A Unified Advanced Framework for Sparse Data Modeling in Quantum-Enhanced Artificial Intelligence

Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability, and computational efficiency. This study proposes a unified advanced framework that integrates tensor algebra, number theory, topology, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Academic and Industrial Research Innovations(IJAIRI) Jg. 5; H. 7; S. 169 - 186
1. Verfasser: Pasupuleti, Murali Krishna
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 23.07.2025
ISSN:3049-2343, 3049-2343
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability, and computational efficiency. This study proposes a unified advanced framework that integrates tensor algebra, number theory, topology, and analytic geometry to address the limitations of traditional machine learning models when handling sparse data. The methodology leverages high-order tensor representations for compact and expressive encoding of multi-dimensional information, modular arithmetic for robust and secure feature embedding, and persistent homology to capture topological invariants within data distributions. Additionally, geometric learning principles based on Riemannian manifolds are incorporated to guide optimization processes through curvature-aware gradient flows. The proposed framework is further enhanced by quantum computational principles, where tensor networks and entangled state representations are simulated for efficient processing. Experimental evaluation on classical and quantum datasets demonstrates superior performance in terms of accuracy, F1 score, and convergence rate when compared to baseline and modular AI architectures. The results validate that the integration of mathematical rigor and quantum principles can offer scalable, interpretable, and resilient solutions for sparse data modeling. This framework not only contributes to the theoretical foundation of AI and quantum learning but also provides practical implications for applications in cryptography, biomedical analysis, and high-dimensional signal processing. Keywords Sparse data modeling, tensor algebra, quantum machine learning, topological data analysis, modular arithmetic, Riemannian geometry, tensor networks, persistent homology, quantum-enhanced AI, high-dimensional data
AbstractList Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability, and computational efficiency. This study proposes a unified advanced framework that integrates tensor algebra, number theory, topology, and analytic geometry to address the limitations of traditional machine learning models when handling sparse data. The methodology leverages high-order tensor representations for compact and expressive encoding of multi-dimensional information, modular arithmetic for robust and secure feature embedding, and persistent homology to capture topological invariants within data distributions. Additionally, geometric learning principles based on Riemannian manifolds are incorporated to guide optimization processes through curvature-aware gradient flows. The proposed framework is further enhanced by quantum computational principles, where tensor networks and entangled state representations are simulated for efficient processing. Experimental evaluation on classical and quantum datasets demonstrates superior performance in terms of accuracy, F1 score, and convergence rate when compared to baseline and modular AI architectures. The results validate that the integration of mathematical rigor and quantum principles can offer scalable, interpretable, and resilient solutions for sparse data modeling. This framework not only contributes to the theoretical foundation of AI and quantum learning but also provides practical implications for applications in cryptography, biomedical analysis, and high-dimensional signal processing. Keywords Sparse data modeling, tensor algebra, quantum machine learning, topological data analysis, modular arithmetic, Riemannian geometry, tensor networks, persistent homology, quantum-enhanced AI, high-dimensional data
Author Pasupuleti, Murali Krishna
Author_xml – sequence: 1
  givenname: Murali Krishna
  orcidid: 0009-0007-1023-7035
  surname: Pasupuleti
  fullname: Pasupuleti, Murali Krishna
BookMark eNpNkE1Lw0AYhBepYK09-Qf2LrH7mU2Ooba1UBGxnsMm-25dTTZlN_Xj3xtbD55mYJhheC7RyHceELqm5DZlnNKZh_g1C_s3ys7QmBORJ4wLPvrnL9A0RleRlFAiuSRjpAv84p11YHBhPrSvB7MMuoXPLrxj2wX8vNchAr7TvcYPnYHG-R12Hj8dtO8PbbLwr6daEfphqHa6wWvfQ9O4HQzBFTq3uokw_dMJ2i4X2_l9snlcrefFJqkVZ8M7woQV1BillQBjK1FZWXFBCecgU2oyWVe5ZVbYWmSgUqpIpqSlKucMGJ-gm9NsHboYA9hyH1yrw3dJSXnkU_7yKY98-A8lflwQ
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.62311/nesx/rpj12
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 3049-2343
EndPage 186
ExternalDocumentID 10_62311_nesx_rpj12
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c732-23024f41dd7a74edfb4bf5b341033e561d85cb9f2f4fc48e76170875f17932e23
ISSN 3049-2343
IngestDate Sat Nov 29 07:42:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c732-23024f41dd7a74edfb4bf5b341033e561d85cb9f2f4fc48e76170875f17932e23
ORCID 0009-0007-1023-7035
OpenAccessLink https://www.nationaleducationservices.org/file-download/1449849/Download Full-Text Research Paper PDF Pp 169-186.pdf
PageCount 18
ParticipantIDs crossref_primary_10_62311_nesx_rpj12
PublicationCentury 2000
PublicationDate 2025-07-23
PublicationDateYYYYMMDD 2025-07-23
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-23
  day: 23
PublicationDecade 2020
PublicationTitle International Journal of Academic and Industrial Research Innovations(IJAIRI)
PublicationYear 2025
SSID ssib060105350
Score 1.915826
Snippet Sparse and high-dimensional data present persistent challenges in artificial intelligence (AI), particularly in maintaining generalizability, interpretability,...
SourceID crossref
SourceType Index Database
StartPage 169
Title A Unified Advanced Framework for Sparse Data Modeling in Quantum-Enhanced Artificial Intelligence
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 3049-2343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib060105350
  issn: 3049-2343
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELbKY2BBIEC85YE10OZRJ2OEWgECxKNCbJVd26IIQtQ2iIk_wp_lzo7TUBhgYImiUy5SfJ_uPjv3IOSAtVUsIhl5jCvthVjnI5qCe5JpXyWcK2VaCt2ds8vL-P4-uWo0PlwtzOsTy7L47S3J_9XUIANjY-nsH8xdvRQEcA9GhyuYHa6_MnyKPFIjs0zd__2uy8AySYW3OWxmFdh7ws0otKeyrOW6gFUunr1O9mDV0pFJJLLtOKadO-t89vuBomO3Lu_e5htX80Fcph_I3DjWMZLcs_T05rR2LHHFx0VeYGdwc2SLzUGGxiM92HHf7qTCj_AI1BYTW4eGf_RAYNsyHaofZKVHjmrAYzXv2rJTXcpA3bI9tGdjAPA5EwQgUkD47o7yxzJP-0uv7ZkYWGUmwp7IvKCP6n2jPEcWfBYl6PUv3jvOWeFGNgrMBODqG2z9p9E_Qv0jo19jPDXq0lshy6VVaGqxskoaKlsjPKUlTqjDCa1wQgEn1OKEIk6owwkdZnQWJ3SKE1rHyTrpdTu94xOvnLfhDVjgwxcAX9NhS0rGWaikFqHQkQCa0wwCBTxbxtFAJNrXoR6EsWLYyx-2uxp9vK_8YIPMZy-Z2iSUh20h2gp7YAP70TppxhIUQNwOpEzYFjlwS9LPbVeV_g8rv_27x3bI0hRuu2R-MirUHlkcvE6G49G-sdonkA10-g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Advanced+Framework+for+Sparse+Data+Modeling+in+Quantum-Enhanced+Artificial+Intelligence&rft.jtitle=International+Journal+of+Academic+and+Industrial+Research+Innovations%28IJAIRI%29&rft.au=Pasupuleti%2C+Murali+Krishna&rft.date=2025-07-23&rft.issn=3049-2343&rft.eissn=3049-2343&rft.volume=5&rft.issue=7&rft.spage=169&rft.epage=186&rft_id=info:doi/10.62311%2Fnesx%2Frpj12&rft.externalDBID=n%2Fa&rft.externalDocID=10_62311_nesx_rpj12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3049-2343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3049-2343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3049-2343&client=summon