A Unified Advanced Framework for Sparse Data Modeling in Quantum-Enhanced Artificial Intelligence
Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability, and computational efficiency. This study proposes a unified advanced framework that integrates tensor algebra, number theory, topology, and...
Gespeichert in:
| Veröffentlicht in: | International Journal of Academic and Industrial Research Innovations(IJAIRI) Jg. 5; H. 7; S. 169 - 186 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
23.07.2025
|
| ISSN: | 3049-2343, 3049-2343 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability, and computational efficiency. This study proposes a unified advanced framework that integrates tensor algebra, number theory, topology, and analytic geometry to address the limitations of traditional machine learning models when handling sparse data. The methodology leverages high-order tensor representations for compact and expressive encoding of multi-dimensional information, modular arithmetic for robust and secure feature embedding, and persistent homology to capture topological invariants within data distributions. Additionally, geometric learning principles based on Riemannian manifolds are incorporated to guide optimization processes through curvature-aware gradient flows. The proposed framework is further enhanced by quantum computational principles, where tensor networks and entangled state representations are simulated for efficient processing. Experimental evaluation on classical and quantum datasets demonstrates superior performance in terms of accuracy, F1 score, and convergence rate when compared to baseline and modular AI architectures. The results validate that the integration of mathematical rigor and quantum principles can offer scalable, interpretable, and resilient solutions for sparse data modeling. This framework not only contributes to the theoretical foundation of AI and quantum learning but also provides practical implications for applications in cryptography, biomedical analysis, and high-dimensional signal processing. Keywords Sparse data modeling, tensor algebra, quantum machine learning, topological data analysis, modular arithmetic, Riemannian geometry, tensor networks, persistent homology, quantum-enhanced AI, high-dimensional data |
|---|---|
| AbstractList | Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability, and computational efficiency. This study proposes a unified advanced framework that integrates tensor algebra, number theory, topology, and analytic geometry to address the limitations of traditional machine learning models when handling sparse data. The methodology leverages high-order tensor representations for compact and expressive encoding of multi-dimensional information, modular arithmetic for robust and secure feature embedding, and persistent homology to capture topological invariants within data distributions. Additionally, geometric learning principles based on Riemannian manifolds are incorporated to guide optimization processes through curvature-aware gradient flows. The proposed framework is further enhanced by quantum computational principles, where tensor networks and entangled state representations are simulated for efficient processing. Experimental evaluation on classical and quantum datasets demonstrates superior performance in terms of accuracy, F1 score, and convergence rate when compared to baseline and modular AI architectures. The results validate that the integration of mathematical rigor and quantum principles can offer scalable, interpretable, and resilient solutions for sparse data modeling. This framework not only contributes to the theoretical foundation of AI and quantum learning but also provides practical implications for applications in cryptography, biomedical analysis, and high-dimensional signal processing. Keywords Sparse data modeling, tensor algebra, quantum machine learning, topological data analysis, modular arithmetic, Riemannian geometry, tensor networks, persistent homology, quantum-enhanced AI, high-dimensional data |
| Author | Pasupuleti, Murali Krishna |
| Author_xml | – sequence: 1 givenname: Murali Krishna orcidid: 0009-0007-1023-7035 surname: Pasupuleti fullname: Pasupuleti, Murali Krishna |
| BookMark | eNpNkE1Lw0AYhBepYK09-Qf2LrH7mU2Ooba1UBGxnsMm-25dTTZlN_Xj3xtbD55mYJhheC7RyHceELqm5DZlnNKZh_g1C_s3ys7QmBORJ4wLPvrnL9A0RleRlFAiuSRjpAv84p11YHBhPrSvB7MMuoXPLrxj2wX8vNchAr7TvcYPnYHG-R12Hj8dtO8PbbLwr6daEfphqHa6wWvfQ9O4HQzBFTq3uokw_dMJ2i4X2_l9snlcrefFJqkVZ8M7woQV1BillQBjK1FZWXFBCecgU2oyWVe5ZVbYWmSgUqpIpqSlKucMGJ-gm9NsHboYA9hyH1yrw3dJSXnkU_7yKY98-A8lflwQ |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.62311/nesx/rpj12 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 3049-2343 |
| EndPage | 186 |
| ExternalDocumentID | 10_62311_nesx_rpj12 |
| GroupedDBID | AAYXX CITATION M~E |
| ID | FETCH-LOGICAL-c732-23024f41dd7a74edfb4bf5b341033e561d85cb9f2f4fc48e76170875f17932e23 |
| ISSN | 3049-2343 |
| IngestDate | Sat Nov 29 07:42:42 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 7 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c732-23024f41dd7a74edfb4bf5b341033e561d85cb9f2f4fc48e76170875f17932e23 |
| ORCID | 0009-0007-1023-7035 |
| OpenAccessLink | https://www.nationaleducationservices.org/file-download/1449849/Download Full-Text Research Paper PDF Pp 169-186.pdf |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_62311_nesx_rpj12 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-23 |
| PublicationDateYYYYMMDD | 2025-07-23 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | International Journal of Academic and Industrial Research Innovations(IJAIRI) |
| PublicationYear | 2025 |
| SSID | ssib060105350 |
| Score | 1.915826 |
| Snippet | Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability,... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 169 |
| Title | A Unified Advanced Framework for Sparse Data Modeling in Quantum-Enhanced Artificial Intelligence |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 3049-2343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib060105350 issn: 3049-2343 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELbKY2BBIEC85YE10OZRJ2OEWgECxKNCbJVd26IIQtQ2iIk_wp_lzo7TUBhgYImiUy5SfJ_uPjv3IOSAtVUsIhl5jCvthVjnI5qCe5JpXyWcK2VaCt2ds8vL-P4-uWo0PlwtzOsTy7L47S3J_9XUIANjY-nsH8xdvRQEcA9GhyuYHa6_MnyKPFIjs0zd__2uy8AySYW3OWxmFdh7ws0otKeyrOW6gFUunr1O9mDV0pFJJLLtOKadO-t89vuBomO3Lu_e5htX80Fcph_I3DjWMZLcs_T05rR2LHHFx0VeYGdwc2SLzUGGxiM92HHf7qTCj_AI1BYTW4eGf_RAYNsyHaofZKVHjmrAYzXv2rJTXcpA3bI9tGdjAPA5EwQgUkD47o7yxzJP-0uv7ZkYWGUmwp7IvKCP6n2jPEcWfBYl6PUv3jvOWeFGNgrMBODqG2z9p9E_Qv0jo19jPDXq0lshy6VVaGqxskoaKlsjPKUlTqjDCa1wQgEn1OKEIk6owwkdZnQWJ3SKE1rHyTrpdTu94xOvnLfhDVjgwxcAX9NhS0rGWaikFqHQkQCa0wwCBTxbxtFAJNrXoR6EsWLYyx-2uxp9vK_8YIPMZy-Z2iSUh20h2gp7YAP70TppxhIUQNwOpEzYFjlwS9LPbVeV_g8rv_27x3bI0hRuu2R-MirUHlkcvE6G49G-sdonkA10-g |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Advanced+Framework+for+Sparse+Data+Modeling+in+Quantum-Enhanced+Artificial+Intelligence&rft.jtitle=International+Journal+of+Academic+and+Industrial+Research+Innovations%28IJAIRI%29&rft.au=Pasupuleti%2C+Murali+Krishna&rft.date=2025-07-23&rft.issn=3049-2343&rft.eissn=3049-2343&rft.volume=5&rft.issue=7&rft.spage=169&rft.epage=186&rft_id=info:doi/10.62311%2Fnesx%2Frpj12&rft.externalDBID=n%2Fa&rft.externalDocID=10_62311_nesx_rpj12 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3049-2343&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3049-2343&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3049-2343&client=summon |