miR-524-5p of the primate-specific C19MC miRNA cluster targets TP53IPN1- and EMT-associated genes to regulate cellular reprogramming

Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stem cell research & therapy Ročník 8; číslo 1; s. 214 - 15
Hlavní autoři: Nguyen, Phan Nguyen Nhi, Choo, Kong Bung, Huang, Chiu-Jung, Sugii, Shigeki, Cheong, Soon Keng, Kamarul, Tunku
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 29.09.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1757-6512, 1757-6512
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process. Methods A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Results Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Conclusions Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
AbstractList Abstract Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process. Methods A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Results Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Conclusions Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process. Methods A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Results Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Conclusions Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process. Methods A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Results Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Conclusions Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions. Keywords: C19MC, miR-524-5p, Reprogramming efficiency, Cell proliferation, Apoptosis, Pluripotency genes, MET, TP53INP1, ZEB2, SMAD4
Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process. Methods A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Results Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Conclusions Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process. A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR. Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4. Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process.BACKGROUNDIntroduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process.A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR.METHODSA miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR.Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4.RESULTSCo-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4.Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.CONCLUSIONSVia targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
ArticleNumber 214
Audience Academic
Author Nguyen, Phan Nguyen Nhi
Sugii, Shigeki
Choo, Kong Bung
Cheong, Soon Keng
Kamarul, Tunku
Huang, Chiu-Jung
Author_xml – sequence: 1
  givenname: Phan Nguyen Nhi
  surname: Nguyen
  fullname: Nguyen, Phan Nguyen Nhi
  organization: Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman
– sequence: 2
  givenname: Kong Bung
  orcidid: 0000-0002-0880-7867
  surname: Choo
  fullname: Choo, Kong Bung
  email: chookb@utar.edu.my
  organization: Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman
– sequence: 3
  givenname: Chiu-Jung
  surname: Huang
  fullname: Huang, Chiu-Jung
  organization: Department of Animal Science, Chinese Culture University, Graduate Institute of Biotechnology, Chinese Culture University
– sequence: 4
  givenname: Shigeki
  surname: Sugii
  fullname: Sugii, Shigeki
  organization: Singapore BioImaging Consortium AStar, Duke-NUS Graduate Medical School
– sequence: 5
  givenname: Soon Keng
  surname: Cheong
  fullname: Cheong, Soon Keng
  organization: Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long
– sequence: 6
  givenname: Tunku
  surname: Kamarul
  fullname: Kamarul, Tunku
  organization: Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28962647$$D View this record in MEDLINE/PubMed
BookMark eNp9k8Fu1DAQhiNUREvpA3BBlpAQHFJiO7HjC9JqVWCltlRlOVtex866SuLFdhDceXBmuy1sKiBRktH4-_-MR56n2cHgB5Nlz3FxinHN3kZMSc3zAsPDGMvpo-wI84rnrMLkYC8-zE5ivCngorQoWPkkOyS1YISV_Cj72bvrvCJlXm2QtyitDdoE16tk8rgx2lmn0RyLizkC8HKGdDfGZAJKKrQmRbS8quji6hLnSA0NOrtY5ipGrx0YNKg1g4koeRRMO3aQQtp0HUQBMpvg26D63g3ts-yxVV00J3ff4-zL-7Pl_GN-_unDYj47zzWnZcptzWttBS40w5rrUle1Uo0RTFhRVyuuhKohLEXFeEkY14rb0hih8arC3Db0OFvsfBuvbuTtPsMP6ZWTtwkfWqlCcrozEkRCCMzgTUsseF1gigmntMa2aBgHr3c7r8246k2jzZCC6iam05XBrWXrv8mKEQLlgMHrO4Pgv44mJtm7uO2PGowfo8SirAgpMSGAvnyA3vgxDNCqLcWhQsHxH6pVsAE3WA__1VtTOasKLgqKeQ3U6V8ouBvTOw1HzDrITwRvJgJgkvmeWjXGKBefr6fsqz12bVSX1tF3Y3J-iFPwxX73frft_mACwHeADj7GYKzULqmtD5TrOokLuZ0CuZsCCVMgt1MgKSjxA-W9-f80ZKeJwA6tCXsN_qfoF-4DEsE
CitedBy_id crossref_primary_10_1007_s12015_018_9861_6
crossref_primary_10_1093_biolre_ioz022
crossref_primary_10_1186_s12935_018_0612_1
crossref_primary_10_1038_s41467_022_30775_w
crossref_primary_10_3389_fgene_2024_1389558
crossref_primary_10_1038_s41598_020_59812_8
crossref_primary_10_3389_fcell_2025_1593207
crossref_primary_10_1007_s00401_020_02182_2
crossref_primary_10_1016_j_dld_2018_03_026
crossref_primary_10_1002_cam4_3473
crossref_primary_10_1007_s12015_023_10621_2
crossref_primary_10_3389_fgene_2018_00706
crossref_primary_10_3390_jdb12010001
crossref_primary_10_3390_pharmaceutics14020317
crossref_primary_10_4103_jcrt_jcrt_364_21
crossref_primary_10_1007_s13577_020_00364_4
crossref_primary_10_1016_j_mrfmmm_2024_111872
crossref_primary_10_1186_s12929_018_0461_1
crossref_primary_10_3390_cancers16203537
crossref_primary_10_1016_j_neo_2020_10_009
crossref_primary_10_1089_cbr_2019_3046
crossref_primary_10_3390_genes14071434
crossref_primary_10_1038_s41366_019_0450_9
Cites_doi 10.1128/MCB.13.5.2919
10.1038/onc.2010.183
10.1038/nature10761
10.1038/emboj.2011.2
10.1016/j.stem.2011.05.001
10.1016/j.celrep.2013.05.027
10.1016/j.semcdb.2014.05.017
10.1002/stem.1149
10.1002/pros.21412
10.1038/nrg3473
10.3389/fcell.2015.00002
10.1016/j.canlet.2015.01.030
10.1089/scd.2009.0426
10.7150/ijms.8356
10.1007/s40268-014-0064-6
10.1186/s12929-017-0326-z
10.1002/stem.1278
10.1158/1541-7786.MCR-11-0421
10.1530/JME-11-0189
10.1016/j.stem.2009.10.007
10.1093/nar/gkq850
10.1186/1471-2407-11-425
10.1038/ncb2366
10.1038/nature05939
10.1016/j.cell.2006.07.024
10.1038/nbt.1862
10.1016/j.stem.2008.08.014
10.1038/cdd.2014.28
10.1016/j.stem.2011.03.001
10.1038/ncb2613
10.3389/fgene.2013.00080
10.1038/nrc3318
10.1038/nrg2955
10.1002/jcp.24104
10.1016/j.compbiolchem.2010.08.001
10.1093/nar/gkp205
10.1038/ncb1827
10.1186/1471-2164-8-166
10.1074/jbc.M301979200
10.1074/jbc.M601811200
10.1038/srep03852
10.1016/j.scr.2014.03.007
10.1093/neuonc/not162
10.1016/j.stem.2010.11.010
10.18632/oncotarget.2559
10.1016/j.molcel.2012.01.020
10.1016/j.stemcr.2015.02.009
10.1038/nrm3758
10.1073/pnas.1212769110
10.1038/cdd.2012.30
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13287-017-0666-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1757-6512
EndPage 15
ExternalDocumentID oai_doaj_org_article_9c1999161993419780131273381f0d67
PMC5622517
A507903178
28962647
10_1186_s13287_017_0666_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: FRGS/2/2014/SKK01/UTAR/01/2
  grantid: FRGS/2/2014/SKK01/UTAR/01/2
– fundername: HIR-MoE
  grantid: UM.C/625/1/HIR/MOHE/CHAN/03
– fundername: ;
  grantid: FRGS/2/2014/SKK01/UTAR/01/2
– fundername: ;
  grantid: UM.C/625/1/HIR/MOHE/CHAN/03
GroupedDBID ---
0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
SV3
TUS
UKHRP
AAYXX
AFFHD
CITATION
-56
-5G
-BR
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c734t-f878cf910c61c7c4c58aade969f985b7a9a89f9495674267ca7f4ee9c1b517fd3
IEDL.DBID RSV
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412195400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-6512
IngestDate Fri Oct 03 12:52:24 EDT 2025
Tue Nov 04 01:41:13 EST 2025
Thu Oct 02 12:03:01 EDT 2025
Tue Oct 21 12:46:21 EDT 2025
Tue Nov 11 10:28:48 EST 2025
Tue Nov 04 17:45:07 EST 2025
Thu Nov 13 15:24:43 EST 2025
Thu May 22 21:14:34 EDT 2025
Wed Feb 19 02:41:23 EST 2025
Sat Nov 29 01:46:10 EST 2025
Tue Nov 18 21:30:03 EST 2025
Sat Sep 06 07:28:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cell proliferation
miR-524-5p
Pluripotency genes
ZEB2
SMAD4
C19MC
Reprogramming efficiency
TP53INP1
MET
Apoptosis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c734t-f878cf910c61c7c4c58aade969f985b7a9a89f9495674267ca7f4ee9c1b517fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0880-7867
OpenAccessLink https://link.springer.com/10.1186/s13287-017-0666-3
PMID 28962647
PQID 1947934971
PQPubID 2040189
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_9c1999161993419780131273381f0d67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5622517
proquest_miscellaneous_1945224122
proquest_journals_1947934971
gale_infotracmisc_A507903178
gale_infotracacademiconefile_A507903178
gale_incontextgauss_ISR_A507903178
gale_healthsolutions_A507903178
pubmed_primary_28962647
crossref_citationtrail_10_1186_s13287_017_0666_3
crossref_primary_10_1186_s13287_017_0666_3
springer_journals_10_1186_s13287_017_0666_3
PublicationCentury 2000
PublicationDate 2017-09-29
PublicationDateYYYYMMDD 2017-09-29
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Stem cell research & therapy
PublicationTitleAbbrev Stem Cell Res Ther
PublicationTitleAlternate Stem Cell Res Ther
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Zhang (666_CR46) 2014; 7
F Jiang (666_CR47) 2011; 11
Y Buganim (666_CR2) 2013; 14
H Hermeking (666_CR49) 2012; 12
K Takahashi (666_CR1) 2006; 126
C Chen (666_CR23) 2005; 33
TR Leonardo (666_CR5) 2012; 14
B Feng (666_CR51) 2009; 11
F Itoh (666_CR29) 2014; 32
D Ye (666_CR41) 2012; 30
KB Choo (666_CR21) 2014; 11
S Lamouille (666_CR54) 2014; 15
S Peuget (666_CR32) 2014; 21
X He (666_CR11) 2014; 9
Z Li (666_CR42) 2011; 30
DA Robinton (666_CR26) 2012; 481
SL Lin (666_CR40) 2011; 39
K Plath (666_CR4) 2011; 12
Y Wang (666_CR13) 2013; 4
VK Singh (666_CR25) 2015; 3
D Hockemeyer (666_CR22) 2008; 3
Y Ishihara (666_CR24) 2014; 14
K Kapinas (666_CR27) 2013; 228
CJ Jung (666_CR28) 2012; 10
N Mah (666_CR37) 2011; 6
V Vaira (666_CR20) 2012; 49
L David (666_CR3) 2014; 12
Y Liang (666_CR18) 2007; 8
PN Nguyen (666_CR7) 2017; 24
S Lin (666_CR17) 2010; 34
K Woltjen (666_CR30) 2009; 5
T Spence (666_CR19) 2014; 16
F Anokye-Danso (666_CR9) 2011; 8
M Li (666_CR50) 2012; 46
D Subramanyam (666_CR14) 2011; 29
W Shi (666_CR53) 2006; 281
S Tsuno (666_CR15) 2014; 4
R Tomasini (666_CR48) 2003; 278
Z Zhang (666_CR39) 2015; 4
N Miyoshi (666_CR8) 2011; 8
S Giusiano (666_CR45) 2012; 72
R Puca (666_CR31) 2010; 29
F Liu (666_CR36) 2015; 359
S Hu (666_CR10) 2013; 31
P Tsukerman (666_CR38) 2014; 5
G Wang (666_CR12) 2013; 110
B Stadler (666_CR6) 2010; 19
L He (666_CR34) 2007; 447
S Ma (666_CR35) 2010; 7
YJ Choi (666_CR33) 2011; 13
M Seillier (666_CR43) 2012; 19
BA Hosler (666_CR52) 1993; 13
ML Bortolin-Cavaille (666_CR16) 2009; 37
J Shahbazi (666_CR44) 2013; 4
21490602 - Nat Biotechnol. 2011 May;29(5):443-8
16714766 - J Biol Chem. 2006 Aug 18;281(33):23319-25
22622027 - Mol Cancer Res. 2012 Jul;10 (7):979-91
24458129 - Sci Rep. 2014 Jan 24;4:3852
20870751 - Nucleic Acids Res. 2011 Feb;39(3):1054-65
24910449 - Semin Cell Dev Biol. 2014 Aug;32:98-106
24556840 - Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96
19896434 - Cell Stem Cell. 2009 Nov 6;5(5):457-8
23136034 - Stem Cells. 2013 Feb;31(2):259-68
12851404 - J Biol Chem. 2003 Sep 26;278(39):37722-9
28270145 - J Biomed Sci. 2017 Mar 7;24(1):20
22258608 - Nature. 2012 Jan 18;481(7381):295-305
16904174 - Cell. 2006 Aug 25;126(4):663-76
20128659 - Stem Cells Dev. 2010 Jul;19(7):935-50
22552993 - J Cell Physiol. 2013 Jan;228(1):9-20
21970405 - BMC Cancer. 2011 Oct 05;11:425
8474450 - Mol Cell Biol. 1993 May;13(5):2919-28
19339516 - Nucleic Acids Res. 2009 Jun;37(10):3464-73
24311633 - Neuro Oncol. 2014 Jan;16(1):62-71
21285944 - EMBO J. 2011 Mar 2;30(5):823-34
21415849 - Nat Rev Genet. 2011 Apr;12(4):253-65
23131918 - Nat Cell Biol. 2012 Nov;14(11):1114-21
22020437 - Nat Cell Biol. 2011 Oct 23;13(11):1353-60
25633840 - Cancer Lett. 2015 Apr 10;359(2):288-98
24735951 - Stem Cell Res. 2014 May;12(3):754-61
19136965 - Nat Cell Biol. 2009 Feb;11(2):197-203
20863765 - Comput Biol Chem. 2010 Aug;34(4):232-41
17554337 - Nature. 2007 Jun 28;447(7148):1130-4
21112564 - Cell Stem Cell. 2010 Dec 3;7(6):694-707
25699255 - Front Cell Dev Biol. 2015 Feb 02;3:2
16314309 - Nucleic Acids Res. 2005 Nov 27;33(20):e179
21909390 - PLoS One. 2011;6(8):e24351
23386720 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2858-63
25426550 - Oncotarget. 2014 Dec 15;5(23 ):12141-50
23717325 - Front Genet. 2013 May 13;4:80
23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39
22696098 - Stem Cells. 2012 Aug;30(8):1645-54
20514025 - Oncogene. 2010 Aug 5;29(31):4378-87
21620789 - Cell Stem Cell. 2011 Jun 3;8(6):633-8
24608790 - Cell Death Differ. 2014 Jul;21(7):1107-18
22387025 - Mol Cell. 2012 Apr 13;46(1):30-42
17565689 - BMC Genomics. 2007 Jun 12;8:166
25249788 - Int J Med Sci. 2014 Sep 13;11(11):1201-7
23831024 - Cell Rep. 2013 Jul 11;4(1):99-109
25801506 - Stem Cell Reports. 2015 Apr 14;4(4):645-57
22898542 - Nat Rev Cancer. 2012 Sep;12(9):613-26
24551280 - Int J Clin Exp Pathol. 2014 Jan 15;7(2):602-10
24740298 - PLoS One. 2014 Apr 16;9(4):e95213
21538421 - Prostate. 2012 Feb 1;72(2):117-28
22421968 - Cell Death Differ. 2012 Sep;19(9):1525-35
22767050 - J Mol Endocrinol. 2012 Jul 26;49(2):115-24
18786421 - Cell Stem Cell. 2008 Sep 11;3(3):346-353
21474102 - Cell Stem Cell. 2011 Apr 8;8(4):376-88
25303886 - Drugs R D. 2014 Dec;14 (4):253-64
References_xml – volume: 13
  start-page: 2919
  year: 1993
  ident: 666_CR52
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.13.5.2919
– volume: 29
  start-page: 4378
  year: 2010
  ident: 666_CR31
  publication-title: Oncogene.
  doi: 10.1038/onc.2010.183
– volume: 481
  start-page: 295
  year: 2012
  ident: 666_CR26
  publication-title: Nature.
  doi: 10.1038/nature10761
– volume: 30
  start-page: 823
  year: 2011
  ident: 666_CR42
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.2
– volume: 8
  start-page: 633
  year: 2011
  ident: 666_CR8
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2011.05.001
– volume: 7
  start-page: 602
  year: 2014
  ident: 666_CR46
  publication-title: Int J Clin Exp Pathol.
– volume: 4
  start-page: 99
  year: 2013
  ident: 666_CR13
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.05.027
– volume: 32
  start-page: 98
  year: 2014
  ident: 666_CR29
  publication-title: Semin Cell Dev Biol.
  doi: 10.1016/j.semcdb.2014.05.017
– volume: 30
  start-page: 1645
  year: 2012
  ident: 666_CR41
  publication-title: Stem Cells.
  doi: 10.1002/stem.1149
– volume: 9
  year: 2014
  ident: 666_CR11
  publication-title: PLoS One.
– volume: 72
  start-page: 117
  year: 2012
  ident: 666_CR45
  publication-title: Prostate.
  doi: 10.1002/pros.21412
– volume: 14
  start-page: 427
  year: 2013
  ident: 666_CR2
  publication-title: Nat Rev Gene.
  doi: 10.1038/nrg3473
– volume: 3
  start-page: 2
  year: 2015
  ident: 666_CR25
  publication-title: Front Cell Dev Biol.
  doi: 10.3389/fcell.2015.00002
– volume: 359
  start-page: 288
  year: 2015
  ident: 666_CR36
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.01.030
– volume: 19
  start-page: 935
  year: 2010
  ident: 666_CR6
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2009.0426
– volume: 11
  start-page: 1201
  year: 2014
  ident: 666_CR21
  publication-title: Int J Med Sci.
  doi: 10.7150/ijms.8356
– volume: 33
  year: 2005
  ident: 666_CR23
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 253
  year: 2014
  ident: 666_CR24
  publication-title: Drugs RD.
  doi: 10.1007/s40268-014-0064-6
– volume: 24
  start-page: 20
  year: 2017
  ident: 666_CR7
  publication-title: J Biomed Sci.
  doi: 10.1186/s12929-017-0326-z
– volume: 31
  start-page: 259
  year: 2013
  ident: 666_CR10
  publication-title: Stem Cells.
  doi: 10.1002/stem.1278
– volume: 10
  start-page: 979
  year: 2012
  ident: 666_CR28
  publication-title: Mol Cancer Res.
  doi: 10.1158/1541-7786.MCR-11-0421
– volume: 6
  year: 2011
  ident: 666_CR37
  publication-title: PLoS One.
– volume: 49
  start-page: 115
  year: 2012
  ident: 666_CR20
  publication-title: J Mol Endocrinol.
  doi: 10.1530/JME-11-0189
– volume: 5
  start-page: 457
  year: 2009
  ident: 666_CR30
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.10.007
– volume: 39
  start-page: 1054
  year: 2011
  ident: 666_CR40
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq850
– volume: 11
  start-page: 425
  year: 2011
  ident: 666_CR47
  publication-title: BMC Cancer.
  doi: 10.1186/1471-2407-11-425
– volume: 13
  start-page: 1353
  year: 2011
  ident: 666_CR33
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2366
– volume: 447
  start-page: 1130
  year: 2007
  ident: 666_CR34
  publication-title: Nature.
  doi: 10.1038/nature05939
– volume: 126
  start-page: 663
  year: 2006
  ident: 666_CR1
  publication-title: Cell.
  doi: 10.1016/j.cell.2006.07.024
– volume: 29
  start-page: 443
  year: 2011
  ident: 666_CR14
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.1862
– volume: 3
  start-page: 346
  year: 2008
  ident: 666_CR22
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2008.08.014
– volume: 21
  start-page: 1107
  year: 2014
  ident: 666_CR32
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.28
– volume: 8
  start-page: 376
  year: 2011
  ident: 666_CR9
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2011.03.001
– volume: 14
  start-page: 1114
  year: 2012
  ident: 666_CR5
  publication-title: Nat Cell Biol.
  doi: 10.1038/ncb2613
– volume: 4
  start-page: 80
  year: 2013
  ident: 666_CR44
  publication-title: Front Genet.
  doi: 10.3389/fgene.2013.00080
– volume: 12
  start-page: 613
  year: 2012
  ident: 666_CR49
  publication-title: Nat Rev Cancer.
  doi: 10.1038/nrc3318
– volume: 12
  start-page: 253
  year: 2011
  ident: 666_CR4
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg2955
– volume: 228
  start-page: 9
  year: 2013
  ident: 666_CR27
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.24104
– volume: 34
  start-page: 232
  year: 2010
  ident: 666_CR17
  publication-title: Comput Biol Chem.
  doi: 10.1016/j.compbiolchem.2010.08.001
– volume: 37
  start-page: 3464
  year: 2009
  ident: 666_CR16
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp205
– volume: 11
  start-page: 197
  year: 2009
  ident: 666_CR51
  publication-title: Nat Cell Biol.
  doi: 10.1038/ncb1827
– volume: 8
  start-page: 166
  year: 2007
  ident: 666_CR18
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-8-166
– volume: 278
  start-page: 37722
  year: 2003
  ident: 666_CR48
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M301979200
– volume: 281
  start-page: 23319
  year: 2006
  ident: 666_CR53
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M601811200
– volume: 4
  start-page: 3852
  year: 2014
  ident: 666_CR15
  publication-title: Sci Rep.
  doi: 10.1038/srep03852
– volume: 12
  start-page: 754
  year: 2014
  ident: 666_CR3
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2014.03.007
– volume: 16
  start-page: 62
  year: 2014
  ident: 666_CR19
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/not162
– volume: 7
  start-page: 694
  year: 2010
  ident: 666_CR35
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.11.010
– volume: 5
  start-page: 12141
  year: 2014
  ident: 666_CR38
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.2559
– volume: 46
  start-page: 30
  year: 2012
  ident: 666_CR50
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2012.01.020
– volume: 4
  start-page: 645
  year: 2015
  ident: 666_CR39
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2015.02.009
– volume: 15
  start-page: 178
  year: 2014
  ident: 666_CR54
  publication-title: Nat Rev Mol Cell Biol.
  doi: 10.1038/nrm3758
– volume: 110
  start-page: 2858
  year: 2013
  ident: 666_CR12
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1212769110
– volume: 19
  start-page: 1525
  year: 2012
  ident: 666_CR43
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.30
– reference: 22622027 - Mol Cancer Res. 2012 Jul;10 (7):979-91
– reference: 21538421 - Prostate. 2012 Feb 1;72(2):117-28
– reference: 24311633 - Neuro Oncol. 2014 Jan;16(1):62-71
– reference: 28270145 - J Biomed Sci. 2017 Mar 7;24(1):20
– reference: 22767050 - J Mol Endocrinol. 2012 Jul 26;49(2):115-24
– reference: 21415849 - Nat Rev Genet. 2011 Apr;12(4):253-65
– reference: 24740298 - PLoS One. 2014 Apr 16;9(4):e95213
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 24910449 - Semin Cell Dev Biol. 2014 Aug;32:98-106
– reference: 24551280 - Int J Clin Exp Pathol. 2014 Jan 15;7(2):602-10
– reference: 23386720 - Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2858-63
– reference: 25633840 - Cancer Lett. 2015 Apr 10;359(2):288-98
– reference: 21490602 - Nat Biotechnol. 2011 May;29(5):443-8
– reference: 25249788 - Int J Med Sci. 2014 Sep 13;11(11):1201-7
– reference: 23131918 - Nat Cell Biol. 2012 Nov;14(11):1114-21
– reference: 22020437 - Nat Cell Biol. 2011 Oct 23;13(11):1353-60
– reference: 16314309 - Nucleic Acids Res. 2005 Nov 27;33(20):e179
– reference: 21285944 - EMBO J. 2011 Mar 2;30(5):823-34
– reference: 22696098 - Stem Cells. 2012 Aug;30(8):1645-54
– reference: 24556840 - Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96
– reference: 24735951 - Stem Cell Res. 2014 May;12(3):754-61
– reference: 19136965 - Nat Cell Biol. 2009 Feb;11(2):197-203
– reference: 17554337 - Nature. 2007 Jun 28;447(7148):1130-4
– reference: 8474450 - Mol Cell Biol. 1993 May;13(5):2919-28
– reference: 21970405 - BMC Cancer. 2011 Oct 05;11:425
– reference: 16714766 - J Biol Chem. 2006 Aug 18;281(33):23319-25
– reference: 19896434 - Cell Stem Cell. 2009 Nov 6;5(5):457-8
– reference: 22258608 - Nature. 2012 Jan 18;481(7381):295-305
– reference: 21909390 - PLoS One. 2011;6(8):e24351
– reference: 22421968 - Cell Death Differ. 2012 Sep;19(9):1525-35
– reference: 22898542 - Nat Rev Cancer. 2012 Sep;12(9):613-26
– reference: 25801506 - Stem Cell Reports. 2015 Apr 14;4(4):645-57
– reference: 25303886 - Drugs R D. 2014 Dec;14 (4):253-64
– reference: 21474102 - Cell Stem Cell. 2011 Apr 8;8(4):376-88
– reference: 24458129 - Sci Rep. 2014 Jan 24;4:3852
– reference: 24608790 - Cell Death Differ. 2014 Jul;21(7):1107-18
– reference: 18786421 - Cell Stem Cell. 2008 Sep 11;3(3):346-353
– reference: 19339516 - Nucleic Acids Res. 2009 Jun;37(10):3464-73
– reference: 20128659 - Stem Cells Dev. 2010 Jul;19(7):935-50
– reference: 20863765 - Comput Biol Chem. 2010 Aug;34(4):232-41
– reference: 20870751 - Nucleic Acids Res. 2011 Feb;39(3):1054-65
– reference: 22552993 - J Cell Physiol. 2013 Jan;228(1):9-20
– reference: 25699255 - Front Cell Dev Biol. 2015 Feb 02;3:2
– reference: 17565689 - BMC Genomics. 2007 Jun 12;8:166
– reference: 25426550 - Oncotarget. 2014 Dec 15;5(23 ):12141-50
– reference: 21620789 - Cell Stem Cell. 2011 Jun 3;8(6):633-8
– reference: 23136034 - Stem Cells. 2013 Feb;31(2):259-68
– reference: 23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39
– reference: 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42
– reference: 12851404 - J Biol Chem. 2003 Sep 26;278(39):37722-9
– reference: 23831024 - Cell Rep. 2013 Jul 11;4(1):99-109
– reference: 20514025 - Oncogene. 2010 Aug 5;29(31):4378-87
– reference: 23717325 - Front Genet. 2013 May 13;4:80
– reference: 21112564 - Cell Stem Cell. 2010 Dec 3;7(6):694-707
SSID ssj0000330064
Score 2.2860827
Snippet Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem...
Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells...
Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem...
A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies...
Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced pluripotent stem...
Abstract Background Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to ‘reprogram’ somatic cells to become induced...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Alkaline phosphatase
Apoptosis
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
c-Myc protein
C19MC
Cancer
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Biology
Cell cycle
Cell death
Cell Line, Tumor
Cell proliferation
Cell regulation
Cellular Reprogramming
Chromosome 19
Colonies
Epithelial-Mesenchymal Transition
Fibroblasts
Gene expression
Gene targeting
Genetic aspects
Genomes
Health aspects
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Humans
Inhibitory postsynaptic potentials
Kinases
KLF4 protein
Life Sciences
Mesenchyme
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miR-524-5p
miRNA
Myc protein
Oct-4 protein
Phylogeny
Pluripotency
Pluripotency genes
Polymerase chain reaction
Prostate
Proteins
Regenerative Medicine/Tissue Engineering
Reprogramming efficiency
Smad4 protein
Smad4 Protein - genetics
Smad4 Protein - metabolism
Somatic cells
Stem cell transplantation
Stem Cells
Transcription factors
Zinc Finger E-box Binding Homeobox 2 - genetics
Zinc Finger E-box Binding Homeobox 2 - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yKHgRv62uGkUQlLBNmzbNcRx2cQ87DOsIewuZNFkHdtth2hG8-4f7Xtop0xX14pzK5BXS917eR_vLL4S8M4kwKhWCpWWioEGxCVv6FBGOXsSFLGJjfThsQs5mxcWFmu8d9YWYsI4euFPckbI81DAINBMc-XJ4yiHnQqbxcZmHfeRQ9ew1UyEGQ5sOybb_jMmL_KiBtqvAOSDaK89ZOkpEga__96i8l5ZuQiZvfDcN6ejkPrnX15F00s3_AbnlqofkTney5I9H5Of16hy6P8GyNa09hSqPrpFXonUM91YiPohOuTqbUhCcTai92iJjAu2A4Q1dzLP0dD7jjJqqpMdnC2Z6O7qSXmJ8pG1NN91B9o7i63_Es1LkyAyAr2uY9WPy9eR4Mf3M-gMXmJWpaJkH41gPBYTNuZVW2KwwpnQqV14V2VIaZQq4xJ4KOupcWiO9cA5MtMy49GX6hBxUdeWeEWp5bhNZWuFizJOZgc6Fi6TMbQm_jEck3mlf256NHA_FuNKhKyly3RlMg8E0GkynEfkw3LLuqDj-JvwJTToIIot2-AN8S_e-pf_lWxF5jQ6huy2pQyzQEyiiFURDWUTkbZBAJo0KoTqXZts0-vTL-UjofS_ka3hGa_qdD6ApJN8aSR6OJGGp2_HwzjN1H2oazRW-HBVKgk7fDMN4J8LnKldvg0yGtVqSRORp58iDZqDjhqZWwMPKkYuPVDceqVbfAhE51M7IeBeRj7vFsDetP1nm-f-wzAtyNwlLWbFEHZKDdrN1L8lt-71dNZtXIRb8AmaLWNg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegA4kXvj8CAwxCQgJZixMnjp9QV3ViD6uqUqS9WZ6TlEpbUpoWiXf-cO4cNyxD7IU-RfVFin3n85398-8IeWciYVQsBIvzSEGCYiN2VsaIcCxFmMksNLZ0xSbkZJKdnqqp33BrPKxy5xOdo85ri3vkB5BsgykJJfmn1XeGVaPwdNWX0LhJ9pCpTAzI3uF4Mp11uywhpOuw6PrjTJ6lBw2kXxl-C6K-0pTFvQXJ8fb_7Z0vLU9XoZNXzk_dsnR07387dJ_c9QEpHbYW9IDcKKqH5HZbovLnI_LrYjmDNFKwZEXrkkK4SFdIULEpGF7SRKARHXF1MqIgOBlSe75F6gXaIswbOp8m8fF0whk1VU7HJ3NmvEEUOV2go6Wbmq6LBZYRKyieIyAwliLZpkOOXUC3H5OvR-P56DPzlRuYlbHYsBK0bEuIRGzKrbTCJpkxeaFSVaosOZNGmQweMTmD1DyV1shSFIWy_CzhsszjJ2RQ1VXxjFDLUxvJ3IoixAU3MZACcRHlqc3hl_CAhDv1aetpzbG6xrl26U2W6lbjGjSuUeM6DsiH7pVVy-lxnfAh2kQniHTc7o96vdB-dmv4cBdoIxpScCR14jGHwBDCoTLMUxmQ12hRur3b2jkVPYRoXIFblVlA3joJpOSoEPOzMNum0cdfZj2h916orKGP1vgrFDBSyOLVk9zvSYLPsP3mnU1q77Ma_ccgA_Kma8Y3EYdXFfXWySQY9EVRQJ62M6EbGUjdITsW0FnZmyO9oeu3VMtvjtEcgnCkzgvIx91suvRZ_9LM8-s78YLcidwsVyxS-2SwWW-Ll-SW_bFZNutX3lH8Bpgia4Q
  priority: 102
  providerName: ProQuest
Title miR-524-5p of the primate-specific C19MC miRNA cluster targets TP53IPN1- and EMT-associated genes to regulate cellular reprogramming
URI https://link.springer.com/article/10.1186/s13287-017-0666-3
https://www.ncbi.nlm.nih.gov/pubmed/28962647
https://www.proquest.com/docview/1947934971
https://www.proquest.com/docview/1945224122
https://pubmed.ncbi.nlm.nih.gov/PMC5622517
https://doaj.org/article/9c1999161993419780131273381f0d67
Volume 8
WOSCitedRecordID wos000412195400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: RBZ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYBhIv3C-BUQxCQgJF1IkT249d1Yk-tIq6gsaT5TpJqbQlVdMi8c4P5xwnjZZxkaAPVRUfV_GxfS7258-EvDEBNyrk3A_TQEGCYgN_kYeIcMx5XwrZNzZ3l02I6VSen6ukOcdd7dHu-y1JZ6ndtJbxhwryJol_gnCtOPbDA3IE3k7ibJydfW4XVvqQoYOfbXYwf1uz44McVf-vBvmKR7qOlry2Zeo80end_2rDPXKnCTzpoB4p98mNrHhAbtVXUX5_SH5crmaQLnI_WtMypxAW0jUSUWwzHw9jIqCIDpmaDCkITgfUXuyQYoHWSPKKzpMoHCdT5lNTpHQ0mfum6fgspUs0qHRb0k19831Gcb8AAbAUSTUdQuwS2vGIfDodzYcf_eaGBt-KkG_9HHrT5hBx2JhZYbmNpDFppmKVKxkthFFGwk9MwiAFj4U1IudZpixbREzkafiYHBZlkT0l1LLYBiK1POujY40MpDqMB2lsU_hEzCP9fZ9p29CX4y0aF9qlMTLWtXI1KFejcnXokXdtlXXN3fE34RMcCK0g0m67B-VmqZtZrOHFXUCNqEfOkLyJhQwCQAh78n4aC4-8xGGk6zOsrfHQA4i6FZhPIT3y2kkg9UaB2J6l2VWVHp_NOkJvG6G8hDZa0xyVAE0hW1dH8rgjCbbBdov341k3tqnSTOFqKlcCdPqqLcaaiLcrsnLnZCIM7oLAI0_q4d9qBlJ0yII5NFZ0JkZHdd2SYvXVMZdDsI0UeR55v58eV17rTz3z7J-kn5PbgZtfyg_UMTncbnbZC3LTftuuqk2PHIhz4b5ljxydjKbJrOeWYXoI-k3gWTKeJF96zqT8BJVHZqg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90tgMINASKBodeLE8QNCpWxatbWaRif1zbiOUyptSWla0N75PfxGznHSsgyxtz3Qp6o5qWzn3L748zmEvNIB1zLk3A_TQAJAMYE_ykJkOGa8lYikpU3mmk2Ifj8ZDuXBGvm1PAuDtMqlT3SOOi0MviPfArANqsSlYB-m33zsGoW7q8sWGpVa7NnTHwDZyvfdT_B8XwfBzvags-vXXQV8I0I-9zMYgckgSpqYGWG4iRKtUytjmckkGgktdQJfETgAbIyF0SLj1krDRhETWRrC_14hV8GPC6SQiaFYvdNphSGG-HrzlCXxVglgL8GZI8csjv2wEf5cl4C_Y8GZYHieqHlut9YFwZ3b_9vy3SG36nSbtiv7uEvWbH6PXK8acJ7eJz9PJocAkrkfTWmRUUiG6RTLb8ytj0dQkUZFO0z2OhQE-21qjhdYWIJW_PmSDg6isHvQZz7VeUq3ewNf1-puUzrGMELnBZ3ZMTZJsxR3SZD2S7GUqOPFncAyPyBHl7IED8l6XuT2MaGGxSYQqeG2helEpAHgMR6ksUnhEzGPtJbqokxdtB17hxwrB96SWFUapkDDFGqYCj3ydnXLtKpYcpHwR9TBlSAWG3c_FLOxqn2XgoE7GIFcT86wZBULGaS9kOxlrTQWHtlEDVbVyd2Vy1RtwBoSgoZIPPLSSWDBkRwZTWO9KEvV_XzYEHpTC2UFzNHo-oAIrBTWKGtIbjQkwSOa5uWlDajaI5fqjwF45MXqMt6JLMPcFgsnE2FKGwQeeVRZ3mplgkQC9ucwWdGwycbSNa_kk6-uXjtADCwM6JF3S-s9M6x_PZknF09ik9zYHfT21X63v_eU3Aych5F-IDfI-ny2sM_INfN9Pilnz52LouTLZRv1b7JryBo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELdgPMQX3o_AYAYhIQ1Fy8OJ44-lrKKCVdVW0L5ZrmOXSltSNSkS3_nDuXPSaBkPCdFPVX2u4rPvfL_4_DtCXquIKREz5sd5JACg6Mif2xgzHC0LMp4FSltXbIJPJtnpqZi2dU6rbbb79kiyudOALE1FfbDKbWPiWXpQAYbK8A8xdStN_fgqucawZhDC9ZMv3UuWANA67LntaeZve_b2I0fb_6tzvrA7Xc6cvHR86nal0Z3_Hs9dcrsNSOmgWUH3yBVT3Cc3mhKV3x-QH-fLY4CRzE9WtLQUwkW6QoKK2vh4SRMTjegwFEdDCoKTAdVnG6ReoE2GeUVn0yQeTyehT1WR08Ojma_aBWFyukBHS-uSrs0Cy4gZiucImBhLkWzTZY6dw5geks-jw9nwg99WbvA1j1ntW5hlbSES0WmouWY6yZTKjUiFFVky50qoDL4iOANonnKtuGXGCB3Ok5DbPH5EdoqyME8I1WGqI55rZgLccBMFEChkUZ7qHD5J6JFgO39St7TmWF3jTDp4k6WyUa4E5UpUrow9st91WTWcHn8TfoeLohNEOm73Q7leyNa6JTy4C7QxG5KFSOoUxiEEhhAO2SBPuUf2cEnJ5m5r51TkAKJxAW6VZx555SSQkqPAnJ-F2lSVHJ8c94TetEK2hDFq1V6hAE0hi1dPcrcnCT5D95u3a1u2PquSocC3rExw0OnLrhl7Yh5eYcqNk0kw6IsijzxuTKHTDEB3QMcMBst7RtJTXb-lWH51jOYQhCN1nkfebk3lwmP9aWae_pP0Hrk5fT-Sn8aTj8_IrciZmvAjsUt26vXGPCfX9bd6Wa1fOA_yE9sha2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-524-5p+of+the+primate-specific+C19MC+miRNA+cluster+targets+TP53IPN1-+and+EMT-associated+genes+to+regulate+cellular+reprogramming&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Huang%2C+Chiu-Jung&rft.au=Sugii%2C+Shigeki&rft.au=Kamarul%2C+Tunku&rft.au=Choo%2C+Kong+Bung&rft.date=2017-09-29&rft.pub=BioMed+Central+Ltd&rft.issn=1757-6512&rft.eissn=1757-6512&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs13287-017-0666-3&rft.externalDBID=n%2Fa&rft.externalDocID=A507903178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon