An empirical survey of data augmentation for time series classification with neural networks
In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of add...
Uloženo v:
| Vydáno v: | PloS one Ročník 16; číslo 7; s. e0254841 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
15.07.2021
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications. |
|---|---|
| AbstractList | In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications. In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications. |
| Audience | Academic |
| Author | Iwana, Brian Kenji Uchida, Seiichi |
| AuthorAffiliation | Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan Ulm University, GERMANY |
| AuthorAffiliation_xml | – name: Ulm University, GERMANY – name: Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan |
| Author_xml | – sequence: 1 givenname: Brian Kenji orcidid: 0000-0002-5146-6818 surname: Iwana fullname: Iwana, Brian Kenji – sequence: 2 givenname: Seiichi surname: Uchida fullname: Uchida, Seiichi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34264999$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk22L1DAQx4uceA_6DUQLguiLXdM2zYMvhOXwYeHgQA9fCWGaTnezts2apHfetzd725Xd4xDpi5TJb_6Z-TNzmhz1tsckeZ6RaVbw7N3KDq6HdrqO4SnJSypo9ig5yWSRT1hOiqO9_-Pk1PsVIWUhGHuSHBc0Z1RKeZL8mPUpdmvjjIY29YO7xtvUNmkNAVIYFh32AYKxfdpYlwbTYerRGfSpbsF708S8u-sbE5Zpj4OLMj2GG-t--qfJ4wZaj8_G8yy5-vTx6vzL5OLy8_x8djHRvGBhIkpOSJOXDCrIOSc5ZzWVyItK8wqByroE2nApKEcsRE0BakEpzTJdoJDFWfJyK7turVejL17lZZkTykuZRWK-JWoLK7V2pgN3qywYdRewbqHABaNbVA2TUNWiqnTJqc5y4JUUJBYjo5lQN1Hrw_jaUHVY62hQ7PlA9PCmN0u1sNdK5CLWsyn3zSjg7K8BfVCd8RrbFnq0w7ZuKWnByoi-uoc-3N1ILSA2YPrGxnf1RlTNGBOMUFKKSE0foOJXY2d0HKLGxPhBwtuDhMgE_B0WMHiv5t--_j97-f2Qfb3HLhHasPS2HTZj5A_BF_tO_7V4N70ReL8FtLPeO2yUNttpja2ZVmVEbVZlZ5rarIoaVyUm03vJO_1_pv0BuLAYaQ |
| CitedBy_id | crossref_primary_10_1016_j_jksuci_2022_07_010 crossref_primary_10_1109_JSEN_2024_3414168 crossref_primary_10_3390_app122010365 crossref_primary_10_1016_j_jag_2025_104619 crossref_primary_10_1109_TIA_2023_3262232 crossref_primary_10_3390_fire6110441 crossref_primary_10_3390_electronics12061372 crossref_primary_10_1016_j_patcog_2024_110778 crossref_primary_10_1109_TAES_2024_3482275 crossref_primary_10_1109_TII_2024_3359409 crossref_primary_10_1016_j_ndteint_2025_103390 crossref_primary_10_1021_jacs_4c16325 crossref_primary_10_1038_s41598_025_94351_0 crossref_primary_10_1109_TBDATA_2024_3495509 crossref_primary_10_1371_journal_pone_0316548 crossref_primary_10_1109_JBHI_2023_3281977 crossref_primary_10_1109_JSEN_2024_3371588 crossref_primary_10_3390_su15129652 crossref_primary_10_3390_s23094221 crossref_primary_10_1109_TITS_2024_3355143 crossref_primary_10_1109_TNNLS_2023_3331506 crossref_primary_10_3390_eng5030092 crossref_primary_10_3847_1538_4357_ac6f5a crossref_primary_10_1177_09544062221097339 crossref_primary_10_1109_JSEN_2023_3296199 crossref_primary_10_1002_cpe_7331 crossref_primary_10_1016_j_chaos_2023_113100 crossref_primary_10_3390_s21206892 crossref_primary_10_1016_j_ijepes_2024_110190 crossref_primary_10_3390_s24072199 crossref_primary_10_1016_j_engappai_2025_112136 crossref_primary_10_3389_frvir_2024_1364207 crossref_primary_10_3390_info12020063 crossref_primary_10_1016_j_adhoc_2024_103412 crossref_primary_10_1109_TIM_2023_3276014 crossref_primary_10_1109_TAI_2023_3262763 crossref_primary_10_1049_cvi2_70014 crossref_primary_10_1038_s41598_022_26343_3 crossref_primary_10_1016_j_engappai_2024_108380 crossref_primary_10_1371_journal_pone_0315343 crossref_primary_10_1016_j_inffus_2023_02_003 crossref_primary_10_4103_jips_jips_149_22 crossref_primary_10_3390_electronics13040747 crossref_primary_10_3390_app122412793 crossref_primary_10_3390_computers14040123 crossref_primary_10_1115_1_4068013 crossref_primary_10_1016_j_procir_2024_08_337 crossref_primary_10_1038_s41598_023_39862_4 crossref_primary_10_3390_s23218942 crossref_primary_10_1109_TPAMI_2024_3387317 crossref_primary_10_3390_electronics11223795 crossref_primary_10_3390_bdcc9020022 crossref_primary_10_1089_soro_2022_0188 crossref_primary_10_1016_j_ins_2025_121996 crossref_primary_10_1016_j_sna_2024_115335 crossref_primary_10_1016_j_pmcj_2022_101735 crossref_primary_10_1016_j_inffus_2023_102044 crossref_primary_10_3390_s23042312 crossref_primary_10_1109_JPHOT_2023_3259009 crossref_primary_10_1016_j_autcon_2025_106208 crossref_primary_10_3390_stats7020025 crossref_primary_10_1016_j_engappai_2023_106355 crossref_primary_10_1016_j_ijepes_2022_108589 crossref_primary_10_3390_buildings13010005 crossref_primary_10_3390_electronics14091735 crossref_primary_10_1109_TBME_2022_3189617 crossref_primary_10_3847_1538_4365_ad1de0 crossref_primary_10_1016_j_bspc_2025_108005 crossref_primary_10_3390_app14209488 crossref_primary_10_3390_s23052475 crossref_primary_10_3390_s21196412 crossref_primary_10_1186_s40462_022_00324_7 crossref_primary_10_1109_JSEN_2022_3219594 crossref_primary_10_1109_TNSRE_2023_3266810 crossref_primary_10_1109_ACCESS_2023_3263489 crossref_primary_10_1016_j_watres_2024_122471 crossref_primary_10_1109_ACCESS_2023_3264216 crossref_primary_10_2196_66821 crossref_primary_10_1007_s42486_024_00152_1 crossref_primary_10_3390_info15060343 crossref_primary_10_1016_j_knosys_2024_112154 crossref_primary_10_1002_cjce_25562 crossref_primary_10_1016_j_eswa_2025_126402 crossref_primary_10_1109_TNNLS_2023_3273503 crossref_primary_10_1109_ACCESS_2024_3408712 crossref_primary_10_1016_j_eswa_2024_123536 crossref_primary_10_3390_bioengineering9100529 crossref_primary_10_1016_j_cmpb_2024_108323 crossref_primary_10_1016_j_watres_2025_124283 crossref_primary_10_1016_j_engappai_2024_108475 crossref_primary_10_1371_journal_pcbi_1013323 crossref_primary_10_3390_s23020759 crossref_primary_10_1371_journal_pcbi_1012119 crossref_primary_10_1121_10_0028298 crossref_primary_10_1109_ACCESS_2025_3562897 crossref_primary_10_1007_s41060_021_00278_w crossref_primary_10_1016_j_ijforecast_2022_09_005 crossref_primary_10_3390_app112210723 crossref_primary_10_3389_fbioe_2022_806761 crossref_primary_10_1016_j_bspc_2023_105678 crossref_primary_10_3390_rs16142653 crossref_primary_10_3390_app12010527 crossref_primary_10_1007_s42979_025_03845_1 crossref_primary_10_3390_app12125902 crossref_primary_10_1038_s41467_022_35032_8 crossref_primary_10_1016_j_eja_2024_127387 crossref_primary_10_1016_j_psychres_2021_114261 crossref_primary_10_1016_j_apacoust_2023_109209 crossref_primary_10_1016_j_knosys_2024_111440 crossref_primary_10_3390_ai6050089 crossref_primary_10_1007_s13369_024_09927_1 crossref_primary_10_3390_s24196402 crossref_primary_10_1007_s10115_023_01927_1 crossref_primary_10_1016_j_applthermaleng_2023_121545 crossref_primary_10_1016_j_oceaneng_2023_113620 crossref_primary_10_3847_1538_4365_adfa2a crossref_primary_10_1007_s13246_022_01189_1 crossref_primary_10_1109_TMC_2025_3548647 crossref_primary_10_1016_j_watres_2024_121999 crossref_primary_10_1016_j_apenergy_2023_122124 crossref_primary_10_1016_j_compbiomed_2022_106299 crossref_primary_10_1021_acssensors_4c02272 crossref_primary_10_3390_electronics12183860 crossref_primary_10_1088_1361_6501_ada570 crossref_primary_10_1002_aisy_202300085 crossref_primary_10_1016_j_cma_2024_116822 crossref_primary_10_1109_TAI_2024_3430236 crossref_primary_10_3390_s22218187 crossref_primary_10_1016_j_jhydrol_2023_130458 crossref_primary_10_1016_j_eswa_2024_124511 crossref_primary_10_3390_jimaging9110238 crossref_primary_10_1109_JSEN_2024_3521896 crossref_primary_10_1007_s10489_025_06352_1 crossref_primary_10_1371_journal_pone_0277975 crossref_primary_10_3390_electronics12194077 crossref_primary_10_1111_mice_13478 crossref_primary_10_1016_j_buildenv_2025_112548 crossref_primary_10_1016_j_patcog_2022_109132 crossref_primary_10_1007_s12145_024_01313_7 crossref_primary_10_1145_3711118 crossref_primary_10_3390_s22186881 crossref_primary_10_1016_j_iot_2024_101298 crossref_primary_10_1016_j_iot_2024_101179 crossref_primary_10_3390_s22249900 crossref_primary_10_3390_app13158684 crossref_primary_10_3390_app15094867 crossref_primary_10_3390_s22165969 crossref_primary_10_1371_journal_pone_0304716 crossref_primary_10_1109_TBME_2022_3217711 crossref_primary_10_1109_TMC_2022_3208265 crossref_primary_10_1038_s41598_025_94130_x crossref_primary_10_1016_j_jbiomech_2024_111998 crossref_primary_10_1016_j_knosys_2025_113462 crossref_primary_10_1111_mice_13321 crossref_primary_10_1371_journal_pone_0327038 crossref_primary_10_1186_s40537_023_00792_7 crossref_primary_10_1109_ACCESS_2025_3591505 crossref_primary_10_1088_1741_2552_acd1b6 crossref_primary_10_1016_j_aei_2025_103297 crossref_primary_10_1109_TMM_2022_3217392 crossref_primary_10_23919_JSEE_2023_000109 crossref_primary_10_1016_j_compbiomed_2024_109479 crossref_primary_10_1109_TII_2023_3275701 crossref_primary_10_3847_1538_4357_acdeea crossref_primary_10_3390_healthcare12100994 crossref_primary_10_3390_en17071634 crossref_primary_10_3390_s25103048 crossref_primary_10_1016_j_apenergy_2024_123871 crossref_primary_10_3390_s22114226 crossref_primary_10_1103_PhysRevPhysEducRes_19_020150 crossref_primary_10_1109_TII_2024_3363189 crossref_primary_10_1155_2023_2430011 crossref_primary_10_3390_electronics12081820 crossref_primary_10_3390_jsan13050060 crossref_primary_10_1016_j_renene_2023_119373 crossref_primary_10_1007_s00521_023_08459_3 crossref_primary_10_3390_electronics13081599 crossref_primary_10_1007_s10489_022_03557_6 crossref_primary_10_1007_s10514_023_10114_8 crossref_primary_10_1109_TPAMI_2023_3298346 crossref_primary_10_1007_s40534_025_00396_2 crossref_primary_10_1109_TCSVT_2024_3408332 crossref_primary_10_1063_5_0110491 crossref_primary_10_1016_j_eswa_2023_120914 crossref_primary_10_1016_j_autcon_2022_104734 crossref_primary_10_3390_app13031903 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1016_j_ijhcs_2025_103568 crossref_primary_10_3390_s24134126 crossref_primary_10_1016_j_compag_2023_107646 crossref_primary_10_1109_ACCESS_2024_3525000 crossref_primary_10_1145_3604277 crossref_primary_10_1016_j_compag_2022_107453 crossref_primary_10_1109_JSTARS_2025_3527017 crossref_primary_10_1109_TAFFC_2023_3263907 crossref_primary_10_1145_3701740 crossref_primary_10_1109_TAES_2024_3404360 crossref_primary_10_1016_j_actaastro_2024_10_066 crossref_primary_10_1016_j_jenvrad_2025_107761 crossref_primary_10_1007_s12274_022_5095_7 crossref_primary_10_1109_TPAMI_2024_3372455 crossref_primary_10_3389_fphys_2021_811661 crossref_primary_10_1016_j_ebiom_2024_105047 crossref_primary_10_1017_S0022377822000769 crossref_primary_10_3390_app13042703 crossref_primary_10_3390_cancers15030843 crossref_primary_10_3390_biomedinformatics5030038 crossref_primary_10_26443_seismica_v2i2_978 crossref_primary_10_3390_bios15060339 crossref_primary_10_1038_s44220_024_00209_1 crossref_primary_10_1109_TKDE_2024_3475809 crossref_primary_10_1007_s00521_025_11408_x crossref_primary_10_1016_j_bios_2023_115829 crossref_primary_10_1109_ACCESS_2022_3232396 crossref_primary_10_1016_j_phro_2025_100743 crossref_primary_10_1007_s10845_022_01963_8 crossref_primary_10_1109_JBHI_2024_3458430 crossref_primary_10_3389_fbioe_2023_1247112 crossref_primary_10_1080_10589759_2025_2560024 crossref_primary_10_3390_en14092390 crossref_primary_10_1029_2024RS008101 crossref_primary_10_1109_LSENS_2025_3546985 crossref_primary_10_1016_j_ifacol_2023_10_1754 crossref_primary_10_3390_app15062984 crossref_primary_10_3390_math9182336 crossref_primary_10_1007_s11334_022_00464_4 crossref_primary_10_1109_ACCESS_2024_3472750 crossref_primary_10_1016_j_seps_2025_102240 crossref_primary_10_1016_j_eswa_2024_124793 crossref_primary_10_1016_j_procir_2024_08_312 crossref_primary_10_1109_TGRS_2023_3308999 crossref_primary_10_1109_ACCESS_2025_3564324 crossref_primary_10_1016_j_compstruct_2022_115502 crossref_primary_10_1145_3659589 crossref_primary_10_1016_j_engappai_2025_110662 crossref_primary_10_1038_s41598_022_16741_y crossref_primary_10_26599_BDMA_2023_9020028 crossref_primary_10_1007_s00773_024_01036_w crossref_primary_10_1016_j_engappai_2025_112289 crossref_primary_10_3390_s22166301 crossref_primary_10_1088_1755_1315_1101_8_082022 crossref_primary_10_3390_ijms23094699 crossref_primary_10_1016_j_compchemeng_2025_109068 crossref_primary_10_3390_s23218691 crossref_primary_10_1016_j_procir_2021_11_218 crossref_primary_10_3390_sym17091385 crossref_primary_10_1016_j_geoen_2024_213334 crossref_primary_10_1121_10_0015136 crossref_primary_10_1016_j_actaastro_2022_06_026 crossref_primary_10_1016_j_eswa_2021_114809 crossref_primary_10_2183_pjab_101_032 crossref_primary_10_3390_su141710691 crossref_primary_10_1080_24725854_2025_2488340 crossref_primary_10_1109_JSEN_2023_3301090 crossref_primary_10_3390_w17101525 crossref_primary_10_3390_app15158363 crossref_primary_10_1038_s41598_024_56080_8 crossref_primary_10_3233_IDA_240002 crossref_primary_10_1016_j_rineng_2025_105549 crossref_primary_10_1109_TII_2024_3424583 crossref_primary_10_1007_s13369_022_07585_9 crossref_primary_10_1109_ACCESS_2024_3484955 crossref_primary_10_32604_jai_2024_054314 crossref_primary_10_3390_app13031712 crossref_primary_10_1109_JLT_2025_3548658 crossref_primary_10_3390_machines9120367 crossref_primary_10_1155_2021_3018285 crossref_primary_10_1089_cyber_2022_0058 crossref_primary_10_1051_wujns_2022276521 crossref_primary_10_3390_make6020049 crossref_primary_10_3390_ai3040047 crossref_primary_10_1108_ECAM_05_2023_0454 crossref_primary_10_3390_math11184004 crossref_primary_10_1109_JIOT_2024_3414304 crossref_primary_10_3390_buildings15132351 crossref_primary_10_1109_TTE_2022_3212024 crossref_primary_10_1109_ACCESS_2024_3516369 crossref_primary_10_1016_j_bspc_2023_105940 crossref_primary_10_1016_j_cosrev_2025_100787 crossref_primary_10_1016_j_eswa_2023_120918 crossref_primary_10_1007_s13349_022_00627_8 crossref_primary_10_1016_j_compag_2024_109755 crossref_primary_10_3389_fbioe_2023_1104000 crossref_primary_10_1016_j_engstruct_2025_119685 crossref_primary_10_1016_j_procir_2022_05_090 crossref_primary_10_1109_ACCESS_2024_3371891 crossref_primary_10_1007_s40997_024_00809_3 crossref_primary_10_1115_1_4065755 crossref_primary_10_1088_1361_6579_adfc25 crossref_primary_10_1016_j_watres_2024_122553 crossref_primary_10_1109_LGRS_2023_3277214 crossref_primary_10_1177_14750902221095423 crossref_primary_10_1007_s13534_024_00446_4 crossref_primary_10_3390_plants13010135 crossref_primary_10_1016_j_chaos_2024_115886 crossref_primary_10_1016_j_engappai_2025_110339 crossref_primary_10_1016_j_eswa_2023_120136 crossref_primary_10_1038_s41746_023_00911_x crossref_primary_10_1145_3524070 crossref_primary_10_3390_app15105653 crossref_primary_10_1145_3649448 |
| Cites_doi | 10.1109/CVPR.2017.243 10.1145/3136755.3136817 10.3390/s20113069 10.1109/ICCV.2015.123 10.1109/ICFHR.2016.0059 10.1109/ICICOS.2018.8621657 10.1007/s10032-020-00350-4 10.1111/j.1467-9892.1994.tb00184.x 10.1109/CVPR.2015.7298594 10.1109/BigData.2018.8621990 10.1109/ACCESS.2018.2886899 10.1093/biomet/86.2.301 10.1021/ac60214a047 10.1109/78.650093 10.1109/IHMSC.2016.160 10.1007/s11263-015-0816-y 10.1109/ACCESS.2019.2940701 10.1109/TASSP.1978.1163055 10.1162/neco.1996.8.3.643 10.21437/Interspeech.2016-805 10.1016/j.ijforecast.2015.07.002 10.1007/s004220000160 10.1109/ASRU46091.2019.9003933 10.1613/jair.953 10.3115/1073012.1073017 10.1109/ICASSP.2014.6854671 10.1109/EMBC.2018.8512396 10.1016/j.patcog.2019.107024 10.3390/s18092892 10.1098/rspa.1998.0193 10.1109/ACCESS.2019.2934928 10.1109/ACCESS.2020.2983003 10.1162/neco.1995.7.1.108 10.1162/neco.1997.9.8.1735 10.1109/ICDM.2017.106 10.1007/978-3-319-73600-6_8 10.1109/UBMK.2019.8907003 10.1016/0165-1684(94)90029-9 10.1109/5.726791 10.1080/01621459.1987.10478458 10.23919/EUSIPCO.2019.8902819 10.1145/3349341.3349422 10.3390/s20010098 10.24963/ijcai.2021/631 10.1016/j.ecoinf.2020.101084 10.1109/ASRU46091.2019.9003938 10.1016/j.patcog.2010.09.013 10.1109/ICASSP40776.2020.9053800 10.1109/ASRU46091.2019.9003741 10.1166/jmihi.2020.2928 10.1109/ICASSP40776.2020.9054130 10.1109/ICASSP40776.2020.9053671 10.1186/s40537-019-0197-0 10.1016/j.patrec.2017.08.002 10.21437/Interspeech.2019-3227 10.1007/978-3-642-01307-2_43 10.1109/89.650310 10.1007/978-981-15-3824-7_6 10.1109/ICPR48806.2021.9412812 10.1109/ACCESS.2017.2779939 10.1109/TPAMI.2008.128 10.1109/SoSE50414.2020.9130487 10.1109/ACCESS.2020.2966142 10.1609/aaai.v33i01.33015409 10.1109/ACCESS.2019.2916828 10.1109/TNNLS.2014.2308321 10.1007/s10489-011-0287-y 10.18653/v1/D19-5829 10.1109/CSCI49370.2019.00046 10.1016/j.neunet.2014.09.003 10.1038/323533a0 10.1007/978-3-030-47679-3_24 10.1109/CCDC.2018.8407436 10.21437/Interspeech.2018-1751 10.1109/ICASSP.2019.8683388 10.1121/1.2730743 10.1109/ICDM.2017.93 10.1109/IJCNN.2017.7966039 10.1109/CISP-BMEI51763.2020.9263602 10.22260/ISARC2019/0087 10.1109/ICIP.2018.8451608 10.1109/CVPR.2016.90 10.1145/2983323.2983784 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Iwana, Uchida. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Iwana, Uchida 2021 Iwana, Uchida |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Iwana, Uchida. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Iwana, Uchida 2021 Iwana, Uchida |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0254841 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | An empirical survey of data augmentation for time series classification with neural networks |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2552047591 oai_doaj_org_article_f69abd8bbc574c12a7b980e739932adf PMC8282049 A668604058 34264999 10_1371_journal_pone_0254841 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: ; grantid: JP21K17808 – fundername: ; grantid: JP17H06100 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c736t-85700f256aba2770276d49e73bc7bea49d5a4f79847ee38d4aad844411c3e893 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 423 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678120600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Sun May 07 16:28:45 EDT 2023 Fri Oct 03 12:51:43 EDT 2025 Tue Nov 04 01:58:24 EST 2025 Wed Oct 01 13:02:25 EDT 2025 Tue Oct 07 07:41:49 EDT 2025 Sat Nov 29 12:59:59 EST 2025 Sat Nov 29 10:19:51 EST 2025 Wed Nov 26 10:14:29 EST 2025 Wed Nov 26 10:07:55 EST 2025 Thu May 22 21:25:51 EDT 2025 Mon Jul 21 06:04:39 EDT 2025 Tue Nov 18 22:33:50 EST 2025 Sat Nov 29 01:34:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c736t-85700f256aba2770276d49e73bc7bea49d5a4f79847ee38d4aad844411c3e893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-5146-6818 |
| OpenAccessLink | https://www.proquest.com/docview/2552047591?pq-origsite=%requestingapplication% |
| PMID | 34264999 |
| PQID | 2552047591 |
| PQPubID | 1436336 |
| PageCount | e0254841 |
| ParticipantIDs | plos_journals_2552047591 doaj_primary_oai_doaj_org_article_f69abd8bbc574c12a7b980e739932adf pubmedcentral_primary_oai_pubmedcentral_nih_gov_8282049 proquest_miscellaneous_2552994365 proquest_journals_2552047591 gale_infotracmisc_A668604058 gale_infotracacademiconefile_A668604058 gale_incontextgauss_ISR_A668604058 gale_incontextgauss_IOV_A668604058 gale_healthsolutions_A668604058 pubmed_primary_34264999 crossref_citationtrail_10_1371_journal_pone_0254841 crossref_primary_10_1371_journal_pone_0254841 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-15 |
| PublicationDateYYYYMMDD | 2021-07-15 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | MA Tanner (pone.0254841.ref079) 1987; 82 P Comon (pone.0254841.ref103) 1994; 36 pone.0254841.ref082 C Shorten (pone.0254841.ref017) 2019; 6 pone.0254841.ref084 H Cao (pone.0254841.ref032) 2014; 25 pone.0254841.ref083 pone.0254841.ref086 F Zhu (pone.0254841.ref095) 2019; 9 pone.0254841.ref085 pone.0254841.ref088 pone.0254841.ref087 H Ding (pone.0254841.ref001) 2008; 1 pone.0254841.ref089 pone.0254841.ref003 NV Chawla (pone.0254841.ref046) 2002; 16 J Ortigosa-Hernandez (pone.0254841.ref118) 2017; 98 pone.0254841.ref006 Mavuto M Mukaka (pone.0254841.ref117) 2012; 24 BK Iwana (pone.0254841.ref013) 2020; 97 Q Chen (pone.0254841.ref005) 2019; 10 pone.0254841.ref009 L Lee (pone.0254841.ref057) 1998; 6 AS Tarawneh (pone.0254841.ref065) 2020; 8 S Fr uhwirth-Schnatter (pone.0254841.ref080) 1994; 15 pone.0254841.ref070 S Adachi (pone.0254841.ref058) 2007; 121 CM Bishop (pone.0254841.ref043) 1995; 7 pone.0254841.ref077 pone.0254841.ref110 pone.0254841.ref112 S Harada (pone.0254841.ref098) 2019; 7 pone.0254841.ref113 G An (pone.0254841.ref044) 1996; 8 F Karim (pone.0254841.ref115) 2018; 6 Y Lecun (pone.0254841.ref011) 1998; 86 A Savitzky (pone.0254841.ref072) 1964; 36 OS Eyobu (pone.0254841.ref052) 2018; 18 N Takahashi (pone.0254841.ref074) 2016 pone.0254841.ref061 pone.0254841.ref063 pone.0254841.ref066 pone.0254841.ref068 pone.0254841.ref100 pone.0254841.ref069 pone.0254841.ref102 pone.0254841.ref105 F Wendling (pone.0254841.ref033) 2000; 83 pone.0254841.ref107 pone.0254841.ref106 pone.0254841.ref109 pone.0254841.ref108 RB Cleveland (pone.0254841.ref104) 1990; 6 B Vachhani (pone.0254841.ref055) 2018 pone.0254841.ref053 pone.0254841.ref054 F Karim (pone.0254841.ref116) 2019; 7 L Tran (pone.0254841.ref050) 2020; 8 Q Pan (pone.0254841.ref051) 2020 pone.0254841.ref056 L Nanni (pone.0254841.ref075) 2020; 57 DS Park (pone.0254841.ref062) 2019 K Kamycki (pone.0254841.ref040) 2019; 20 NE Huang (pone.0254841.ref101) 1998; 454 J Yeomans (pone.0254841.ref071) 2019; 7 A Torralba (pone.0254841.ref015) 2008; 30 S Hochreiter (pone.0254841.ref111) 1997; 9 pone.0254841.ref042 pone.0254841.ref041 R Blagus (pone.0254841.ref019) 2013; 14 C Bunkhumpornpat (pone.0254841.ref067) 2011; 36 pone.0254841.ref045 pone.0254841.ref048 pone.0254841.ref047 T Ko (pone.0254841.ref059) 2015 G Xu (pone.0254841.ref007) 2020; 10 C Bunkhumpornpat (pone.0254841.ref064) 2009 H Sakoe (pone.0254841.ref073) 1978; 26 DE Rumelhart (pone.0254841.ref004) 1986; 323 pone.0254841.ref031 pone.0254841.ref030 pone.0254841.ref034 pone.0254841.ref037 pone.0254841.ref036 R Delgado-Escano (pone.0254841.ref049) 2019; 7 pone.0254841.ref039 pone.0254841.ref038 C Bergmeir (pone.0254841.ref035) 2016; 32 M Schuster (pone.0254841.ref114) 1997; 45 HA Dau (pone.0254841.ref016) 2018 O Russakovsky (pone.0254841.ref022) 2015; 115 pone.0254841.ref020 pone.0254841.ref021 pone.0254841.ref024 pone.0254841.ref023 Y Kang (pone.0254841.ref078) 2020 pone.0254841.ref026 pone.0254841.ref025 pone.0254841.ref028 pone.0254841.ref027 J Schmidhuber (pone.0254841.ref002) 2015; 61 pone.0254841.ref029 XL Meng (pone.0254841.ref081) 1999; 86 pone.0254841.ref091 pone.0254841.ref090 pone.0254841.ref093 pone.0254841.ref092 V Carbune (pone.0254841.ref010) 2020; 23 pone.0254841.ref094 pone.0254841.ref097 pone.0254841.ref096 pone.0254841.ref099 pone.0254841.ref012 pone.0254841.ref014 C Kim (pone.0254841.ref060) 2019 pone.0254841.ref018 BH Kim (pone.0254841.ref008) 2020; 20 F Petitjean (pone.0254841.ref076) 2011; 44 |
| References_xml | – ident: pone.0254841.ref025 doi: 10.1109/CVPR.2017.243 – ident: pone.0254841.ref012 – volume: 9 issue: 1 year: 2019 ident: pone.0254841.ref095 article-title: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network publication-title: Scientific Reports – ident: pone.0254841.ref030 doi: 10.1145/3136755.3136817 – volume: 20 start-page: 3069 issue: 11 year: 2020 ident: pone.0254841.ref008 article-title: ECG identification for personal authentication using LSTM-based deep recurrent neural networks publication-title: Sensors doi: 10.3390/s20113069 – ident: pone.0254841.ref029 – ident: pone.0254841.ref106 doi: 10.1109/ICCV.2015.123 – ident: pone.0254841.ref009 doi: 10.1109/ICFHR.2016.0059 – ident: pone.0254841.ref109 – ident: pone.0254841.ref063 doi: 10.1109/ICICOS.2018.8621657 – ident: pone.0254841.ref070 – volume: 23 start-page: 89 issue: 2 year: 2020 ident: pone.0254841.ref010 article-title: Fast multi-language LSTM-based online handwriting recognition publication-title: Int J Doc Analy and Recogn doi: 10.1007/s10032-020-00350-4 – ident: pone.0254841.ref112 – volume: 15 start-page: 183 issue: 2 year: 1994 ident: pone.0254841.ref080 article-title: Data augmentation and dynamic linear models publication-title: J Time Series Anal doi: 10.1111/j.1467-9892.1994.tb00184.x – ident: pone.0254841.ref026 doi: 10.1109/CVPR.2015.7298594 – ident: pone.0254841.ref061 – ident: pone.0254841.ref047 doi: 10.1109/BigData.2018.8621990 – volume: 7 start-page: 1897 year: 2019 ident: pone.0254841.ref049 article-title: An end-to-end multi-task and fusion CNN for inertial-based gait recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886899 – volume: 86 start-page: 301 issue: 2 year: 1999 ident: pone.0254841.ref081 article-title: Seeking efficient data augmentation schemes via conditional and marginal augmentation publication-title: Biometrika doi: 10.1093/biomet/86.2.301 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: pone.0254841.ref072 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Analytical Chemistry doi: 10.1021/ac60214a047 – ident: pone.0254841.ref082 – volume-title: The UCR time series classification archive year: 2018 ident: pone.0254841.ref016 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: pone.0254841.ref114 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans Sig Process doi: 10.1109/78.650093 – ident: pone.0254841.ref066 doi: 10.1109/IHMSC.2016.160 – volume: 24 start-page: 69 issue: 3 year: 2012 ident: pone.0254841.ref117 article-title: A guide to appropriate use of correlation coefficient in medical research Malawi Med publication-title: J – volume: 115 start-page: 211 issue: 3 year: 2015 ident: pone.0254841.ref022 article-title: ImageNet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – ident: pone.0254841.ref023 – volume: 7 start-page: 131248 year: 2019 ident: pone.0254841.ref071 article-title: Simulating time-series data for improved deep neural network performance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940701 – volume: 26 start-page: 43 issue: 1 year: 1978 ident: pone.0254841.ref073 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans Acoustics, Speech, and Sig Process doi: 10.1109/TASSP.1978.1163055 – volume: 8 start-page: 643 issue: 3 year: 1996 ident: pone.0254841.ref044 article-title: The effects of adding noise during backpropagation Training on a Generalization Performance publication-title: Neural Computation doi: 10.1162/neco.1996.8.3.643 – volume-title: Deep convolutional neural networks and data augmentation for acoustic event recognition year: 2016 ident: pone.0254841.ref074 doi: 10.21437/Interspeech.2016-805 – volume: 32 start-page: 303 issue: 2 year: 2016 ident: pone.0254841.ref035 article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation publication-title: Int J Forecasting doi: 10.1016/j.ijforecast.2015.07.002 – volume: 83 start-page: 367 issue: 4 year: 2000 ident: pone.0254841.ref033 article-title: Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals publication-title: Bio Cybernetics doi: 10.1007/s004220000160 – ident: pone.0254841.ref099 doi: 10.1109/ASRU46091.2019.9003933 – volume-title: SpecAugment: A simple data augmentation method for automatic speech recognition year: 2019 ident: pone.0254841.ref062 – volume: 16 start-page: 321 year: 2002 ident: pone.0254841.ref046 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J Art Intelli Research doi: 10.1613/jair.953 – ident: pone.0254841.ref096 – ident: pone.0254841.ref014 doi: 10.3115/1073012.1073017 – ident: pone.0254841.ref056 doi: 10.1109/ICASSP.2014.6854671 – ident: pone.0254841.ref088 doi: 10.1109/EMBC.2018.8512396 – volume: 97 start-page: 107024 year: 2020 ident: pone.0254841.ref013 article-title: Time series classification using local distance-based features in multi-modal fusion networks publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107024 – volume: 18 start-page: 2892 issue: 9 year: 2018 ident: pone.0254841.ref052 article-title: Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network publication-title: Sensors doi: 10.3390/s18092892 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: pone.0254841.ref101 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc Royal Society of London Series A: Math, Physical and Eng Sci doi: 10.1098/rspa.1998.0193 – volume: 7 start-page: 144292 year: 2019 ident: pone.0254841.ref098 article-title: Biosignal generation and latent variable analysis with recurrent generative adversarial networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934928 – volume: 1 start-page: 1542 issue: 2 year: 2008 ident: pone.0254841.ref001 article-title: Querying and mining of time series data publication-title: Proc Very Larg Data Base Endow – volume: 8 start-page: 59069 year: 2020 ident: pone.0254841.ref065 article-title: SMOTEFUNA: Synthetic minority over-sampling technique based on furthest neighbour algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983003 – ident: pone.0254841.ref089 – ident: pone.0254841.ref107 – volume: 7 start-page: 108 issue: 1 year: 1995 ident: pone.0254841.ref043 article-title: Training with noise is equivalent to Tikhonov regularization publication-title: Neural Computation doi: 10.1162/neco.1995.7.1.108 – ident: pone.0254841.ref020 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: pone.0254841.ref111 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – ident: pone.0254841.ref037 doi: 10.1109/ICDM.2017.106 – ident: pone.0254841.ref110 – ident: pone.0254841.ref100 doi: 10.1007/978-3-319-73600-6_8 – ident: pone.0254841.ref036 – ident: pone.0254841.ref045 doi: 10.1109/UBMK.2019.8907003 – ident: pone.0254841.ref084 – volume: 36 start-page: 287 issue: 3 year: 1994 ident: pone.0254841.ref103 article-title: Independent component analysis, A new concept? publication-title: Sig Process doi: 10.1016/0165-1684(94)90029-9 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: pone.0254841.ref011 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 82 start-page: 528 issue: 398 year: 1987 ident: pone.0254841.ref079 article-title: The calculation of posterior distributions by data augmentation publication-title: J American Stat Assoc doi: 10.1080/01621459.1987.10478458 – volume: 6 start-page: 3 issue: 1 year: 1990 ident: pone.0254841.ref104 article-title: STL: A seasonal-trend decomposition publication-title: J Official Stat – ident: pone.0254841.ref094 doi: 10.23919/EUSIPCO.2019.8902819 – ident: pone.0254841.ref092 doi: 10.1145/3349341.3349422 – volume: 20 start-page: 98 issue: 1 year: 2019 ident: pone.0254841.ref040 article-title: Data augmentation with suboptimal warping for time-series classification publication-title: Sensors doi: 10.3390/s20010098 – ident: pone.0254841.ref027 doi: 10.24963/ijcai.2021/631 – volume: 57 start-page: 101084 year: 2020 ident: pone.0254841.ref075 article-title: Data augmentation approaches for improving animal audio classification publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2020.101084 – ident: pone.0254841.ref041 doi: 10.1109/ASRU46091.2019.9003938 – ident: pone.0254841.ref113 – volume: 44 start-page: 678 issue: 3 year: 2011 ident: pone.0254841.ref076 article-title: A global averaging method for dynamic time warping, with applications to clustering publication-title: Pattern Recogn doi: 10.1016/j.patcog.2010.09.013 – ident: pone.0254841.ref090 – ident: pone.0254841.ref031 – ident: pone.0254841.ref093 doi: 10.1109/ICASSP40776.2020.9053800 – ident: pone.0254841.ref053 doi: 10.1109/ASRU46091.2019.9003741 – volume: 10 start-page: 750 issue: 3 year: 2020 ident: pone.0254841.ref007 article-title: Arrhythmia detection using gated recurrent unit network with ECG signals publication-title: J Medical Imag and Health Inform doi: 10.1166/jmihi.2020.2928 – ident: pone.0254841.ref054 doi: 10.1109/ICASSP40776.2020.9054130 – ident: pone.0254841.ref102 doi: 10.1109/ICASSP40776.2020.9053671 – volume: 6 issue: 1 year: 2019 ident: pone.0254841.ref017 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 14 issue: 1 year: 2013 ident: pone.0254841.ref019 article-title: SMOTE for high-dimensional class-imbalanced data publication-title: BMC Bioinformatics – volume: 98 start-page: 32 year: 2017 ident: pone.0254841.ref118 article-title: Measuring the class-imbalance extent of multi-class problems publication-title: Pattern Recogn. Letters doi: 10.1016/j.patrec.2017.08.002 – volume-title: Improved vocal tract length perturbation for a state-of-the-art end-to-end speech recognition system year: 2019 ident: pone.0254841.ref060 doi: 10.21437/Interspeech.2019-3227 – start-page: 475 volume-title: Adv. in Knowl. Disc. and Data Mining year: 2009 ident: pone.0254841.ref064 doi: 10.1007/978-3-642-01307-2_43 – volume: 6 start-page: 49 issue: 1 year: 1998 ident: pone.0254841.ref057 article-title: A frequency warping approach to speaker normalization publication-title: IEEE Trans Speech and Audio Process doi: 10.1109/89.650310 – start-page: 91 volume-title: Feature Eng. and Comput. Intell. in ECG Monitor year: 2020 ident: pone.0254841.ref051 doi: 10.1007/978-981-15-3824-7_6 – ident: pone.0254841.ref097 – volume: 10 start-page: 57 issue: 4 year: 2019 ident: pone.0254841.ref005 article-title: A comparative study of LSTM and phased LSTM for gait prediction publication-title: Int J Artificial Intelli & App – year: 2020 ident: pone.0254841.ref078 article-title: GRATIS: GeneRAting TIme Series with diverse and controllable characteristics publication-title: Stat Anal and Data Mining: The ASA Data Sci J – ident: pone.0254841.ref034 – ident: pone.0254841.ref039 doi: 10.1109/ICPR48806.2021.9412812 – volume: 6 start-page: 1662 year: 2018 ident: pone.0254841.ref115 article-title: LSTM fully convolutional networks for time series classification publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2779939 – ident: pone.0254841.ref048 – ident: pone.0254841.ref108 – volume: 30 start-page: 1958 issue: 11 year: 2008 ident: pone.0254841.ref015 article-title: 80 Million tiny images: A large data set for nonparametric object and scene recognition publication-title: IEEE Trans Pattern Anal and Mach Intell doi: 10.1109/TPAMI.2008.128 – ident: pone.0254841.ref006 doi: 10.1109/SoSE50414.2020.9130487 – volume: 8 start-page: 12364 year: 2020 ident: pone.0254841.ref050 article-title: Data augmentation for inertial sensor-based gait deep neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966142 – ident: pone.0254841.ref105 doi: 10.1609/aaai.v33i01.33015409 – volume: 7 start-page: 67718 year: 2019 ident: pone.0254841.ref116 article-title: Insights into LSTM fully convolutional networks for time series classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916828 – volume: 25 start-page: 2226 issue: 12 year: 2014 ident: pone.0254841.ref032 article-title: A parsimonious mixture of Gaussian trees model for oversampling in imbalanced and multimodal time-series classification publication-title: IEEE Trans Neural Networks and Learning Sys doi: 10.1109/TNNLS.2014.2308321 – volume: 36 start-page: 664 issue: 3 year: 2011 ident: pone.0254841.ref067 article-title: DBSMOTE: Density-based synthetic minority over-sampling technique publication-title: Applied Intell doi: 10.1007/s10489-011-0287-y – ident: pone.0254841.ref083 doi: 10.18653/v1/D19-5829 – ident: pone.0254841.ref028 doi: 10.1109/CSCI49370.2019.00046 – volume: 61 start-page: 85 year: 2015 ident: pone.0254841.ref002 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: pone.0254841.ref004 article-title: Learning representations by back-propagating errors publication-title: Nat doi: 10.1038/323533a0 – ident: pone.0254841.ref069 doi: 10.1007/978-3-030-47679-3_24 – ident: pone.0254841.ref087 doi: 10.1109/CCDC.2018.8407436 – volume-title: Data augmentation using healthy speech for dysarthric speech recognition year: 2018 ident: pone.0254841.ref055 doi: 10.21437/Interspeech.2018-1751 – ident: pone.0254841.ref085 doi: 10.1109/ICASSP.2019.8683388 – volume: 121 start-page: 3874 issue: 6 year: 2007 ident: pone.0254841.ref058 article-title: Vocal tract length perturbation and its application to male-female vocal tract shape conversion publication-title: J Acousitical Soc of America doi: 10.1121/1.2730743 – ident: pone.0254841.ref091 doi: 10.1109/ICDM.2017.93 – ident: pone.0254841.ref003 doi: 10.1109/IJCNN.2017.7966039 – ident: pone.0254841.ref038 doi: 10.1109/CISP-BMEI51763.2020.9263602 – ident: pone.0254841.ref042 doi: 10.22260/ISARC2019/0087 – volume-title: Audio augmentation for speech recognition year: 2015 ident: pone.0254841.ref059 – ident: pone.0254841.ref086 doi: 10.1109/ICIP.2018.8451608 – ident: pone.0254841.ref021 – ident: pone.0254841.ref018 – ident: pone.0254841.ref024 doi: 10.1109/CVPR.2016.90 – ident: pone.0254841.ref068 doi: 10.1145/2983323.2983784 – ident: pone.0254841.ref077 |
| SSID | ssj0053866 |
| Score | 2.7334092 |
| SecondaryResourceType | review_article |
| Snippet | In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0254841 |
| SubjectTerms | Analysis Archives & records Artificial neural networks Big Data Biology and Life Sciences Classification Computer and Information Sciences Data augmentation Data entry Datasets Decomposition Empirical analysis Engineering and Technology Evaluation Information technology Methods Neural networks Neural Networks, Computer Pattern recognition Physical Sciences Polls & surveys Research and Analysis Methods Social Sciences Surveys and Questionnaires Taxonomy Time series Time-series analysis |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQxQMviPG1QAGDkICHbEvi-OOxICaQ0EAwTXtAshzHHpW2pGqaSfz33MVutKBJ44HX3NVt78730d79jpDXzoFrzHKeGlW5lOGMLnCqlDMjIBzx0g37U06-iKMjeXqqvl1Z9YU9YQEeOAhu33NlqlpWlS0Fs1luRKXkgRMYWHNTe_S-kPVsi6ngg-EWcx4H5QqR7Ue97K3axu3h_Ldk2SQQDXj9o1eerc7b7rqU8-_OySuh6PAeuRtzSLoIn32H3HLNfbITb2lH30Yo6XcPyM9FQ93FajnggNCuX1-637T1FPtCqenPLuLkUUMhd6W4Z56iScIhFrNqbCMKZPy5liL2JRzThM7x7iE5Pvx4_OFTGvcppFYUfJMOWPYechxTmVwIKEh5zRSIsrKicoapujTMCwUBC1Qoa2ZMLRnkS5ktHOQ1j8isAQHuEuo4PJTeVSpzjPlCSV9xk_ma-cwaaRJSbGWrbcQax5UX53r4A01AzRFEpVEjOmokIen4qlXA2riB_z2qbeRFpOzhAdiPjvajb7KfhLxApeswdjred73gXHLwcKVMyKuBA9EyGmzHOTN91-nPX0_-genH9wnTm8jkWxCHNXEEAr4TonBNOOcTTrjzdkLeRRPdSqXTUBjmBwjdCEKZb832evLLkYyHYotd49o-8CjFCl4m5HGw8lGyBebNUEokREzsfyL6KaVZ_hrAyqGih7dWT_6Hrp6SOzm2FCGuaTkns826d8_IbXu5WXbr54MH-AOCxWNa priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QwQMvwPha4YCAkICHbmub5uPxQJxAmsYE07QHpCpJk3HS1p6u10n899htrtBpE_Bau2nj2I7d2r8Q8to5cI1JymOtjIsZ9ugCp4o50wK2I5677vyU431xcCBPTtTh70Tx0h_8TCS7QaY7y7pyO9i7LbFP_WaacY4lXPPD_Y3nBdvlPLTHXXfnaPvpUPoHXzxZntXNVYHm5XrJPzag-d3_ffV75E4INems140tcsNV98lWMOaGvg2I0-8ekO-zirrz5aKDC6FNu7pwP2ntKZaPUt2enocGpYpCiEvxOHqKmguDWAy-sdqoJ-NXXYoQmTBM1ReYNw_J0fzj0YdPcTh2IbYi4-u4g7z3EAppo1MhIG_lJVNOZMYK4zRTZa6ZFwr2NVhpWTKtS8kgrEps5iD8eUQmFUx4m1DH4aL0zqjEMeYzJb3hOvEl84nVUkck2yxGYQMkOZ6McVZ0_9kEpCa9qAqUYBEkGJF4uGvZQ3L8hf89rvPAi4Da3QVYqiLYZ-G50qaUxthcMJukWhgl92DSEL-luvQReYFaUvTdqYNbKGaghRwcYS4j8qrjQFCNCqt2TnXbNMXnL8f_wPTt64jpTWDyNYjD6tApAXNCsK4R53TECa7BjsjbqNMbqTQF5I_pHiI8glCmGz2_mvxyIOOgWIlXubrteZRiGc8j8rg3i0GyGYbXkHFERIwMZiT6MaVa_OgwzSHxh0erJ9e_8VNyO8V6IgQ1zadksl617hm5ZS_Wi2b1vHMEvwDiZV7T priority: 102 providerName: Public Library of Science |
| Title | An empirical survey of data augmentation for time series classification with neural networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34264999 https://www.proquest.com/docview/2552047591 https://www.proquest.com/docview/2552994365 https://pubmed.ncbi.nlm.nih.gov/PMC8282049 https://doaj.org/article/f69abd8bbc574c12a7b980e739932adf http://dx.doi.org/10.1371/journal.pone.0254841 |
| Volume | 16 |
| WOSCitedRecordID | wos000678120600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvwPhaYZSAkICHdE3i-OMJtdMqpm0l6qZqIKTISZxSaUtK007iv-fOcQtBEyDxcg_xOYp95_PZufsdIa-1BtPo-cxVMtEuxRxd4JQuo4rDdsRCbeqnTE74aCQuLmRkL9wqG1a5tonGUGdlinfk--D6-j0Ep_Pez7-5WDUK_67aEhpbZBtREgITuhetLTGsZcZsulzAvX0rne68LHQXs8AF9RrbkUHt39jm1vyyrG5yPH-Pn_xlQxre-9-h3Cd3rSvq9Gvd2SG3dPGA7NjFXjlvLSL1u4fkS79w9NV8ZuBEnGq1uNbfnTJ3MLzUUavplU1gKhxwgR0sV--gZsNLUnTOMRqpbsZbXwchNOE1RR2AXj0i58PD84MPri3L4KY8YEvXQOLn4CqpRPmcw7mWZVRqHiQpT7SiMgsVzbmEfQ80QWRUqUxQcLu8NNDgHj0mrQIksEsczeChyHUiPU1pHkiRJ0x5eUZzL1VCtUmwFk6cWshyrJxxGZv_cByOLvVUxSjS2Iq0TdxNr3kN2fEX_gHKfcOLgNvmQbmYxnb9xjmTKslEkqQhp6nnK55I0YNBg3_nqyxvkxeoNXGdvboxG3GfMcHAUIaiTV4ZDgTdKDCqZ6pWVRUffZz8A9PZuMH0xjLlJUxHqmwmBYwJwbwanHsNTjAdaaN5F3V8PStV_FMzoedad29ufrlpxpdipF6hy1XNIyUNWNgmT-plspnZAN1vOJG0CW8soMbUN1uK2VeDeS58cFWpfPrnz3pG7vgYc4TAp-EeaS0XK_2c3E6vl7Nq0SFbfDxBesENFUDFgdch24PDUTTumPsYoMPoBOjxoAv0tHfcMUbF0DOgUfgZekRHp9GnHzHjfRw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQkuQHnVUOiCQMDBbW2v93FAKDyqRg0BlSjqAclar9chUmOHOCnqj-I_MuMXGFXApQeu3vHKu575Zsae-ZaQJ9YCNHo-d7WKrcuwRxcklcuZFuCOeGjL81PGAzEcyuNj9XGNfG96YbCsssHEEqiT3OA38l0Iff09JKfzXs2_unhqFP5dbY7QqNTi0J59g5SteNl_C-_3qe_vvxu9OXDrUwVcIwK-dEtG9xQ8vY61LwSkZTxhyoogNiK2mqkk1CwVCmAbFiITpnUiGUQNngmsRO4lQPxLAOMeVpCJo3ED_AAdnNfdeYHwdmtl2Jnnmd3BpnPJvI73Kw8JaF3B-vwkL86Lc38v1_zF_-1f_8927ga5VgfatFdZxgZZs9lNslFDWUGf13zbL26Rz72M2tl8WpKl0GK1OLVnNE8pFs9SvZrM6vasjEKAT5fTmaVotzCJwdQDa62qYfymTZEgFKbJqvL64jYZXcQi75D1DF74JqGWw0WZ2lh5lrE0UDKNufbShKWe0VI7JGh0ITI1ITueC3ISlX8ZBSRm1VZFqEFRrUEOcdu75hUhyV_kX6OatbJIJ15eyBeTqEanKOVKx4mMYxMKZjxfi1jJPVg0RK--TlKHbKOSRlVvbguKUY9zycENhNIhj0sJpBTJsGZpoldFEfU_jP9B6NNRR-hZLZTmsB1G130isCakKutIbnUkARhNZ3gTTarZlSL6aQhwZ2Mq5w8_aodxUqxDzGy-qmSUYgEPHXK3ssp2ZwNMLiDfcojo2Gtn67sj2fRLyegufQjEmbr358faJlcORu8H0aA_PLxPrvpYXYUUr-EWWV8uVvYBuWxOl9Ni8bDEJUqiC7bmHxiBy8k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VASEuQHnVUOiCQMDBTW2v93FAKLRERK1CBVXVA5K1ttchUmOHOCnqT-PfMWOvDUYVcOmBq3e88o7nac98Q8gzY8A0ej53tYqNy7BHFyiVy5kW4I54aKr5KccHYjyWJyfqcI18b3phsKyysYmVoU6LBL-R9yH09XcQnM7rZ7Ys4nBv-Gb-1cUJUvintRmnUYvIvjn_Bulb-Xq0B-_6ue8P3x3tvnfthAE3EQFfuhW6ewZeX8faFwJSNJ4yZUQQJyI2mqk01CwTCkw4HEqmTOtUMoggvCQwEnGYwPpfga0CrCaTu211CZgRzm2nXiC8vhWM7XmRm21sQJfM63jCamBA6xZ689OivCjm_b108xdfOLz5H3PxFrlhA3A6qDVmnayZ_DZZtyaupC8tDverO-TzIKdmNp9WICq0XC3OzDktMopFtVSvJjPbtpVTCPzpcjozFPUZNkkwJcEarHoZv3VTBA6FbfK67L68S44u45D3SC-Hl79BqOFwUWYmVp5hLAuUzGKuvSxlmZdoqR0SNHIRJRaoHeeFnEbV30cBCVvNqgilKbLS5BC3vWteA5X8hf4tilxLizDj1YViMYms1YoyrnScyjhOQsESz9ciVnIHDg1Rra_TzCFbKLBR3bPbGstowLnk4B5C6ZCnFQVCjeQobhO9Ksto9OH4H4g-fewQvbBEWQHsSLTtH4EzIYRZh3KzQwkGM-ksb6B6NVwpo59KAXc2anPx8pN2GTfF-sTcFKuaRikW8NAh92sNbTkbYNIBeZhDREd3O6zvruTTLxXSu_QhQGfqwZ8fa4tcAyWODkbj_Yfkuo9FV4j8Gm6S3nKxMo_I1eRsOS0XjysTRUl0ycr8AzFJ1CQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+survey+of+data+augmentation+for+time+series+classification+with+neural+networks&rft.jtitle=PloS+one&rft.au=Brian+Kenji+Iwana&rft.au=Uchida%2C+Seiichi&rft.date=2021-07-15&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft.spage=e0254841&rft_id=info:doi/10.1371%2Fjournal.pone.0254841&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |