Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages
Background With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data b...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 13; číslo 1; s. 335 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
24.12.2012
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Background
With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck.
Results
We present the newly released
inSilicoMerging
R/Bioconductor package which, together with the earlier released
inSilicoDb
R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets. Inside the
inSilicoMerging
package a set of five visual and six quantitative validation measures are available as well.
Conclusions
By providing (i) access to uniformly curated and preprocessed data, (ii) a collection of techniques to remove the batch effects between data sets from different sources, and (iii) several validation tools enabling the inspection of the integration process, these packages enable researchers to fully explore the potential of combining gene expression data for downstream analysis. The power of using both packages is demonstrated by programmatically retrieving and integrating gene expression studies from the InSilico DB repository [
https://insilicodb.org/app/
]. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 1471-2105 1471-2105 |
| DOI: | 10.1186/1471-2105-13-335 |