919_JSEE_2023_000109
crossref_primary_10_1016_j_compbiomed_2024_109479
crossref_primary_10_1109_TII_2023_3275701
crossref_primary_10_3847_1538_4357_acdeea
crossref_primary_10_3390_healthcare12100994
crossref_primary_10_3390_en17071634
crossref_primary_10_3390_s25103048
crossref_primary_10_1016_j_apenergy_2024_123871
crossref_primary_10_3390_s22114226
crossref_primary_10_1103_PhysRevPhysEducRes_19_020150
crossref_primary_10_1109_TII_2024_3363189
crossref_primary_10_1155_2023_2430011
crossref_primary_10_3390_electronics12081820
crossref_primary_10_3390_jsan13050060
crossref_primary_10_1016_j_renene_2023_119373
crossref_primary_10_1007_s00521_023_08459_3
crossref_primary_10_3390_electronics13081599
crossref_primary_10_1007_s10489_022_03557_6
crossref_primary_10_1007_s10514_023_10114_8
crossref_primary_10_1109_TPAMI_2023_3298346
crossref_primary_10_1007_s40534_025_00396_2
crossref_primary_10_1109_TCSVT_2024_3408332
crossref_primary_10_1063_5_0110491
crossref_primary_10_1016_j_eswa_2023_120914
crossref_primary_10_1016_j_autcon_2022_104734
crossref_primary_10_3390_app13031903
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_1016_j_ijhcs_2025_103568
crossref_primary_10_3390_s24134126
crossref_primary_10_1016_j_compag_2023_107646
crossref_primary_10_1109_ACCESS_2024_3525000
crossref_primary_10_1145_3604277
crossref_primary_10_1016_j_compag_2022_107453
crossref_primary_10_1109_JSTARS_2025_3527017
crossref_primary_10_1109_TAFFC_2023_3263907
crossref_primary_10_1145_3701740
crossref_primary_10_1109_TAES_2024_3404360
crossref_primary_10_1016_j_actaastro_2024_10_066
crossref_primary_10_1016_j_jenvrad_2025_107761
crossref_primary_10_1007_s12274_022_5095_7
crossref_primary_10_1109_TPAMI_2024_3372455
crossref_primary_10_3389_fphys_2021_811661
crossref_primary_10_1016_j_ebiom_2024_105047
crossref_primary_10_1017_S0022377822000769
crossref_primary_10_3390_app13042703
crossref_primary_10_3390_cancers15030843
crossref_primary_10_3390_biomedinformatics5030038
crossref_primary_10_26443_seismica_v2i2_978
crossref_primary_10_3390_bios15060339
crossref_primary_10_1038_s44220_024_00209_1
crossref_primary_10_1109_TKDE_2024_3475809
crossref_primary_10_1007_s00521_025_11408_x
crossref_primary_10_1016_j_bios_2023_115829
crossref_primary_10_1109_ACCESS_2022_3232396
crossref_primary_10_1016_j_phro_2025_100743
crossref_primary_10_1007_s10845_022_01963_8
crossref_primary_10_1109_JBHI_2024_3458430
crossref_primary_10_3389_fbioe_2023_1247112
crossref_primary_10_1080_10589759_2025_2560024
crossref_primary_10_3390_en14092390
crossref_primary_10_1029_2024RS008101
crossref_primary_10_1109_LSENS_2025_3546985
crossref_primary_10_1016_j_ifacol_2023_10_1754
crossref_primary_10_3390_app15062984
crossref_primary_10_3390_math9182336
crossref_primary_10_1007_s11334_022_00464_4
crossref_primary_10_1109_ACCESS_2024_3472750
crossref_primary_10_1016_j_seps_2025_102240
crossref_primary_10_1016_j_eswa_2024_124793
crossref_primary_10_1016_j_procir_2024_08_312
crossref_primary_10_1109_TGRS_2023_3308999
crossref_primary_10_1109_ACCESS_2025_3564324
crossref_primary_10_1016_j_compstruct_2022_115502
crossref_primary_10_1145_3659589
crossref_primary_10_1016_j_engappai_2025_110662
crossref_primary_10_1038_s41598_022_16741_y
crossref_primary_10_26599_BDMA_2023_9020028
crossref_primary_10_1007_s00773_024_01036_w
crossref_primary_10_1016_j_engappai_2025_112289
crossref_primary_10_3390_s22166301
crossref_primary_10_1088_1755_1315_1101_8_082022
crossref_primary_10_3390_ijms23094699
crossref_primary_10_1016_j_compchemeng_2025_109068
crossref_primary_10_3390_s23218691
crossref_primary_10_1016_j_procir_2021_11_218
crossref_primary_10_3390_sym17091385
crossref_primary_10_1016_j_geoen_2024_213334
crossref_primary_10_1121_10_0015136
crossref_primary_10_1016_j_actaastro_2022_06_026
crossref_primary_10_1016_j_eswa_2021_114809
crossref_primary_10_2183_pjab_101_032
crossref_primary_10_3390_su141710691
crossref_primary_10_1080_24725854_2025_2488340
crossref_primary_10_1109_JSEN_2023_3301090
crossref_primary_10_3390_w17101525
crossref_primary_10_3390_app15158363
crossref_primary_10_1038_s41598_024_56080_8
crossref_primary_10_3233_IDA_240002
crossref_primary_10_1016_j_rineng_2025_105549
crossref_primary_10_1109_TII_2024_3424583
crossref_primary_10_1007_s13369_022_07585_9
crossref_primary_10_1109_ACCESS_2024_3484955
crossref_primary_10_32604_jai_2024_054314
crossref_primary_10_3390_app13031712
crossref_primary_10_1109_JLT_2025_3548658
crossref_primary_10_3390_machines9120367
crossref_primary_10_1155_2021_3018285
crossref_primary_10_1089_cyber_2022_0058
crossref_primary_10_1051_wujns_2022276521
crossref_primary_10_3390_make6020049
crossref_primary_10_3390_ai3040047
crossref_primary_10_1108_ECAM_05_2023_0454
crossref_primary_10_3390_math11184004
crossref_primary_10_1109_JIOT_2024_3414304
crossref_primary_10_3390_buildings15132351
crossref_primary_10_1109_TTE_2022_3212024
crossref_primary_10_1109_ACCESS_2024_3516369
crossref_primary_10_1016_j_bspc_2023_105940
crossref_primary_10_1016_j_cosrev_2025_100787
crossref_primary_10_1016_j_eswa_2023_120918
crossref_primary_10_1007_s13349_022_00627_8
crossref_primary_10_1016_j_compag_2024_109755
crossref_primary_10_3389_fbioe_2023_1104000
crossref_primary_10_1016_j_engstruct_2025_119685
crossref_primary_10_1016_j_procir_2022_05_090
crossref_primary_10_1109_ACCESS_2024_3371891
crossref_primary_10_1007_s40997_024_00809_3
crossref_primary_10_1115_1_4065755
crossref_primary_10_1088_1361_6579_adfc25
crossref_primary_10_1016_j_watres_2024_122553
crossref_primary_10_1109_LGRS_2023_3277214
crossref_primary_10_1177_14750902221095423
crossref_primary_10_1007_s13534_024_00446_4
crossref_primary_10_3390_plants13010135
crossref_primary_10_1016_j_chaos_2024_115886
crossref_primary_10_1016_j_engappai_2025_110339
crossref_primary_10_1016_j_eswa_2023_120136
crossref_primary_10_1038_s41746_023_00911_x
crossref_primary_10_1145_3524070
crossref_primary_10_3390_app15105653
crossref_primary_10_1145_3649448
Cites_doi 10.1109/CVPR.2017.243
10.1145/3136755.3136817
10.3390/s20113069
10.1109/ICCV.2015.123
10.1109/ICFHR.2016.0059
10.1109/ICICOS.2018.8621657
10.1007/s10032-020-00350-4
10.1111/j.1467-9892.1994.tb00184.x
10.1109/CVPR.2015.7298594
10.1109/BigData.2018.8621990
10.1109/ACCESS.2018.2886899
10.1093/biomet/86.2.301
10.1021/ac60214a047
10.1109/78.650093
10.1109/IHMSC.2016.160
10.1007/s11263-015-0816-y
10.1109/ACCESS.2019.2940701
10.1109/TASSP.1978.1163055
10.1162/neco.1996.8.3.643
10.21437/Interspeech.2016-805
10.1016/j.ijforecast.2015.07.002
10.1007/s004220000160
10.1109/ASRU46091.2019.9003933
10.1613/jair.953
10.3115/1073012.1073017
10.1109/ICASSP.2014.6854671
10.1109/EMBC.2018.8512396
10.1016/j.patcog.2019.107024
10.3390/s18092892
10.1098/rspa.1998.0193
10.1109/ACCESS.2019.2934928
10.1109/ACCESS.2020.2983003
10.1162/neco.1995.7.1.108
10.1162/neco.1997.9.8.1735
10.1109/ICDM.2017.106
10.1007/978-3-319-73600-6_8
10.1109/UBMK.2019.8907003
10.1016/0165-1684(94)90029-9
10.1109/5.726791
10.1080/01621459.1987.10478458
10.23919/EUSIPCO.2019.8902819
10.1145/3349341.3349422
10.3390/s20010098
10.24963/ijcai.2021/631
10.1016/j.ecoinf.2020.101084
10.1109/ASRU46091.2019.9003938
10.1016/j.patcog.2010.09.013
10.1109/ICASSP40776.2020.9053800
10.1109/ASRU46091.2019.9003741
10.1166/jmihi.2020.2928
10.1109/ICASSP40776.2020.9054130
10.1109/ICASSP40776.2020.9053671
10.1186/s40537-019-0197-0
10.1016/j.patrec.2017.08.002
10.21437/Interspeech.2019-3227
10.1007/978-3-642-01307-2_43
10.1109/89.650310
10.1007/978-981-15-3824-7_6
10.1109/ICPR48806.2021.9412812
10.1109/ACCESS.2017.2779939
10.1109/TPAMI.2008.128
10.1109/SoSE50414.2020.9130487
10.1109/ACCESS.2020.2966142
10.1609/aaai.v33i01.33015409
10.1109/ACCESS.2019.2916828
10.1109/TNNLS.2014.2308321
10.1007/s10489-011-0287-y
10.18653/v1/D19-5829
10.1109/CSCI49370.2019.00046
10.1016/j.neunet.2014.09.003
10.1038/323533a0
10.1007/978-3-030-47679-3_24
10.1109/CCDC.2018.8407436
10.21437/Interspeech.2018-1751
10.1109/ICASSP.2019.8683388
10.1121/1.2730743
10.1109/ICDM.2017.93
10.1109/IJCNN.2017.7966039
10.1109/CISP-BMEI51763.2020.9263602
10.22260/ISARC2019/0087
10.1109/ICIP.2018.8451608
10.1109/CVPR.2016.90
10.1145/2983323.2983784
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Iwana, Uchida. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Iwana, Uchida 2021 Iwana, Uchida
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Iwana, Uchida. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Iwana, Uchida 2021 Iwana, Uchida
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0254841
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest MSED
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef

MEDLINE - Academic
Agricultural Science Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate An empirical survey of data augmentation for time series classification with neural networks
EISSN 1932-6203
ExternalDocumentID 2552047591
oai_doaj_org_article_f69abd8bbc574c12a7b980e739932adf
PMC8282049
A668604058
34264999
10_1371_journal_pone_0254841
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: ;
  grantid: JP21K17808
– fundername: ;
  grantid: JP17H06100
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c736t-85700f256aba2770276d49e73bc7bea49d5a4f79847ee38d4aad844411c3e893
IEDL.DBID DOA
ISICitedReferencesCount 423
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678120600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun May 07 16:28:45 EDT 2023
Fri Oct 03 12:51:43 EDT 2025
Tue Nov 04 01:58:24 EST 2025
Wed Oct 01 13:02:25 EDT 2025
Tue Oct 07 07:41:49 EDT 2025
Sat Nov 29 12:59:59 EST 2025
Sat Nov 29 10:19:51 EST 2025
Wed Nov 26 10:14:29 EST 2025
Wed Nov 26 10:07:55 EST 2025
Thu May 22 21:25:51 EDT 2025
Mon Jul 21 06:04:39 EDT 2025
Tue Nov 18 22:33:50 EST 2025
Sat Nov 29 01:34:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c736t-85700f256aba2770276d49e73bc7bea49d5a4f79847ee38d4aad844411c3e893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-5146-6818
OpenAccessLink https://doaj.org/article/f69abd8bbc574c12a7b980e739932adf
PMID 34264999
PQID 2552047591
PQPubID 1436336
PageCount e0254841
ParticipantIDs plos_journals_2552047591
doaj_primary_oai_doaj_org_article_f69abd8bbc574c12a7b980e739932adf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8282049
proquest_miscellaneous_2552994365
proquest_journals_2552047591
gale_infotracmisc_A668604058
gale_infotracacademiconefile_A668604058
gale_incontextgauss_ISR_A668604058
gale_incontextgauss_IOV_A668604058
gale_healthsolutions_A668604058
pubmed_primary_34264999
crossref_citationtrail_10_1371_journal_pone_0254841
crossref_primary_10_1371_journal_pone_0254841
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MA Tanner (pone.0254841.ref079) 1987; 82
P Comon (pone.0254841.ref103) 1994; 36
pone.0254841.ref082
C Shorten (pone.0254841.ref017) 2019; 6
pone.0254841.ref084
H Cao (pone.0254841.ref032) 2014; 25
pone.0254841.ref083
pone.0254841.ref086
F Zhu (pone.0254841.ref095) 2019; 9
pone.0254841.ref085
pone.0254841.ref088
pone.0254841.ref087
H Ding (pone.0254841.ref001) 2008; 1
pone.0254841.ref089
pone.0254841.ref003
NV Chawla (pone.0254841.ref046) 2002; 16
J Ortigosa-Hernandez (pone.0254841.ref118) 2017; 98
pone.0254841.ref006
Mavuto M Mukaka (pone.0254841.ref117) 2012; 24
BK Iwana (pone.0254841.ref013) 2020; 97
Q Chen (pone.0254841.ref005) 2019; 10
pone.0254841.ref009
L Lee (pone.0254841.ref057) 1998; 6
AS Tarawneh (pone.0254841.ref065) 2020; 8
S Fr uhwirth-Schnatter (pone.0254841.ref080) 1994; 15
pone.0254841.ref070
S Adachi (pone.0254841.ref058) 2007; 121
CM Bishop (pone.0254841.ref043) 1995; 7
pone.0254841.ref077
pone.0254841.ref110
pone.0254841.ref112
S Harada (pone.0254841.ref098) 2019; 7
pone.0254841.ref113
G An (pone.0254841.ref044) 1996; 8
F Karim (pone.0254841.ref115) 2018; 6
Y Lecun (pone.0254841.ref011) 1998; 86
A Savitzky (pone.0254841.ref072) 1964; 36
OS Eyobu (pone.0254841.ref052) 2018; 18
N Takahashi (pone.0254841.ref074) 2016
pone.0254841.ref061
pone.0254841.ref063
pone.0254841.ref066
pone.0254841.ref068
pone.0254841.ref100
pone.0254841.ref069
pone.0254841.ref102
pone.0254841.ref105
F Wendling (pone.0254841.ref033) 2000; 83
pone.0254841.ref107
pone.0254841.ref106
pone.0254841.ref109
pone.0254841.ref108
RB Cleveland (pone.0254841.ref104) 1990; 6
B Vachhani (pone.0254841.ref055) 2018
pone.0254841.ref053
pone.0254841.ref054
F Karim (pone.0254841.ref116) 2019; 7
L Tran (pone.0254841.ref050) 2020; 8
Q Pan (pone.0254841.ref051) 2020
pone.0254841.ref056
L Nanni (pone.0254841.ref075) 2020; 57
DS Park (pone.0254841.ref062) 2019
K Kamycki (pone.0254841.ref040) 2019; 20
NE Huang (pone.0254841.ref101) 1998; 454
J Yeomans (pone.0254841.ref071) 2019; 7
A Torralba (pone.0254841.ref015) 2008; 30
S Hochreiter (pone.0254841.ref111) 1997; 9
pone.0254841.ref042
pone.0254841.ref041
R Blagus (pone.0254841.ref019) 2013; 14
C Bunkhumpornpat (pone.0254841.ref067) 2011; 36
pone.0254841.ref045
pone.0254841.ref048
pone.0254841.ref047
T Ko (pone.0254841.ref059) 2015
G Xu (pone.0254841.ref007) 2020; 10
C Bunkhumpornpat (pone.0254841.ref064) 2009
H Sakoe (pone.0254841.ref073) 1978; 26
DE Rumelhart (pone.0254841.ref004) 1986; 323
pone.0254841.ref031
pone.0254841.ref030
pone.0254841.ref034
pone.0254841.ref037
pone.0254841.ref036
R Delgado-Escano (pone.0254841.ref049) 2019; 7
pone.0254841.ref039
pone.0254841.ref038
C Bergmeir (pone.0254841.ref035) 2016; 32
M Schuster (pone.0254841.ref114) 1997; 45
HA Dau (pone.0254841.ref016) 2018
O Russakovsky (pone.0254841.ref022) 2015; 115
pone.0254841.ref020
pone.0254841.ref021
pone.0254841.ref024
pone.0254841.ref023
Y Kang (pone.0254841.ref078) 2020
pone.0254841.ref026
pone.0254841.ref025
pone.0254841.ref028
pone.0254841.ref027
J Schmidhuber (pone.0254841.ref002) 2015; 61
pone.0254841.ref029
XL Meng (pone.0254841.ref081) 1999; 86
pone.0254841.ref091
pone.0254841.ref090
pone.0254841.ref093
pone.0254841.ref092
V Carbune (pone.0254841.ref010) 2020; 23
pone.0254841.ref094
pone.0254841.ref097
pone.0254841.ref096
pone.0254841.ref099
pone.0254841.ref012
pone.0254841.ref014
C Kim (pone.0254841.ref060) 2019
pone.0254841.ref018
BH Kim (pone.0254841.ref008) 2020; 20
F Petitjean (pone.0254841.ref076) 2011; 44
References_xml – ident: pone.0254841.ref025
  doi: 10.1109/CVPR.2017.243
– ident: pone.0254841.ref012
– volume: 9
  issue: 1
  year: 2019
  ident: pone.0254841.ref095
  article-title: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
  publication-title: Scientific Reports
– ident: pone.0254841.ref030
  doi: 10.1145/3136755.3136817
– volume: 20
  start-page: 3069
  issue: 11
  year: 2020
  ident: pone.0254841.ref008
  article-title: ECG identification for personal authentication using LSTM-based deep recurrent neural networks
  publication-title: Sensors
  doi: 10.3390/s20113069
– ident: pone.0254841.ref029
– ident: pone.0254841.ref106
  doi: 10.1109/ICCV.2015.123
– ident: pone.0254841.ref009
  doi: 10.1109/ICFHR.2016.0059
– ident: pone.0254841.ref109
– ident: pone.0254841.ref063
  doi: 10.1109/ICICOS.2018.8621657
– ident: pone.0254841.ref070
– volume: 23
  start-page: 89
  issue: 2
  year: 2020
  ident: pone.0254841.ref010
  article-title: Fast multi-language LSTM-based online handwriting recognition
  publication-title: Int J Doc Analy and Recogn
  doi: 10.1007/s10032-020-00350-4
– ident: pone.0254841.ref112
– volume: 15
  start-page: 183
  issue: 2
  year: 1994
  ident: pone.0254841.ref080
  article-title: Data augmentation and dynamic linear models
  publication-title: J Time Series Anal
  doi: 10.1111/j.1467-9892.1994.tb00184.x
– ident: pone.0254841.ref026
  doi: 10.1109/CVPR.2015.7298594
– ident: pone.0254841.ref061
– ident: pone.0254841.ref047
  doi: 10.1109/BigData.2018.8621990
– volume: 7
  start-page: 1897
  year: 2019
  ident: pone.0254841.ref049
  article-title: An end-to-end multi-task and fusion CNN for inertial-based gait recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886899
– volume: 86
  start-page: 301
  issue: 2
  year: 1999
  ident: pone.0254841.ref081
  article-title: Seeking efficient data augmentation schemes via conditional and marginal augmentation
  publication-title: Biometrika
  doi: 10.1093/biomet/86.2.301
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: pone.0254841.ref072
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Analytical Chemistry
  doi: 10.1021/ac60214a047
– ident: pone.0254841.ref082
– volume-title: The UCR time series classification archive
  year: 2018
  ident: pone.0254841.ref016
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: pone.0254841.ref114
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans Sig Process
  doi: 10.1109/78.650093
– ident: pone.0254841.ref066
  doi: 10.1109/IHMSC.2016.160
– volume: 24
  start-page: 69
  issue: 3
  year: 2012
  ident: pone.0254841.ref117
  article-title: A guide to appropriate use of correlation coefficient in medical research Malawi Med
  publication-title: J
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: pone.0254841.ref022
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: pone.0254841.ref023
– volume: 7
  start-page: 131248
  year: 2019
  ident: pone.0254841.ref071
  article-title: Simulating time-series data for improved deep neural network performance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940701
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: pone.0254841.ref073
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans Acoustics, Speech, and Sig Process
  doi: 10.1109/TASSP.1978.1163055
– volume: 8
  start-page: 643
  issue: 3
  year: 1996
  ident: pone.0254841.ref044
  article-title: The effects of adding noise during backpropagation Training on a Generalization Performance
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.3.643
– volume-title: Deep convolutional neural networks and data augmentation for acoustic event recognition
  year: 2016
  ident: pone.0254841.ref074
  doi: 10.21437/Interspeech.2016-805
– volume: 32
  start-page: 303
  issue: 2
  year: 2016
  ident: pone.0254841.ref035
  article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation
  publication-title: Int J Forecasting
  doi: 10.1016/j.ijforecast.2015.07.002
– volume: 83
  start-page: 367
  issue: 4
  year: 2000
  ident: pone.0254841.ref033
  article-title: Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals
  publication-title: Bio Cybernetics
  doi: 10.1007/s004220000160
– ident: pone.0254841.ref099
  doi: 10.1109/ASRU46091.2019.9003933
– volume-title: SpecAugment: A simple data augmentation method for automatic speech recognition
  year: 2019
  ident: pone.0254841.ref062
– volume: 16
  start-page: 321
  year: 2002
  ident: pone.0254841.ref046
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J Art Intelli Research
  doi: 10.1613/jair.953
– ident: pone.0254841.ref096
– ident: pone.0254841.ref014
  doi: 10.3115/1073012.1073017
– ident: pone.0254841.ref056
  doi: 10.1109/ICASSP.2014.6854671
– ident: pone.0254841.ref088
  doi: 10.1109/EMBC.2018.8512396
– volume: 97
  start-page: 107024
  year: 2020
  ident: pone.0254841.ref013
  article-title: Time series classification using local distance-based features in multi-modal fusion networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.107024
– volume: 18
  start-page: 2892
  issue: 9
  year: 2018
  ident: pone.0254841.ref052
  article-title: Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network
  publication-title: Sensors
  doi: 10.3390/s18092892
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: pone.0254841.ref101
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Royal Society of London Series A: Math, Physical and Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 7
  start-page: 144292
  year: 2019
  ident: pone.0254841.ref098
  article-title: Biosignal generation and latent variable analysis with recurrent generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934928
– volume: 1
  start-page: 1542
  issue: 2
  year: 2008
  ident: pone.0254841.ref001
  article-title: Querying and mining of time series data
  publication-title: Proc Very Larg Data Base Endow
– volume: 8
  start-page: 59069
  year: 2020
  ident: pone.0254841.ref065
  article-title: SMOTEFUNA: Synthetic minority over-sampling technique based on furthest neighbour algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983003
– ident: pone.0254841.ref089
– ident: pone.0254841.ref107
– volume: 7
  start-page: 108
  issue: 1
  year: 1995
  ident: pone.0254841.ref043
  article-title: Training with noise is equivalent to Tikhonov regularization
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.1.108
– ident: pone.0254841.ref020
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: pone.0254841.ref111
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: pone.0254841.ref037
  doi: 10.1109/ICDM.2017.106
– ident: pone.0254841.ref110
– ident: pone.0254841.ref100
  doi: 10.1007/978-3-319-73600-6_8
– ident: pone.0254841.ref036
– ident: pone.0254841.ref045
  doi: 10.1109/UBMK.2019.8907003
– ident: pone.0254841.ref084
– volume: 36
  start-page: 287
  issue: 3
  year: 1994
  ident: pone.0254841.ref103
  article-title: Independent component analysis, A new concept?
  publication-title: Sig Process
  doi: 10.1016/0165-1684(94)90029-9
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: pone.0254841.ref011
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 82
  start-page: 528
  issue: 398
  year: 1987
  ident: pone.0254841.ref079
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: J American Stat Assoc
  doi: 10.1080/01621459.1987.10478458
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  ident: pone.0254841.ref104
  article-title: STL: A seasonal-trend decomposition
  publication-title: J Official Stat
– ident: pone.0254841.ref094
  doi: 10.23919/EUSIPCO.2019.8902819
– ident: pone.0254841.ref092
  doi: 10.1145/3349341.3349422
– volume: 20
  start-page: 98
  issue: 1
  year: 2019
  ident: pone.0254841.ref040
  article-title: Data augmentation with suboptimal warping for time-series classification
  publication-title: Sensors
  doi: 10.3390/s20010098
– ident: pone.0254841.ref027
  doi: 10.24963/ijcai.2021/631
– volume: 57
  start-page: 101084
  year: 2020
  ident: pone.0254841.ref075
  article-title: Data augmentation approaches for improving animal audio classification
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2020.101084
– ident: pone.0254841.ref041
  doi: 10.1109/ASRU46091.2019.9003938
– ident: pone.0254841.ref113
– volume: 44
  start-page: 678
  issue: 3
  year: 2011
  ident: pone.0254841.ref076
  article-title: A global averaging method for dynamic time warping, with applications to clustering
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2010.09.013
– ident: pone.0254841.ref090
– ident: pone.0254841.ref031
– ident: pone.0254841.ref093
  doi: 10.1109/ICASSP40776.2020.9053800
– ident: pone.0254841.ref053
  doi: 10.1109/ASRU46091.2019.9003741
– volume: 10
  start-page: 750
  issue: 3
  year: 2020
  ident: pone.0254841.ref007
  article-title: Arrhythmia detection using gated recurrent unit network with ECG signals
  publication-title: J Medical Imag and Health Inform
  doi: 10.1166/jmihi.2020.2928
– ident: pone.0254841.ref054
  doi: 10.1109/ICASSP40776.2020.9054130
– ident: pone.0254841.ref102
  doi: 10.1109/ICASSP40776.2020.9053671
– volume: 6
  issue: 1
  year: 2019
  ident: pone.0254841.ref017
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 14
  issue: 1
  year: 2013
  ident: pone.0254841.ref019
  article-title: SMOTE for high-dimensional class-imbalanced data
  publication-title: BMC Bioinformatics
– volume: 98
  start-page: 32
  year: 2017
  ident: pone.0254841.ref118
  article-title: Measuring the class-imbalance extent of multi-class problems
  publication-title: Pattern Recogn. Letters
  doi: 10.1016/j.patrec.2017.08.002
– volume-title: Improved vocal tract length perturbation for a state-of-the-art end-to-end speech recognition system
  year: 2019
  ident: pone.0254841.ref060
  doi: 10.21437/Interspeech.2019-3227
– start-page: 475
  volume-title: Adv. in Knowl. Disc. and Data Mining
  year: 2009
  ident: pone.0254841.ref064
  doi: 10.1007/978-3-642-01307-2_43
– volume: 6
  start-page: 49
  issue: 1
  year: 1998
  ident: pone.0254841.ref057
  article-title: A frequency warping approach to speaker normalization
  publication-title: IEEE Trans Speech and Audio Process
  doi: 10.1109/89.650310
– start-page: 91
  volume-title: Feature Eng. and Comput. Intell. in ECG Monitor
  year: 2020
  ident: pone.0254841.ref051
  doi: 10.1007/978-981-15-3824-7_6
– ident: pone.0254841.ref097
– volume: 10
  start-page: 57
  issue: 4
  year: 2019
  ident: pone.0254841.ref005
  article-title: A comparative study of LSTM and phased LSTM for gait prediction
  publication-title: Int J Artificial Intelli & App
– year: 2020
  ident: pone.0254841.ref078
  article-title: GRATIS: GeneRAting TIme Series with diverse and controllable characteristics
  publication-title: Stat Anal and Data Mining: The ASA Data Sci J
– ident: pone.0254841.ref034
– ident: pone.0254841.ref039
  doi: 10.1109/ICPR48806.2021.9412812
– volume: 6
  start-page: 1662
  year: 2018
  ident: pone.0254841.ref115
  article-title: LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– ident: pone.0254841.ref048
– ident: pone.0254841.ref108
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  ident: pone.0254841.ref015
  article-title: 80 Million tiny images: A large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans Pattern Anal and Mach Intell
  doi: 10.1109/TPAMI.2008.128
– ident: pone.0254841.ref006
  doi: 10.1109/SoSE50414.2020.9130487
– volume: 8
  start-page: 12364
  year: 2020
  ident: pone.0254841.ref050
  article-title: Data augmentation for inertial sensor-based gait deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966142
– ident: pone.0254841.ref105
  doi: 10.1609/aaai.v33i01.33015409
– volume: 7
  start-page: 67718
  year: 2019
  ident: pone.0254841.ref116
  article-title: Insights into LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916828
– volume: 25
  start-page: 2226
  issue: 12
  year: 2014
  ident: pone.0254841.ref032
  article-title: A parsimonious mixture of Gaussian trees model for oversampling in imbalanced and multimodal time-series classification
  publication-title: IEEE Trans Neural Networks and Learning Sys
  doi: 10.1109/TNNLS.2014.2308321
– volume: 36
  start-page: 664
  issue: 3
  year: 2011
  ident: pone.0254841.ref067
  article-title: DBSMOTE: Density-based synthetic minority over-sampling technique
  publication-title: Applied Intell
  doi: 10.1007/s10489-011-0287-y
– ident: pone.0254841.ref083
  doi: 10.18653/v1/D19-5829
– ident: pone.0254841.ref028
  doi: 10.1109/CSCI49370.2019.00046
– volume: 61
  start-page: 85
  year: 2015
  ident: pone.0254841.ref002
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: pone.0254841.ref004
  article-title: Learning representations by back-propagating errors
  publication-title: Nat
  doi: 10.1038/323533a0
– ident: pone.0254841.ref069
  doi: 10.1007/978-3-030-47679-3_24
– ident: pone.0254841.ref087
  doi: 10.1109/CCDC.2018.8407436
– volume-title: Data augmentation using healthy speech for dysarthric speech recognition
  year: 2018
  ident: pone.0254841.ref055
  doi: 10.21437/Interspeech.2018-1751
– ident: pone.0254841.ref085
  doi: 10.1109/ICASSP.2019.8683388
– volume: 121
  start-page: 3874
  issue: 6
  year: 2007
  ident: pone.0254841.ref058
  article-title: Vocal tract length perturbation and its application to male-female vocal tract shape conversion
  publication-title: J Acousitical Soc of America
  doi: 10.1121/1.2730743
– ident: pone.0254841.ref091
  doi: 10.1109/ICDM.2017.93
– ident: pone.0254841.ref003
  doi: 10.1109/IJCNN.2017.7966039
– ident: pone.0254841.ref038
  doi: 10.1109/CISP-BMEI51763.2020.9263602
– ident: pone.0254841.ref042
  doi: 10.22260/ISARC2019/0087
– volume-title: Audio augmentation for speech recognition
  year: 2015
  ident: pone.0254841.ref059
– ident: pone.0254841.ref086
  doi: 10.1109/ICIP.2018.8451608
– ident: pone.0254841.ref021
– ident: pone.0254841.ref018
– ident: pone.0254841.ref024
  doi: 10.1109/CVPR.2016.90
– ident: pone.0254841.ref068
  doi: 10.1145/2983323.2983784
– ident: pone.0254841.ref077
SSID ssj0053866
Score 2.7334092
SecondaryResourceType review_article
Snippet In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0254841
SubjectTerms Analysis
Archives & records
Artificial neural networks
Big Data
Biology and Life Sciences
Classification
Computer and Information Sciences
Data augmentation
Data entry
Datasets
Decomposition
Empirical analysis
Engineering and Technology
Evaluation
Information technology
Methods
Neural networks
Neural Networks, Computer
Pattern recognition
Physical Sciences
Polls & surveys
Research and Analysis Methods
Social Sciences
Surveys and Questionnaires
Taxonomy
Time series
Time-series analysis
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK8uFDAICTik3SSOHye0ICqQUKmgqnpAihzbWVZqk2WzqcS_Z8ZxAkEVIHGNJ1Y8L392xp8JeTZTNik1xDfC3YgVUkWqdDaCdOnilHPmPO3i8QdxcCBPTtRh2HBrQlllnxN9ora1wT3yPYC-yQzJ6eJXq28R3hqFf1fDFRqXyRVkSUh96d5hn4khljkPx-VSEe8F6-yu6srt4ilwyeLRdORZ-4fcPFmd1s1FwPP3-slfJqT9G_87lJvkeoCidN75zha55KpbZCsEe0NfBEbql7fJl3lF3dlq6elEaNOuz913WpcUy0upbhdn4QBTRQECU7yunqJnQycGwTlWI3XNuOtLkUITuqm6AvTmDjnaf3v05l0UrmWIjEj5JvKU-CVAJV3oRAhY13LLlBNpYUThNFM206wUCuY951JpmdZWMoBdsUkdwKO7ZFKBBbYJtaXRADd1yQEpsMKpRMeJzSSssjJtVDklaW-c3ATKcrw54zT3_-EELF06VeVo0jyYdEqi4a1VR9nxF_nXaPdBFgm3_YN6vchD_OYlV7qwsihMJpiJEy0KJWcwaMB3ibbwqY_Ra_Lu9OqQNvI555JDoszklDz1Eki6UWFVz0K3TZO__3j8D0KfP42EngehsgZ1GB1OUsCYkMxrJLkzkoTUYUbN2-jjvVaa_Kdnwpu9717c_GRoxk6xUq9yddvJKMVSnk3JvS5MBs2mCL9hRTIlYhRAI9WPW6rlV895LhOAqkzd__NnPSDXEqw5QuLTbIdMNuvWPSRXzflm2awf-eTwA0YLb-o
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQ4YEXYHytWwGDkICHbE3i2PFjQVQgTWOCadoDkuX4Y1TakqppJvHfc5e4gUybgNf64tpn3_l3yd3PhLyeSpt4DfaNcDdiRS4j6Z2NwF26OOWcuZZ28eRAHB7mp6fy6HegeOULfiri_aDTvWVVuj2s3c6xTv12Ah1hCtf86GDjecF2OQ_lcTc9OTh-Wpb-3hePludVfR3QvJov-ccBNL__v0N_QO4FqEln3d7YIrdc-ZBsBWOu6dvAOP3uEfk-K6m7WC5auhBaN6tL95NWnmL6KNXN2UUoUCopQFyK19FT3LnQiUHwjdlGXTO-1aVIkQndlF2Cef2YHM8_Hn_4FIVrFyIjUr6OWsp7D1BIFzoRAuJWbpl0Ii2MKJxm0maaeSHhXHMuzS3T2uYMYFVsUgfw5wkZlTDhbUKtNxrgpPYckAArnEx0nNgshygq00b6MUk3i6FMoCTHmzHOVfudTUBo0qlKoQZV0OCYRP1Ty46S4y_y73Gde1kk1G5_gKVSwT6V51IXNi8Kkwlm4kSLQuZTmDTgt0RbGOoL3CWqq07t3YKawS7k4AizfExetRJIqlFi1s6Zbupaff5y8g9C374OhN4EIV-BOowOlRIwJyTrGkhOBpLgGsygeRv39EYrtYL4MZkiwyMoZbLZ59c3v-ybsVPMxCtd1XQyUrKUZ2PytDOLXrMpwmuIOMZEDAxmoPphS7n40XKaQ-APfy13bh7xLrmbYD4RkppmEzJarxr3jNwxl-tFvXreOoJfL9xePg
  priority: 102
  providerName: Public Library of Science
Title An empirical survey of data augmentation for time series classification with neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/34264999
https://www.proquest.com/docview/2552047591
https://www.proquest.com/docview/2552994365
https://pubmed.ncbi.nlm.nih.gov/PMC8282049
https://doaj.org/article/f69abd8bbc574c12a7b980e739932adf
http://dx.doi.org/10.1371/journal.pone.0254841
Volume 16
WOSCitedRecordID wos000678120600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & allied health premium.
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: PLOS
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4MAFUV41hLAgJODgNH7t45hUjajaBiutooIqWev1ukRqnShOKvHvmbE3Vo0qlQOXOWTHm2RmdvabZPZbQj4NZObnCtY3wl03TIV0ZW4yF9Kl8QLGQlPRLs6O-WQizs9lfOuqL-wJq-mBa8Pt5UyqNBNpqiMeas9XPJViYDhurL7Kcsy-gHq2xVSdg2EVM2YPygXc27N-6S8Xhenj-W8Req2NqOLrb7JyZ3m1KO-CnH93Tt7aisbPyFOLIemw_uw75IEpnpMdu0pL-sVSSX99QS6GBTXXy3nFA0LLzerG_KaLnGJfKFWby2t78qiggF0p3jNPMSRhEo2oGtuI6mH8uZYi9yVMU9Sd4-VLcjY-ONv_5tr7FFzNA7Z2Ky77HDCOSpXPORSkLAslmDLVPDUqlFmkwpxL2LCMCUQWKpWJEPCSpwMDuOYV6RRgwF1Cs1wrwIkqZ7DFh6mRvvL8LBJQHkVKy9whwda2ibZc43jlxVVS_YHGoeaoTZWgRxLrEYe4zVPLmmvjHv0Ruq3RRabs6gWIn8TGT3Jf_DjkPTo9qY-dNus9GTImGGS4SDjkY6WBbBkFtuNcqk1ZJoffZ_-gdDptKX22SvkCzKGVPQIB3wlZuFqa3ZYmrHndGt7FEN1apUygMPQHSN0IRuluw_bu4Q_NME6KLXaFWWxqHSnDgEUOeV1HeWPZAHEzlBIO4a34b5m-PVLMf1Vk5VDRw1vLN__DV2_JEx9bipDXNOqSznq1Me_IY32znperHnnIpzOU57ySAqTY93rk0ehgEk97VYYAOY6PQR6N-iBPBkcoeVzJU5Bx9BOeiA9P4h9_ANxab2I
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemggQvwPhaYTCDQMBDtiZxYvsBofIxrVopaFTVHpAsx3FKpTUpTTu0P4r_kbt8QdAEvOyB1_hixZe7n--Su58JedKTsZdo8G8Mdx0WCenIxMYOwKV1_TBktqBdnAz5aCSOj-XHDfK97oXBssoaEwugjjOD38j3IPT1ekhO575afHXw1Cj8u1ofoVGaxaE9-wYpW_5y8Bbe71PP2383fnPgVKcKOIb74copGN0T2Ol1pD3OIS0LYyYt9yPDI6uZjAPNEi4Btq31Rcy0jgWDqME1vhXIvQSIfwlg3MUKMn40qYEfoCMMq-48n7t7lTHsLrLU7mLTuWBua_crDglotoLO4iTLz4tzfy_X_GX_27_-n2nuBrlWBdq0X3rGJtmw6U2yWUFZTp9XfNsvbpHP_ZTa-WJWkKXQfL08tWc0SygWz1K9ns6r9qyUQoBPV7O5pei3MInB1ANrrcph_KZNkSAUpknL8vr8NhlfxCLvkE4KL3yL0DgxGoJpnYQQB7HISk-7XhwIyCEDbWTSJX5tC8pUhOx4LsiJKv4yckjMSlUptCBVWVCXOM1di5KQ5C_yr9HMGlmkEy8uZMupqtBJJaHUUSyiyAScGdfTPJKiB4uG6NXTMTzqDhqpKntzG1BU_TAUIWwDgeiSx4UEUoqkWLM01es8V4MPk38Q-nTUEnpWCSUZqMPoqk8E1oRUZS3J7ZYkAKNpDW-hS9VaydVPR4A7a1c5f_hRM4yTYh1iarN1KSMl88OgS-6WXtlo1sfkAvKtLuEtf22pvj2Szr4UjO7Cg0CcyXt_fqwdcuVg_H6ohoPR4X1y1cPqKqR4DbZJZ7Vc2wfksjldzfLlwwKXKFEX7M0_APjWyzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamgRAvwPi1wmAGgYCHrE3iOPYDQmWjotpUJpimPSBZjuOUSmtSmnZofxr_HXeJGwiagJc98BpfrPhy9_kuuftMyLOeTINMg39juOuxREhPZjb1AC6tH3LObEW7eHwQj0bi5EQerpHvq14YLKtcYWIF1Glh8Bt5F0LfoIfkdH43c2URh3uDN7OvHp4ghX9aV8dp1Cayb8-_QfpWvh7uwbt-HgSDd0e77z13woBn4pAvvIrdPYNdXyc6iGNI0XjKpI3DxMSJ1UymkWZZLAHCrQ1FyrROBYMIwjehFcjDBOh_BaYKsZpM7DbVJQAjnLtOvTD2u84wdmZFbnewAV0wv7UTVgcGNNvC-uy0KC-KeX8v3fxlLxzc_I-1eIvccAE47dces0HWbH6bbDiIK-lLx8P96g753M-pnc4mFYkKLZfzM3tOi4xiUS3Vy_HUtW3lFAJ_uphMLUV_hkkMpiRYg1UP47duisShME1el92Xd8nRZSzyHlnP4eVvEppmRkOQrTMO8RFLrAy0H6SRgNwy0kZmHRKu7EIZR9SO54WcqurvYwwJW60qhdaknDV1iNfcNauJSv4i_xZNrpFFmvHqQjEfK4daKuNSJ6lIEhPFzPiBjhMperBoiGoDncKjbqPBqrpntwFL1edccNgeItEhTysJpBrJ0dzGelmWavjh-B-EPn1sCb1wQlkB6jDa9Y_AmpDCrCW51ZIEwDSt4U10r5VWSvXTKeDOldtcPPykGcZJsT4xt8WylpGShTzqkPu1hzaaDTHpgDysQ-KW77ZU3x7JJ18qpncRQIDO5IM_P9Y2uQZOrA6Go_2H5HqARVfI_BptkfXFfGkfkavmbDEp548riKJEXbIz_wAOOtOP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+survey+of+data+augmentation+for+time+series+classification+with+neural+networks&rft.jtitle=PloS+one&rft.au=Iwana%2C+Brian+Kenji&rft.au=Uchida%2C+Seiichi&rft.date=2021-07-15&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft.spage=e0254841&rft_id=info:doi/10.1371%2Fjournal.pone.0254841&rft.externalDBID=IOV&rft.externalDocID=A668604058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon