Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability
During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the bl...
Uložené v:
| Vydané v: | PLoS pathogens Ročník 10; číslo 11; s. e1004509 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
01.11.2014
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1553-7374, 1553-7366, 1553-7374 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. |
|---|---|
| AbstractList | During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. Ebola virus, a member of the Filoviridae family, causes lethal hemorrhagic fever in man and primates, displaying up to 90% mortality rates. Viral infection is typified by an excessive systemic inflammatory response resembling septic shock. It also damages endothelial cells and creates difficulty in coagulation, ultimately leading to haemorrhaging, organ failure and death. A unique feature of EBOV is that following infection high amounts of truncated surface GP, named shed GP, are released from infected cells and are detected in the blood of patients and experimentally infected animals. However the role of shed GP in virus replication and pathogenicity is not yet clearly defined. Here we show that shed GP released from virus-infected cells binds and activates non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and also affects vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. |
| Audience | Academic |
| Author | Volchkova, Valentina A. Dolnik, Olga Escudero-Pérez, Beatriz Volchkov, Viktor E. Lawrence, Philip |
| AuthorAffiliation | Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France Division of Clinical Research, United States of America |
| AuthorAffiliation_xml | – name: Division of Clinical Research, United States of America – name: Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France |
| Author_xml | – sequence: 1 givenname: Beatriz surname: Escudero-Pérez fullname: Escudero-Pérez, Beatriz – sequence: 2 givenname: Valentina A. surname: Volchkova fullname: Volchkova, Valentina A. – sequence: 3 givenname: Olga surname: Dolnik fullname: Dolnik, Olga – sequence: 4 givenname: Philip surname: Lawrence fullname: Lawrence, Philip – sequence: 5 givenname: Viktor E. surname: Volchkov fullname: Volchkov, Viktor E. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25412102$$D View this record in MEDLINE/PubMed https://hal.science/hal-01911315$$DView record in HAL |
| BookMark | eNqVkl1r2zAUhs3oWNts_2Bsht2sF8n0Gdu9GITStYGwlfXjVhzLkqNgS5lkh_XfT6nT0pQxGLqwOH7e93CO3uPkwDqrkuQ9RhNMM_xl5XpvoZms19BNMEKMo-JVcoQ5p-OMZuzg2f0wOQ5hFRlM8fRNckg4wwQjcpTcXi9VlV5cpU6n56VrIL0zvg_pjTd1rXxI523bW5XOZGc20BlnU7BVOrfSKwhRegdB9g349Er5VkFpGtPdv01ea2iCerf7jpLbb-c3Z5fjxY-L-dlsMZYZpd2YgGaSZEA04hVCZZERqitS5UUpc1rmHGvKKCmxjoTWOaFAKqDTTGuUcVzSUfJx8F03LojdRoLA05yTAnFWRGI-EJWDlVh704K_Fw6MeCg4XwvwnZGNElorolDJGNbAuJyWkjONmC6YzBgpq-j1ddetL1tVSWU7D82e6f4fa5aidhvBCC1QwaLByWCwfCG7nC3EtoZwgeMT8Q2O7OddM-9-9Sp0ojVBqqYBq1y_nZFkKKMkrmyUfBrQGuIYxmoXu8stLma0oBznqOCRmvyFiqdSrZExW9rE-p7gZE8QmU797mroQxDz65__wX7fZz88X-PTIh5DGQE2ANK7ELzSTwhGYpv9x5cW2-yLXfaj7PSFTJruIbJxUNP8W_wHyzwJwg |
| CitedBy_id | crossref_primary_10_1128_JVI_02368_20 crossref_primary_10_3390_ijms23115966 crossref_primary_10_1016_j_tim_2020_06_005 crossref_primary_10_1146_annurev_genom_083115_022446 crossref_primary_10_3390_v12010008 crossref_primary_10_3389_fimmu_2019_02414 crossref_primary_10_1074_jbc_RA118_005375 crossref_primary_10_3389_fimmu_2017_01372 crossref_primary_10_3390_pathogens11121400 crossref_primary_10_3390_v14010142 crossref_primary_10_15252_emmm_202114150 crossref_primary_10_1016_j_antiviral_2016_09_001 crossref_primary_10_3389_fimmu_2023_1156758 crossref_primary_10_1038_srep40791 crossref_primary_10_3389_fcvm_2021_619690 crossref_primary_10_3390_v7122969 crossref_primary_10_1016_j_antiviral_2021_105226 crossref_primary_10_3390_v11100889 crossref_primary_10_1007_s00109_023_02309_4 crossref_primary_10_1111_joim_12386 crossref_primary_10_1016_j_antiviral_2016_10_004 crossref_primary_10_1128_JVI_00179_17 crossref_primary_10_1038_s41598_017_09963_y crossref_primary_10_1038_srep41537 crossref_primary_10_1093_infdis_jiv565 crossref_primary_10_1073_pnas_1702204114 crossref_primary_10_1128_JVI_01308_17 crossref_primary_10_1128_jvi_01300_25 crossref_primary_10_1146_annurev_virology_101416_041848 crossref_primary_10_1038_nrmicro3412 crossref_primary_10_1038_cdd_2015_67 crossref_primary_10_1007_s12250_016_3850_1 crossref_primary_10_1073_pnas_2110846119 crossref_primary_10_3390_pathogens10091201 crossref_primary_10_1093_infdis_jiv189 crossref_primary_10_1146_annurev_virology_092818_015708 crossref_primary_10_3390_pathogens10101330 crossref_primary_10_1038_s41598_018_30590_8 crossref_primary_10_1186_2049_9957_3_43 crossref_primary_10_1038_srep41029 crossref_primary_10_1159_000375257 crossref_primary_10_1093_infdis_jiv216 crossref_primary_10_1371_journal_pntd_0006349 crossref_primary_10_1371_journal_ppat_1007390 crossref_primary_10_1089_vim_2017_0122 crossref_primary_10_1128_JVI_00438_17 crossref_primary_10_3390_v15010052 crossref_primary_10_3390_ijms24054627 crossref_primary_10_1128_mSphere_00401_17 crossref_primary_10_1016_j_vaccine_2017_01_068 crossref_primary_10_1016_j_cellimm_2017_11_009 crossref_primary_10_1371_journal_ppat_1005487 crossref_primary_10_1371_journal_ppat_1005088 crossref_primary_10_3390_molecules25215017 crossref_primary_10_1016_j_ijid_2015_05_016 crossref_primary_10_1016_j_bios_2022_113971 crossref_primary_10_1177_03009858231171906 crossref_primary_10_2217_fvl_2017_0030 crossref_primary_10_1016_j_ijbiomac_2021_08_054 crossref_primary_10_1159_000487224 crossref_primary_10_1016_j_coviro_2018_01_010 crossref_primary_10_1172_JCI132438 crossref_primary_10_1093_infdis_jiv237 crossref_primary_10_1099_jgv_0_001024 crossref_primary_10_1016_j_isci_2021_102266 crossref_primary_10_1080_14728222_2017_1299128 crossref_primary_10_3390_v11110999 crossref_primary_10_1128_JVI_01995_20 crossref_primary_10_3390_microorganisms8101473 crossref_primary_10_1126_scitranslmed_adq5928 crossref_primary_10_1016_j_coi_2025_102648 crossref_primary_10_3390_v7102892 crossref_primary_10_1038_s41541_021_00280_0 crossref_primary_10_1128_jvi_00753_22 crossref_primary_10_3390_v13050824 crossref_primary_10_1038_s41426_018_0031_3 crossref_primary_10_3390_v11050410 crossref_primary_10_1016_j_tim_2024_07_001 crossref_primary_10_1371_journal_ppat_1006037 crossref_primary_10_1016_j_mam_2022_101113 crossref_primary_10_1371_journal_ppat_1005221 crossref_primary_10_1371_journal_ppat_1006397 crossref_primary_10_1016_j_coviro_2021_10_007 crossref_primary_10_1038_s42003_019_0647_4 crossref_primary_10_3390_v7102867 crossref_primary_10_3389_fmicb_2017_01571 crossref_primary_10_1126_scitranslmed_aaj1701 crossref_primary_10_3390_v7010285 crossref_primary_10_1002_JLB_4RI0518_183R crossref_primary_10_1371_journal_pntd_0013230 crossref_primary_10_3389_fcimb_2023_1275277 crossref_primary_10_1186_s12967_016_1084_5 crossref_primary_10_1093_infdis_jiy406 crossref_primary_10_3390_jcm10061216 crossref_primary_10_1016_j_ymthe_2022_10_011 crossref_primary_10_1016_j_coviro_2016_11_013 crossref_primary_10_1099_jgv_0_001401 crossref_primary_10_1038_ncomms8688 crossref_primary_10_1016_j_virol_2022_05_007 crossref_primary_10_1159_000375229 crossref_primary_10_1159_000543608 crossref_primary_10_3389_fmicb_2022_1007081 crossref_primary_10_1093_infdis_jiv268 crossref_primary_10_1093_infdis_jiv309 crossref_primary_10_1080_17460913_2025_2501924 crossref_primary_10_3390_pathogens9100850 crossref_primary_10_1038_srep45552 |
| Cites_doi | 10.1093/infdis/jir295 10.1086/520607 10.1006/viro.2000.0572 10.4049/jimmunol.170.6.2797 10.1128/JVI.78.2.576-584.2004 10.1073/pnas.95.10.5762 10.1016/S0140-6736(10)60667-8 10.1186/gb-2007-8-8-r174 10.1111/j.1365-2249.2012.04584.x 10.3389/fmicb.2012.00034 10.1016/0168-1702(93)90063-S 10.1128/JVI.75.22.10730-10737.2001 10.1128/JVI.03316-12 10.1128/JVI.75.22.11025-11033.2001 10.1093/infdis/jir338 10.1038/nature07082 10.1371/journal.ppat.1002847 10.1128/JVI.76.24.12463-12472.2002 10.1016/S0165-2478(01)00327-3 10.1016/j.virol.2011.01.003 10.1128/JVI.02695-12 10.1006/viro.1999.0034 10.1007/978-3-7091-9300-6_8 10.1128/JCM.13.4.791-793.1981 10.1128/JVI.01462-09 10.1016/j.molimm.2010.09.008 10.1097/00062752-200201000-00002 10.1006/viro.1998.9389 10.1046/j.1365-3148.2002.00408.x 10.4049/jimmunol.164.11.5998 10.1002/jlb.67.4.450 10.1016/j.coi.2005.11.014 10.1128/JVI.00784-09 10.1046/j.1365-2249.2002.01800.x 10.1093/infdis/jiq025 10.1016/j.bbagen.2009.10.006 10.1099/0022-1317-81-9-2155 10.1128/JVI.01604-08 10.1046/j.1365-2567.2000.00093.x 10.1006/viro.1995.0052 10.1371/journal.pntd.0001359 10.1038/sj.gene.6364283 10.1016/j.biocel.2005.02.018 10.1016/S0002-9440(10)63592-4 10.1074/jbc.M110.106260 10.1073/pnas.1008509107 10.1099/vir.0.81199-0 10.1128/JVI.79.4.2413-2419.2005 10.1038/nrmicro3267 10.1016/S1473-3099(04)01103-X 10.1128/JVI.00659-11 10.1099/vir.0.81361-0 10.1038/cmi.2011.1 10.1086/374746 10.2217/fvl.11.79 10.1053/j.spid.2005.05.001 10.1042/BJ20090549 10.1006/viro.1994.1147 10.1038/sj.emboj.7600219 10.1371/journal.pone.0060838 10.5483/BMBRep.2013.46.7.055 10.4049/jimmunol.179.9.6107 10.1128/JVI.79.16.10442-10450.2005 10.4049/jimmunol.168.2.554 10.1126/science.1057269 10.1073/pnas.93.8.3602 10.1016/S1081-1206(10)62586-0 10.1016/j.chom.2010.07.007 10.1006/viro.2001.0836 10.2174/156652409787581628 10.1002/cbic.200600223 10.1179/096805100101532414 10.1086/420830 10.1038/78645 10.1160/TH05-03-0153 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2014 Public Library of Science Distributed under a Creative Commons Attribution 4.0 International License 2014 Escudero-Pérez et al 2014 Escudero-Pérez et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE (2014) Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability. PLoS Pathog 10(11): e1004509. doi:10.1371/journal.ppat.1004509 |
| Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2014 Escudero-Pérez et al 2014 Escudero-Pérez et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE (2014) Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability. PLoS Pathog 10(11): e1004509. doi:10.1371/journal.ppat.1004509 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 1XC 5PM DOA |
| DOI | 10.1371/journal.ppat.1004509 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Shed GP of Ebola Virus: Immune Activation and Vascular Permeability |
| EISSN | 1553-7374 |
| ExternalDocumentID | 1685290549 oai_doaj_org_article_ffe2e0b441fa45c6bc54f04f94c742bd PMC4239094 oai:HAL:hal-01911315v1 A393518095 25412102 10_1371_journal_ppat_1004509 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ 7X8 PUEGO 1XC BAIFH BBTPI 5PM - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c733t-2af4c27a2f05d00b9723fd2d89bc83b851f3432b1f2f0ff823a2da367ff0751b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345515800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7374 1553-7366 |
| IngestDate | Fri Nov 26 17:14:16 EST 2021 Mon Nov 10 04:25:47 EST 2025 Tue Nov 04 02:00:00 EST 2025 Sat Nov 29 15:01:06 EST 2025 Fri Sep 05 10:42:44 EDT 2025 Tue Nov 11 10:18:35 EST 2025 Tue Nov 04 17:52:05 EST 2025 Thu Nov 13 15:01:09 EST 2025 Thu Nov 13 15:38:50 EST 2025 Mon Jul 21 05:49:42 EDT 2025 Sat Nov 29 03:58:04 EST 2025 Tue Nov 18 20:45:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Human Umbilical Vein Endothelial Cells Ebolavirus Antigens CD Hemorrhagic Fever Dendritic Cells Guinea Pigs Toll-Like Receptor 4 Cytokines Humans Viral Proteins Macrophages Animals Membrane Glycoproteins Ebola |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c733t-2af4c27a2f05d00b9723fd2d89bc83b851f3432b1f2f0ff823a2da367ff0751b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4239094 Conceived and designed the experiments: BEP VAV OD VEV. Performed the experiments: BEP VAV OD PL. Analyzed the data: BEP VAV VEV PL. Contributed reagents/materials/analysis tools: BEP VAV PL VEV. Wrote the paper: BEP PL VEV. The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-7637-045X 0000-0003-3655-0525 0000-0001-7896-8706 |
| OpenAccessLink | https://doaj.org/article/ffe2e0b441fa45c6bc54f04f94c742bd |
| PMID | 25412102 |
| PQID | 1627073272 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1685290549 doaj_primary_oai_doaj_org_article_ffe2e0b441fa45c6bc54f04f94c742bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_4239094 hal_primary_oai_HAL_hal_01911315v1 proquest_miscellaneous_1627073272 gale_infotracmisc_A393518095 gale_infotracacademiconefile_A393518095 gale_incontextgauss_ISR_A393518095 gale_incontextgauss_ISN_A393518095 pubmed_primary_25412102 crossref_primary_10_1371_journal_ppat_1004509 crossref_citationtrail_10_1371_journal_ppat_1004509 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS pathogens |
| PublicationTitleAlternate | PLoS Pathog |
| PublicationYear | 2014 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | EI Ryabchikova (ref66) 1999; 235 P Garred (ref51) 2006; 7 JB Moe (ref80) 1981; 13 D Burzyn (ref77) 2004; 78 CI Caescu (ref34) 2009; 424 C Cilloniz (ref72) 2011; 85 B Beutler (ref64) 2002; 9 S Mahanty (ref5) 2004; 4 VA Volchkova (ref14) 1999; 265 D Dube (ref48) 2010; 107 N Wauquier (ref71) 2010 A Okumura (ref52) 2010; 84 T Shimizu (ref56) 2009; 1790 N Alazard-Dany (ref17) 2006; 87 ZY Yang (ref35) 2000; 6 NM Lubaki (ref30) 2013; 87 A Sanchez (ref11) 1996; 93 SA Jeffers (ref16) 2002; 76 O Dolnik (ref21) 2004; 23 YJ Ma (ref58) 2013; 46 H Feldmann (ref7) 1994; 199 H Feldmann (ref24) 2011; 377 G Tal (ref75) 2004; 189 A Sanchez (ref9) 1993; 29 LE Hensley (ref63) 2002; 80 A Groseth (ref73) 2012; 8 VE Volchkov (ref12) 1998; 95 X Ji (ref46) 2005; 86 TW Geisbert (ref68) 2003; 163 S Baize (ref1) 2014 M Brudner (ref43) 2013; 8 A Fuchs (ref45) 2010; 8 M Mohamadzadeh (ref4) 2009; 9 O Martinez (ref27) 2013; 87 RA Ezekowitz (ref38) 2003; 187 V Wahl-Jensen (ref32) 2005; 79 IC Michelow (ref47) 2011; 203 ref8 VE Volchkov (ref81) 2001; 291 KH Rubins (ref33) 2007; 8 A Du Toit (ref2) 2014; 12 M Bray (ref26) 2005; 37 SY Chan (ref36) 2000; 81 HD Brightbill (ref61) 2000; 101 D Falzarano (ref13) 2006; 7 LM Ganley-Leal (ref53) 2010; 48 VE Volchkov (ref22) 1995; 214 SR Zaki (ref23) 1999; 235 JE Lee (ref18) 2008; 454 A Takada (ref25) 2012; 3 VA Volchkova (ref10) 1998; 250 V Wahl-Jensen (ref31) 2011; 5 M Wang (ref57) 2011; 8 LM Haynes (ref76) 2001; 75 VE Volchkov (ref15) 1999; 235 B Daubeuf (ref79) 2007; 179 BL Ligon (ref3) 2005; 16 K Takahashi (ref41) 2006; 18 LE Hensley (ref69) 2005; 94 M Mehedi (ref6) 2011; 6 KA Zarember (ref55) 2002; 168 U Stroher (ref65) 2001; 75 XH Xie (ref74) 2008; 31 M Muzio (ref54) 2000; 164 S Thiel (ref39) 2012; 169 VM Wahl-Jensen (ref67) 2005; 79 O Martinez (ref19) 2011; 204 A Fuchs (ref44) 2011; 412 G Zhang (ref60) 2000; 6 O Reynard (ref20) 2009; 83 S Baize (ref62) 2002; 128 JA Royall (ref70) 1989; 257 M Mateo (ref82) 2011; 204 A Marzi (ref49) 2007; 196 DC Kilpatrick (ref40) 2002; 12 D Babovic-Vuksanovic (ref50) 1999; 82 M Muzio (ref59) 2000; 67 A Bukreyev (ref78) 2008; 82 S Mahanty (ref29) 2003; 170 VE Volchkov (ref37) 2000; 277 IC Michelow (ref42) 2010; 285 M Gupta (ref28) 2001; 284 23616668 - J Virol. 2013 Jul;87(13):7471-85 11239157 - Science. 2001 Mar 9;291(5510):1965-9 10820283 - J Immunol. 2000 Jun 1;164(11):5998-6004 16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42 12438572 - J Virol. 2002 Dec;76(24):12463-72 10071515 - Ann Allergy Asthma Immunol. 1999 Feb;82(2):134-8, 141; quiz 142-3 10950971 - J Gen Virol. 2000 Sep;81(Pt 9):2155-9 18615077 - Nature. 2008 Jul 10;454(7201):177-82 21734050 - J Virol. 2011 Sep;85(17):9060-8 10932225 - Nat Med. 2000 Aug;6(8):886-9 21269656 - Virology. 2011 Mar 30;412(1):101-9 22028943 - PLoS Negl Trop Dis. 2011 Oct;5(10):e1359 12626527 - J Immunol. 2003 Mar 15;170(6):2797-801 19840833 - Biochim Biophys Acta. 2009 Dec;1790(12):1705-10 9792851 - Virology. 1998 Oct 25;250(2):408-14 11803049 - Immunol Lett. 2002 Mar 1;80(3):169-79 12792848 - J Infect Dis. 2003 Jun 15;187 Suppl 2:S335-9 15288821 - Lancet Infect Dis. 2004 Aug;4(8):487-98 11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8 20957152 - PLoS Negl Trop Dis. 2010;4(10). pii: e837. doi: 10.1371/journal.pntd.0000837 11352664 - Virology. 2001 May 25;284(1):20-5 9893381 - Curr Top Microbiol Immunol. 1999;235:97-116 15681442 - J Virol. 2005 Feb;79(4):2413-9 16044395 - Semin Pediatr Infect Dis. 2005 Jul;16(3):219-24 21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9 17940955 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S237-46 8122375 - Virology. 1994 Mar;199(2):469-73 22670777 - Clin Exp Immunol. 2012 Jul;169(1):38-48 11602714 - J Virol. 2001 Nov;75(22):10730-7 23573288 - PLoS One. 2013;8(4):e60838 16113813 - Thromb Haemost. 2005 Aug;94(2):254-61 20817853 - Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16637-42 18842713 - J Virol. 2008 Dec;82(24):12191-204 11753071 - Curr Opin Hematol. 2002 Jan;9(1):2-10 22046196 - Future Virol. 2011 Sep;6(9):1091-1106 21084112 - Lancet. 2011 Mar 5;377(9768):849-62 19715556 - Biochem J. 2009 Nov 15;424(1):79-88 22876185 - PLoS Pathog. 2012;8(8):e1002847 23884105 - BMB Rep. 2013 Jul;46(7):376-81 20709295 - Cell Host Microbe. 2010 Aug 19;8(2):186-95 20956019 - Mol Immunol. 2010 Nov-Dec;48(1-3):82-8 15103332 - EMBO J. 2004 May 19;23(10):2175-84 16051836 - J Virol. 2005 Aug;79(16):10442-50 11012747 - Immunology. 2000 Sep;101(1):1-10 19275625 - Curr Mol Med. 2009 Mar;9(2):174-85 10603327 - Virology. 1999 Dec 5;265(1):164-71 11521070 - J Endotoxin Res. 2000;6(6):453-7 11062045 - Virology. 2000 Nov 10;277(1):147-55 17725815 - Genome Biol. 2007;8(8):R174 22363323 - Front Microbiol. 2012 Feb 06;3:34 10770275 - J Leukoc Biol. 2000 Apr;67(4):450-6 21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20 9576958 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7 7014628 - J Clin Microbiol. 1981 Apr;13(4):791-3 11777946 - J Immunol. 2002 Jan 15;168(2):554-61 15896665 - Int J Biochem Cell Biol. 2005 Aug;37(8):1560-6 8219816 - Arch Virol Suppl. 1993;7:81-100 9893377 - Curr Top Microbiol Immunol. 1999;235:35-47 8553543 - Virology. 1995 Dec 20;214(2):421-30 16368230 - Curr Opin Immunol. 2006 Feb;18(1):16-23 17947685 - J Immunol. 2007 Nov 1;179(9):6107-14 2610269 - Am J Physiol. 1989 Dec;257(6 Pt 1):L399-410 8622982 - Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3602-7 15143473 - J Infect Dis. 2004 Jun 1;189(11):2057-63 16603527 - J Gen Virol. 2006 May;87(Pt 5):1247-57 20516066 - J Biol Chem. 2010 Aug 6;285(32):24729-39 8237108 - Virus Res. 1993 Sep;29(3):215-40 18785522 - Zhonghua Jie He He Hu Xi Za Zhi. 2008 Mar;31(3):213-7 14694089 - J Virol. 2004 Jan;78(2):576-84 9893383 - Curr Top Microbiol Immunol. 1999;235:145-73 16977667 - Chembiochem. 2006 Oct;7(10):1605-11 14633609 - Am J Pathol. 2003 Dec;163(6):2371-82 21987758 - J Infect Dis. 2011 Nov;204 Suppl 3:S825-32 19587051 - J Virol. 2009 Sep;83(18):9596-601 21383675 - Cell Mol Immunol. 2011 May;8(3):265-75 11602743 - J Virol. 2001 Nov;75(22):11025-33 24738640 - N Engl J Med. 2014 Oct 9;371(15):1418-25 16395391 - Genes Immun. 2006 Mar;7(2):85-94 12473150 - Transfus Med. 2002 Dec;12(6):335-52 23345511 - J Virol. 2013 Apr;87(7):3801-14 19846529 - J Virol. 2010 Jan;84(1):27-33 |
| References_xml | – volume: 204 start-page: S825 year: 2011 ident: ref19 article-title: Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles publication-title: J Infect Dis doi: 10.1093/infdis/jir295 – volume: 196 start-page: S237 year: 2007 ident: ref49 article-title: Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR publication-title: J Infect Dis doi: 10.1086/520607 – volume: 277 start-page: 147 year: 2000 ident: ref37 article-title: Molecular characterization of guinea pig-adapted variants of Ebola virus publication-title: Virology doi: 10.1006/viro.2000.0572 – volume: 170 start-page: 2797 year: 2003 ident: ref29 article-title: Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses publication-title: J Immunol doi: 10.4049/jimmunol.170.6.2797 – volume: 78 start-page: 576 year: 2004 ident: ref77 article-title: Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus publication-title: J Virol doi: 10.1128/JVI.78.2.576-584.2004 – volume: 95 start-page: 5762 year: 1998 ident: ref12 article-title: Processing of the Ebola virus glycoprotein by the proprotein convertase furin publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.10.5762 – volume: 377 start-page: 849 year: 2011 ident: ref24 article-title: Ebola haemorrhagic fever publication-title: Lancet doi: 10.1016/S0140-6736(10)60667-8 – volume: 8 start-page: R174 year: 2007 ident: ref33 article-title: The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever publication-title: Genome Biol doi: 10.1186/gb-2007-8-8-r174 – volume: 169 start-page: 38 year: 2012 ident: ref39 article-title: Mannan-binding lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease associated with humoral pattern-recognition molecules: normal and acute-phase levels in serum and stoichiometry of lectin pathway components publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2012.04584.x – volume: 3 start-page: 34 year: 2012 ident: ref25 article-title: Filovirus tropism: cellular molecules for viral entry publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00034 – volume: 235 start-page: 145 year: 1999 ident: ref66 article-title: Animal pathology of filoviral infections publication-title: Curr Top Microbiol Immunol – volume: 29 start-page: 215 year: 1993 ident: ref9 article-title: Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus publication-title: Virus Res doi: 10.1016/0168-1702(93)90063-S – volume: 235 start-page: 97 year: 1999 ident: ref23 article-title: Pathologic features of filovirus infections in humans publication-title: Curr Top Microbiol Immunol – volume: 75 start-page: 10730 year: 2001 ident: ref76 article-title: Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus publication-title: J Virol doi: 10.1128/JVI.75.22.10730-10737.2001 – volume: 87 start-page: 7471 year: 2013 ident: ref30 article-title: The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains publication-title: J Virol doi: 10.1128/JVI.03316-12 – volume: 75 start-page: 11025 year: 2001 ident: ref65 article-title: Infection and activation of monocytes by Marburg and Ebola viruses publication-title: J Virol doi: 10.1128/JVI.75.22.11025-11033.2001 – volume: 204 start-page: S1011 year: 2011 ident: ref82 article-title: VP24 is a molecular determinant of Ebola virus virulence in guinea pigs publication-title: J Infect Dis doi: 10.1093/infdis/jir338 – volume: 454 start-page: 177 year: 2008 ident: ref18 article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor publication-title: Nature doi: 10.1038/nature07082 – volume: 8 start-page: e1002847 year: 2012 ident: ref73 article-title: The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002847 – volume: 76 start-page: 12463 year: 2002 ident: ref16 article-title: Covalent modifications of the ebola virus glycoprotein publication-title: J Virol doi: 10.1128/JVI.76.24.12463-12472.2002 – volume: 80 start-page: 169 year: 2002 ident: ref63 article-title: Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily publication-title: Immunol Lett doi: 10.1016/S0165-2478(01)00327-3 – volume: 412 start-page: 101 year: 2011 ident: ref44 article-title: The lectin pathway of complement activation contributes to protection from West Nile virus infection publication-title: Virology doi: 10.1016/j.virol.2011.01.003 – volume: 87 start-page: 3801 year: 2013 ident: ref27 article-title: Ebola virus exploits a monocyte differentiation program to promote its entry publication-title: J Virol doi: 10.1128/JVI.02695-12 – volume: 265 start-page: 164 year: 1999 ident: ref14 article-title: Delta-peptide is the carboxy-terminal cleavage fragment of the nonstructural small glycoprotein sGP of Ebola virus publication-title: Virology doi: 10.1006/viro.1999.0034 – ident: ref8 doi: 10.1007/978-3-7091-9300-6_8 – volume: 13 start-page: 791 year: 1981 ident: ref80 article-title: Plaque assay for Ebola virus publication-title: J Clin Microbiol doi: 10.1128/JCM.13.4.791-793.1981 – volume: 31 start-page: 213 year: 2008 ident: ref74 article-title: [Toll-like receptor 4 expression and function of respiratory syncytial virus-infected airway epithelial cells] publication-title: Zhonghua Jie He He Hu Xi Za Zhi – volume: 84 start-page: 27 year: 2010 ident: ref52 article-title: Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1 publication-title: J Virol doi: 10.1128/JVI.01462-09 – volume: 48 start-page: 82 year: 2010 ident: ref53 article-title: Differential regulation of TLR4 expression in human B cells and monocytes publication-title: Mol Immunol doi: 10.1016/j.molimm.2010.09.008 – volume: 9 start-page: 2 year: 2002 ident: ref64 article-title: Toll-like receptors: how they work and what they do publication-title: Curr Opin Hematol doi: 10.1097/00062752-200201000-00002 – volume: 250 start-page: 408 year: 1998 ident: ref10 article-title: The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer publication-title: Virology doi: 10.1006/viro.1998.9389 – volume: 12 start-page: 335 year: 2002 ident: ref40 article-title: Mannan-binding lectin and its role in innate immunity publication-title: Transfus Med doi: 10.1046/j.1365-3148.2002.00408.x – volume: 164 start-page: 5998 year: 2000 ident: ref54 article-title: Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.164.11.5998 – volume: 67 start-page: 450 year: 2000 ident: ref59 article-title: Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes publication-title: J Leukoc Biol doi: 10.1002/jlb.67.4.450 – volume: 18 start-page: 16 year: 2006 ident: ref41 article-title: The mannose-binding lectin: a prototypic pattern recognition molecule publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2005.11.014 – volume: 83 start-page: 9596 year: 2009 ident: ref20 article-title: Ebolavirus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins publication-title: J Virol doi: 10.1128/JVI.00784-09 – volume: 128 start-page: 163 year: 2002 ident: ref62 article-title: Inflammatory responses in Ebola virus-infected patients publication-title: Clin Exp Immunol doi: 10.1046/j.1365-2249.2002.01800.x – volume: 203 start-page: 175 year: 2011 ident: ref47 article-title: High-dose mannose-binding lectin therapy for Ebola virus infection publication-title: J Infect Dis doi: 10.1093/infdis/jiq025 – volume: 1790 start-page: 1705 year: 2009 ident: ref56 article-title: Mannose binding lectin and lung collectins interact with Toll-like receptor 4 and MD-2 by different mechanisms publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2009.10.006 – volume: 81 start-page: 2155 year: 2000 ident: ref36 article-title: Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses publication-title: J Gen Virol doi: 10.1099/0022-1317-81-9-2155 – volume: 82 start-page: 12191 year: 2008 ident: ref78 article-title: The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes publication-title: J Virol doi: 10.1128/JVI.01604-08 – volume: 101 start-page: 1 year: 2000 ident: ref61 article-title: Toll-like receptors: molecular mechanisms of the mammalian immune response publication-title: Immunology doi: 10.1046/j.1365-2567.2000.00093.x – volume: 214 start-page: 421 year: 1995 ident: ref22 article-title: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases publication-title: Virology doi: 10.1006/viro.1995.0052 – volume: 5 start-page: e1359 year: 2011 ident: ref31 article-title: Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001359 – volume: 7 start-page: 85 year: 2006 ident: ref51 article-title: Mannose-binding lectin and its genetic variants publication-title: Genes Immun doi: 10.1038/sj.gene.6364283 – volume: 37 start-page: 1560 year: 2005 ident: ref26 article-title: Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2005.02.018 – year: 2010 ident: ref71 article-title: Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis publication-title: PLoS Negl Trop Dis 4 – volume: 163 start-page: 2371 year: 2003 ident: ref68 article-title: Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)63592-4 – volume: 285 start-page: 24729 year: 2010 ident: ref42 article-title: A novel L-ficolin/mannose-binding lectin chimeric molecule with enhanced activity against Ebola virus publication-title: J Biol Chem doi: 10.1074/jbc.M110.106260 – volume: 107 start-page: 16637 year: 2010 ident: ref48 article-title: Cell adhesion-dependent membrane trafficking of a binding partner for the ebolavirus glycoprotein is a determinant of viral entry publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1008509107 – volume: 86 start-page: 2535 year: 2005 ident: ref46 article-title: Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization publication-title: J Gen Virol doi: 10.1099/vir.0.81199-0 – volume: 79 start-page: 2413 year: 2005 ident: ref32 article-title: Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages publication-title: J Virol doi: 10.1128/JVI.79.4.2413-2419.2005 – volume: 12 start-page: 312 year: 2014 ident: ref2 article-title: Ebola virus in West Africa publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3267 – volume: 4 start-page: 487 year: 2004 ident: ref5 article-title: Pathogenesis of filoviral haemorrhagic fevers publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(04)01103-X – volume: 85 start-page: 9060 year: 2011 ident: ref72 article-title: Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection publication-title: J Virol doi: 10.1128/JVI.00659-11 – volume: 87 start-page: 1247 year: 2006 ident: ref17 article-title: Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level publication-title: J Gen Virol doi: 10.1099/vir.0.81361-0 – volume: 8 start-page: 265 year: 2011 ident: ref57 article-title: Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells publication-title: Cell Mol Immunol doi: 10.1038/cmi.2011.1 – volume: 187 start-page: S335 year: 2003 ident: ref38 article-title: Role of the mannose-binding lectin in innate immunity publication-title: J Infect Dis doi: 10.1086/374746 – year: 2014 ident: ref1 article-title: Emergence of Zaire Ebola Virus Disease in Guinea - Preliminary Report publication-title: N Engl J Med – volume: 6 start-page: 1091 year: 2011 ident: ref6 article-title: Clinical aspects of Marburg hemorrhagic fever publication-title: Future Virol doi: 10.2217/fvl.11.79 – volume: 16 start-page: 219 year: 2005 ident: ref3 article-title: Outbreak of Marburg hemorrhagic fever in Angola: a review of the history of the disease and its biological aspects publication-title: Semin Pediatr Infect Dis doi: 10.1053/j.spid.2005.05.001 – volume: 424 start-page: 79 year: 2009 ident: ref34 article-title: Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10 publication-title: Biochem J doi: 10.1042/BJ20090549 – volume: 199 start-page: 469 year: 1994 ident: ref7 article-title: Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein publication-title: Virology doi: 10.1006/viro.1994.1147 – volume: 23 start-page: 2175 year: 2004 ident: ref21 article-title: Ectodomain shedding of the glycoprotein GP of Ebola virus publication-title: EMBO J doi: 10.1038/sj.emboj.7600219 – volume: 8 start-page: e60838 year: 2013 ident: ref43 article-title: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors publication-title: PLoS One doi: 10.1371/journal.pone.0060838 – volume: 46 start-page: 376 year: 2013 ident: ref58 article-title: Mouse mannose-binding lectin-A and ficolin-A inhibit lipopolysaccharide-mediated pro-inflammatory responses on mast cells publication-title: BMB Rep doi: 10.5483/BMBRep.2013.46.7.055 – volume: 179 start-page: 6107 year: 2007 ident: ref79 article-title: TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock publication-title: J Immunol doi: 10.4049/jimmunol.179.9.6107 – volume: 79 start-page: 10442 year: 2005 ident: ref67 article-title: Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function publication-title: J Virol doi: 10.1128/JVI.79.16.10442-10450.2005 – volume: 235 start-page: 35 year: 1999 ident: ref15 article-title: Processing of the Ebola virus glycoprotein publication-title: Curr Top Microbiol Immunol – volume: 168 start-page: 554 year: 2002 ident: ref55 article-title: Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines publication-title: J Immunol doi: 10.4049/jimmunol.168.2.554 – volume: 291 start-page: 1965 year: 2001 ident: ref81 article-title: Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity publication-title: Science doi: 10.1126/science.1057269 – volume: 93 start-page: 3602 year: 1996 ident: ref11 article-title: The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.8.3602 – volume: 82 start-page: 134 year: 1999 ident: ref50 article-title: Mannose-binding lectin (MBL) deficiency. Variant alleles in a midwestern population of the United States publication-title: Ann Allergy Asthma Immunol doi: 10.1016/S1081-1206(10)62586-0 – volume: 8 start-page: 186 year: 2010 ident: ref45 article-title: Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.07.007 – volume: 284 start-page: 20 year: 2001 ident: ref28 article-title: Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro publication-title: Virology doi: 10.1006/viro.2001.0836 – volume: 257 start-page: L399 year: 1989 ident: ref70 article-title: Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability publication-title: Am J Physiol – volume: 9 start-page: 174 year: 2009 ident: ref4 article-title: Potential factors induced by filoviruses that lead to immune supression publication-title: Curr Mol Med doi: 10.2174/156652409787581628 – volume: 7 start-page: 1605 year: 2006 ident: ref13 article-title: Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus publication-title: Chembiochem doi: 10.1002/cbic.200600223 – volume: 6 start-page: 453 year: 2000 ident: ref60 article-title: Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors publication-title: J Endotoxin Res doi: 10.1179/096805100101532414 – volume: 189 start-page: 2057 year: 2004 ident: ref75 article-title: Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease publication-title: J Infect Dis doi: 10.1086/420830 – volume: 6 start-page: 886 year: 2000 ident: ref35 article-title: Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury publication-title: Nat Med doi: 10.1038/78645 – volume: 94 start-page: 254 year: 2005 ident: ref69 article-title: The contribution of the endothelium to the development of coagulation disorders that characterize Ebola hemorrhagic fever in primates publication-title: Thromb Haemost doi: 10.1160/TH05-03-0153 – reference: 16113813 - Thromb Haemost. 2005 Aug;94(2):254-61 – reference: 8622982 - Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3602-7 – reference: 12792848 - J Infect Dis. 2003 Jun 15;187 Suppl 2:S335-9 – reference: 18842713 - J Virol. 2008 Dec;82(24):12191-204 – reference: 11753071 - Curr Opin Hematol. 2002 Jan;9(1):2-10 – reference: 12438572 - J Virol. 2002 Dec;76(24):12463-72 – reference: 15143473 - J Infect Dis. 2004 Jun 1;189(11):2057-63 – reference: 7014628 - J Clin Microbiol. 1981 Apr;13(4):791-3 – reference: 16395391 - Genes Immun. 2006 Mar;7(2):85-94 – reference: 21734050 - J Virol. 2011 Sep;85(17):9060-8 – reference: 10932225 - Nat Med. 2000 Aug;6(8):886-9 – reference: 11239157 - Science. 2001 Mar 9;291(5510):1965-9 – reference: 21084112 - Lancet. 2011 Mar 5;377(9768):849-62 – reference: 15681442 - J Virol. 2005 Feb;79(4):2413-9 – reference: 19587051 - J Virol. 2009 Sep;83(18):9596-601 – reference: 19715556 - Biochem J. 2009 Nov 15;424(1):79-88 – reference: 10950971 - J Gen Virol. 2000 Sep;81(Pt 9):2155-9 – reference: 18785522 - Zhonghua Jie He He Hu Xi Za Zhi. 2008 Mar;31(3):213-7 – reference: 21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20 – reference: 10770275 - J Leukoc Biol. 2000 Apr;67(4):450-6 – reference: 10071515 - Ann Allergy Asthma Immunol. 1999 Feb;82(2):134-8, 141; quiz 142-3 – reference: 11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8 – reference: 16977667 - Chembiochem. 2006 Oct;7(10):1605-11 – reference: 16044395 - Semin Pediatr Infect Dis. 2005 Jul;16(3):219-24 – reference: 22028943 - PLoS Negl Trop Dis. 2011 Oct;5(10):e1359 – reference: 9576958 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7 – reference: 17940955 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S237-46 – reference: 11062045 - Virology. 2000 Nov 10;277(1):147-55 – reference: 15103332 - EMBO J. 2004 May 19;23(10):2175-84 – reference: 24738640 - N Engl J Med. 2014 Oct 9;371(15):1418-25 – reference: 20817853 - Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16637-42 – reference: 23616668 - J Virol. 2013 Jul;87(13):7471-85 – reference: 9893377 - Curr Top Microbiol Immunol. 1999;235:35-47 – reference: 23884105 - BMB Rep. 2013 Jul;46(7):376-81 – reference: 14694089 - J Virol. 2004 Jan;78(2):576-84 – reference: 15896665 - Int J Biochem Cell Biol. 2005 Aug;37(8):1560-6 – reference: 16603527 - J Gen Virol. 2006 May;87(Pt 5):1247-57 – reference: 11602714 - J Virol. 2001 Nov;75(22):10730-7 – reference: 17947685 - J Immunol. 2007 Nov 1;179(9):6107-14 – reference: 10603327 - Virology. 1999 Dec 5;265(1):164-71 – reference: 11012747 - Immunology. 2000 Sep;101(1):1-10 – reference: 11352664 - Virology. 2001 May 25;284(1):20-5 – reference: 21987758 - J Infect Dis. 2011 Nov;204 Suppl 3:S825-32 – reference: 8122375 - Virology. 1994 Mar;199(2):469-73 – reference: 11521070 - J Endotoxin Res. 2000;6(6):453-7 – reference: 16051836 - J Virol. 2005 Aug;79(16):10442-50 – reference: 16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42 – reference: 16368230 - Curr Opin Immunol. 2006 Feb;18(1):16-23 – reference: 8219816 - Arch Virol Suppl. 1993;7:81-100 – reference: 9792851 - Virology. 1998 Oct 25;250(2):408-14 – reference: 22046196 - Future Virol. 2011 Sep;6(9):1091-1106 – reference: 22670777 - Clin Exp Immunol. 2012 Jul;169(1):38-48 – reference: 20957152 - PLoS Negl Trop Dis. 2010;4(10). pii: e837. doi: 10.1371/journal.pntd.0000837 – reference: 18615077 - Nature. 2008 Jul 10;454(7201):177-82 – reference: 20516066 - J Biol Chem. 2010 Aug 6;285(32):24729-39 – reference: 22876185 - PLoS Pathog. 2012;8(8):e1002847 – reference: 12626527 - J Immunol. 2003 Mar 15;170(6):2797-801 – reference: 23345511 - J Virol. 2013 Apr;87(7):3801-14 – reference: 21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9 – reference: 17725815 - Genome Biol. 2007;8(8):R174 – reference: 22363323 - Front Microbiol. 2012 Feb 06;3:34 – reference: 20709295 - Cell Host Microbe. 2010 Aug 19;8(2):186-95 – reference: 21269656 - Virology. 2011 Mar 30;412(1):101-9 – reference: 19275625 - Curr Mol Med. 2009 Mar;9(2):174-85 – reference: 14633609 - Am J Pathol. 2003 Dec;163(6):2371-82 – reference: 21383675 - Cell Mol Immunol. 2011 May;8(3):265-75 – reference: 20956019 - Mol Immunol. 2010 Nov-Dec;48(1-3):82-8 – reference: 12473150 - Transfus Med. 2002 Dec;12(6):335-52 – reference: 23573288 - PLoS One. 2013;8(4):e60838 – reference: 8553543 - Virology. 1995 Dec 20;214(2):421-30 – reference: 19846529 - J Virol. 2010 Jan;84(1):27-33 – reference: 15288821 - Lancet Infect Dis. 2004 Aug;4(8):487-98 – reference: 10820283 - J Immunol. 2000 Jun 1;164(11):5998-6004 – reference: 9893381 - Curr Top Microbiol Immunol. 1999;235:97-116 – reference: 19840833 - Biochim Biophys Acta. 2009 Dec;1790(12):1705-10 – reference: 11777946 - J Immunol. 2002 Jan 15;168(2):554-61 – reference: 9893383 - Curr Top Microbiol Immunol. 1999;235:145-73 – reference: 11602743 - J Virol. 2001 Nov;75(22):11025-33 – reference: 11803049 - Immunol Lett. 2002 Mar 1;80(3):169-79 – reference: 8237108 - Virus Res. 1993 Sep;29(3):215-40 – reference: 2610269 - Am J Physiol. 1989 Dec;257(6 Pt 1):L399-410 |
| SSID | ssj0041316 |
| Score | 2.506866 |
| Snippet | During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular... During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular... |
| SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1004509 |
| SubjectTerms | Animals Antigens, CD - immunology Bacteriology Biology and Life Sciences Cytokines Cytokines - immunology Dendritic Cells - immunology Dendritic Cells - pathology Dendritic Cells - virology Ebola virus Ebolavirus - immunology Experiments Flow cytometry Guinea Pigs Health aspects Hemorrhagic Fever, Ebola - immunology Host-virus relationships Human Umbilical Vein Endothelial Cells - immunology Human Umbilical Vein Endothelial Cells - pathology Human Umbilical Vein Endothelial Cells - virology Humans Immune response Immune system Immunological research Immunology Infections Life Sciences Lymphocytes Macrophages - immunology Macrophages - pathology Macrophages - virology Medicine and Health Sciences Membrane Glycoproteins - immunology Microbiology and Parasitology Mortality Permeability Statistical analysis Toll-Like Receptor 4 - immunology Viral infections Viral Proteins - immunology Virology Virus research |
| SummonAdditionalLinks | – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELeggMTL-GaBgQxC4imQ2I7TPBa0sklVVbEP7c3y51ppSqumnbT_fndJWpaJCvGanJP4fHf5Wb77HSFfuPYAspMQZ0lwsZCexYWRIfbMS-cct7KhzB_l43H_4qKY_Nko3jvB53n6vdXpt8VCI90zQBCs13vEuJSYwjWcjDaRF-JxKtvyuF0jO7-fmqV_G4sfTjEVsre4mld_g5v3sybv_IaGz_53As_JXgs46aCxkBfkgS9fkidNC8qbV-TsZOod_TWh80APDexz6flsua7oKezaLwEa0mMsIPF0YDd90KguHYWwgtnsMPS8TWWlE4jxvmH9vnlNzoaHpz-P4rbVQmxzzlcx00FYlmsWkswlicFeZMEx1y-M7XMDsCxgBapJA0iE0GdcM6e5zEMAzJEa_ob0ynnp9wn1IjVeCAFAA9CJ5iZPC51kNiQWlsfIiPDNCijb8pBjO4wrVR-u5bAfaTSjUGGqVVhE4u2oRcPD8Q_5H7i4W1lk0a4vwMqo1ilVCGCSiQFEGLTIrDQ2EyERoRA2F8y4iHxG01DIk1FiIs6lXleVOj4ZqwGWNCP3WbZT6HdH6GsrFOYwWavb4gdQGfJvdSQPOpLg7bb7tilO9c60jgYjhdcArKfgAdl1GpF9tOKNYiqVyn7GCkDnoJdPG8tW-GhMsSv9fI0yLId4z3IWkbeNpW9fwzJRE81FJO_4QOc7unfK2bQmK0eCyaQQ73Z_0nvyFFCoaAo8D0hvtVz7D-SxvV7NquXH2sNvAZ0AT2w priority: 102 providerName: Public Library of Science |
| Title | Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25412102 https://www.proquest.com/docview/1627073272 https://hal.science/hal-01911315 https://pubmed.ncbi.nlm.nih.gov/PMC4239094 https://doaj.org/article/ffe2e0b441fa45c6bc54f04f94c742bd http://dx.doi.org/10.1371/journal.ppat.1004509 |
| Volume | 10 |
| WOSCitedRecordID | wos000345515800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: M7P dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: 7X7 dateStart: 20050901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: BENPR dateStart: 20050901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: PIMPY dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZrtsFexn623rrgjcGevNqSbNmP6UjWQhZMu0L2ZCRZagLFCXES6H-_O8sJ8djoy178YJ_s6O58-hTffUfIZyYNgOzQBnFoy4AnhgaZSmxgqEnKsmQ6cZT5YzGZpNNplh-0-sKcMEcP7BR3Zi0MCxWs2lbyWCdKx9yG3GZcw65OlRh9AfXsNlMuBkNkbpqeYlOcQLAkaYvmmIjOWht9XS4l0kcDpMFkxINFqeHu30fooxkmSPaWd4v6byD0z1zKg8Vp9II8b1GlP3CzeUkemeoVeer6TN6_JjfXM1P633N_Yf2hgs2sv52vNrW_hq35LeA_f45VIsbHIgf3F60vq9KfVwgpaxi6y1f1lxDIjaP2vn9DbkbDn98ugrafQqAFY-uASss1FZLaMC7DUGHDMVvSMs2UTpkC7GWxzFRFFiSsTSmTtJQsEdYCsIgUe0t61aIyJ8Q3PFKGcw5oAiCIZEpEmQxjbUMNmleJR9hOoYVuycax58Vd0XxBE7DpcJop0AxFawaPBPtRS0e28YD8OdpqL4tU2c0JcKCidaDiIQfyyCe0dIFkGBVm29zKTV0Xl9eTYoB1y0hwFv9T6Koj9KUVsguYrJZthQOoDEm2OpKnHUl4pXX3aTOc6sG0LgbjAs8BIo_AueNt5JETdMqdYuoiStKYZgDBQS8fd45a4K0xj64yiw3KUAFBnQrqkWPnuPvH0Jg3bHIeER2X7vyO7pVqPmsYyZFFMsz4u_9hj_fkGYBS7uo9T0lvvdqYD-SJ3q7n9apPjsRUNMe0Tx6fDyf5Vb959eE4ysd9zN3N4Up--SP_9RuFeV4B |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggOCFn4MFBgSExFNG4jhx8ljQSitKVbFu2ptlO_ZaaUqrpp20_567xKkWRMULb1V6Tnx39vmzfPeZkE-xNACyQxskoS0Clhoa5Cq1gaEmLYoi1mlDmT_mk0l2cZFPHaUQ1sI4C8Ie8WpZ1Sf5-GNZmi_Oks3B6XEU86gVPl6tJDJBAzrBUr57PI8yzO4aTMdtUIZQHaWucm5fy87KVBP478L03TlmSfawK39Don8mVN5aoQZP_qNuT8ljB1P9ftPiGbljyufkQXNx5c0LcnY6N4X_feovrX-iYHfsny_W28qfwV7_EgClP8KyE-P3dXt7mi_LwodghDnw0PTcJcD6U1gZTMMVfnNAzgYns2_DwF3QEGgex5uASss05ZLaMCnCUOENZragRZYrncUKwJzFulUVWZCwNqOxpIWMU24tIJVIxS9JrwT9D4lvWKQMYwzgCWAaGSse5TJMtA01eE6lHolb5wjt2MvxEo0rUR_JcdjFNJYRaDDhDOaRYNdq1bB3_EP-K_p9J4vc2_UDcJZwThLWwkAOFeBIK1miU6UTZkNmc6Y5o6rwyEccNQLZNUpM37mU26oSo9OJ6GMhNDKmJXuFfnWEPjshuwRltXQlE2AyZO3qSB51JCFG6O7X5qjqLbWG_bHAZwDxI5gcyXXkkUMcj61hKhGlWUJzwPRglw_toBf4akzMK81yizKUwypBOfXIq2YS7D5DE1bT03mEd6ZHpx_df8rFvKY4R1rKMGev93fpPXk4nP0ci_Fo8uMNeQQ4ljUlokekt1lvzVtyX19vFtX6XR0IfgMgY2ha |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28iFe-IYFBhiE4Clb4jhx8lhgZRVVVbEP7QVZtmO3laa0atpJ---5y0e1ICaeeKvSs2Of7fPv4rufCfkYKQsgO3B-HLjc54llfqYT51tmkzzPI5PUlPkjMR6nFxfZZIf8anNhGg2Cj3i5KKuTfPyxKOxho8lD5CuqT08PwkiEbYmD5VIhHTRAlCD7VDEO4ZexNSYg7ZI7IgtT9M0Gk1FrqMF8h0mTTXdbRZ3dqiL135ru3RlGTvaweX9Dp38GWd7YtQaP_nN_H5OHDZyl_bqWJ2THFk_JvfqCy-tn5OxkZnP6fUIXjh5p8KLp-Xy1Kenpaj6dAvCkQ0xPsbRv2lvWqCpyCkYLY-Wh6HkTKEsnsIPYmlP8-jk5Gxydfj32m4scfCOiaO0z5bhhQjEXxHkQaLzpzOUsTzNt0kgD6HOY36pDBxLOpSxSLFdRIpwDRBPq6AXpFaCTPUItD7XlnAOMAeyjIi3CTAWxcYGB0dSJR6J2wKRpWM7xso1LWR3dCfB2as1I1J9s9OcRf1tqWbN8_EP-C86FrSxydFcPYABlM3DSOZjwgQa86RSPTaJNzF3AXcaN4EznHvmAM0kiC0eBYT5TtSlLOTwZyz4mTCOzWnyr0M-O0OdGyC2gs0Y1qRWgMpw9Hcn9jiTYEtN92wy7eqNbx_2RxGfgCoSwYOKr0CN7OEdbxZQyTNKYZYD9QS_v24UgsWoM4CvsYoMyTMBuwgTzyMt6YWxfw2Je0dh5RHSWTKcd3X-K-ayiQkf6yiDjr25v0jtyf_JtIEfD8Y_X5AHAXV5nku6T3nq1sW_IXXO1npert5Vt-A25bneP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shed+GP+of+Ebola+virus+triggers+immune+activation+and+increased+vascular+permeability&rft.jtitle=PLoS+pathogens&rft.au=Escudero-Perez%2C+Beatriz&rft.au=Volchkova%2C+Valentina+A&rft.au=Dolnik%2C+Olga&rft.au=Lawrence%2C+Philip&rft.date=2014-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=10&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.ppat.1004509&rft.externalDBID=ISR&rft.externalDocID=A393518095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |