Computational mechanisms underlying cortical responses to the affordance properties of visual scenes

Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are un...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 14; číslo 4; s. e1006111
Hlavní autoři: Bonner, Michael F., Epstein, Russell A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 23.04.2018
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms.
AbstractList Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms.
Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms.Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms.
Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms. How does visual cortex compute behaviorally relevant properties of the local environment from sensory inputs? For decades, computational models have been able to explain only the earliest stages of biological vision, but recent advances in deep neural networks have yielded a breakthrough in the modeling of high-level visual cortex. However, these models are not explicitly designed for testing neurobiological theories, and, like the brain itself, their internal operations remain poorly understood. We examined a deep neural network for insights into the cortical representation of navigational affordances in visual scenes. In doing so, we developed a set of high-throughput techniques and statistical tools that are broadly useful for relating the internal operations of neural networks with the information processes of the brain. Our findings demonstrate that a deep neural network with purely feedforward computations can account for the processing of navigational layout in high-level visual cortex. We next performed a series of experiments and visualization analyses on this neural network. These analyses characterized a set of stimulus input features that may be critical for computing navigationally related cortical representations, and they identified a set of high-level, complex scene features that may serve as a basis set for the cortical coding of navigational layout. These findings suggest a computational mechanism through which high-level visual cortex might encode the spatial structure of the local navigational environment, and they demonstrate an experimental approach for leveraging the power of deep neural networks to understand the visual computations of the brain.
Audience Academic
Author Epstein, Russell A.
Bonner, Michael F.
AuthorAffiliation Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
Technische Universitat Chemnitz, GERMANY
AuthorAffiliation_xml – name: Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
– name: Technische Universitat Chemnitz, GERMANY
Author_xml – sequence: 1
  givenname: Michael F.
  orcidid: 0000-0002-4992-674X
  surname: Bonner
  fullname: Bonner, Michael F.
– sequence: 2
  givenname: Russell A.
  surname: Epstein
  fullname: Epstein, Russell A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29684011$$D View this record in MEDLINE/PubMed
BookMark eNqVk1tr3DAQhU1JaS7tPyitoS_tw24ly5LtPhTC0stCaKGXZyFL410ttuRIdmj-fWezTohDKBQ_WGi-c6Q5jE6TI-cdJMlLSpaUFfT9zo_BqXbZ69ouKSGCUvokOaGcs0XBeHl0b32cnMa4IwSXlXiWHGeVKHNC6UliVr7rx0EN1qNZ2oHeKmdjF9PRGQjttXWbVPswWI3lALH3LkJMB58OW0hV0_hglNOQ9sH3gBwWfZNe2TiiIGpwEJ8nTxvVRngx_c-S358__Vp9XVx8_7JenV8sdJEVw6LJmaZKc03qgujKCCNyRpSoWZmVGpgiRJsqKwEYpXndmIZRwaq6BsoMr4CdJa8Pvn3ro5wCijIjrCoEpwVFYn0gjFc72QfbqXAtvbLyZsOHjVT7XluQhagKlWmmMkNzqEitdG4azrNaUJMzjl4fp9PGugODnQ5BtTPTecXZrdz4K8krxkoi0ODtZBD85QhxkJ3FwNpWOfDjzb0pyXjBC0TfPEAf726iNgobsK7xeK7em8pzzkRJKswTqeUjFH4GOqtxyBqL-zPBu5kAmQH-DBs1xijXP3_8B_ttzr66H-BdcrfTiUB-AHTwMQZo7hBK5P4R3KYg949ATo8AZR8eyLQ9TDg2att_i_8CDKEPNg
CitedBy_id crossref_primary_10_1016_j_neurad_2025_101387
crossref_primary_10_7554_eLife_47492
crossref_primary_10_1002_hbm_26285
crossref_primary_10_1016_j_cognition_2024_106008
crossref_primary_10_3758_s13414_018_1594_8
crossref_primary_10_1016_j_neuropsychologia_2021_108092
crossref_primary_10_1016_j_neuropsychologia_2021_108010
crossref_primary_10_1038_s41467_018_07471_9
crossref_primary_10_1523_JNEUROSCI_1991_19_2020
crossref_primary_10_1016_j_braen_2025_100003
crossref_primary_10_3389_fninf_2020_563669
crossref_primary_10_1016_j_visres_2024_108539
crossref_primary_10_1073_pnas_2304085120
crossref_primary_10_7554_eLife_47686
crossref_primary_10_1073_pnas_1905334117
crossref_primary_10_1146_annurev_psych_032720_041031
crossref_primary_10_1016_j_neuroimage_2019_04_079
crossref_primary_10_1162_jocn_a_01810
crossref_primary_10_1177_0956797620984464
crossref_primary_10_3390_vision3030033
crossref_primary_10_1016_j_neuron_2018_11_004
crossref_primary_10_1371_journal_pcbi_1009267
crossref_primary_10_1073_pnas_2414005122
crossref_primary_10_1038_s41598_020_61409_0
crossref_primary_10_1016_j_cub_2018_04_057
crossref_primary_10_3390_vision4020029
crossref_primary_10_1016_j_cognition_2023_105535
crossref_primary_10_1162_jocn_a_01788
crossref_primary_10_1146_annurev_vision_121219_081745
crossref_primary_10_1162_jocn_a_01624
crossref_primary_10_1162_jocn_a_01544
crossref_primary_10_1162_imag_a_00424
crossref_primary_10_1016_j_pneurobio_2019_01_008
crossref_primary_10_1007_s00429_021_02411_8
crossref_primary_10_1016_j_cub_2023_10_015
crossref_primary_10_1371_journal_pone_0270667
crossref_primary_10_1016_j_neubiorev_2019_06_012
crossref_primary_10_1038_s41598_019_45268_y
crossref_primary_10_1146_annurev_vision_091718_014809
crossref_primary_10_1016_j_neuropsychologia_2020_107340
crossref_primary_10_1016_j_tics_2021_10_011
crossref_primary_10_1038_s41583_022_00655_9
crossref_primary_10_1523_JNEUROSCI_2157_23_2024
crossref_primary_10_1016_j_neuroimage_2021_118741
crossref_primary_10_3389_fnins_2023_1167719
crossref_primary_10_1016_j_neuron_2019_04_014
crossref_primary_10_1016_j_neuroimage_2021_118264
crossref_primary_10_1038_s41598_024_55652_y
crossref_primary_10_1523_JNEUROSCI_1424_22_2022
crossref_primary_10_1523_JNEUROSCI_0700_22_2023
Cites_doi 10.1364/JOSAA.17.000697
10.1016/j.cogpsych.2008.06.001
10.1523/JNEUROSCI.5023-14.2015
10.1371/journal.pbio.1000608
10.1038/nn.4244
10.1523/JNEUROSCI.3325-11.2012
10.1016/j.neuron.2012.01.010
10.1146/annurev-vision-082114-035447
10.18637/jss.v022.i07
10.1126/science.1074128
10.1038/33402
10.1177/1094428113493929
10.1073/pnas.1312567111
10.1073/pnas.1618228114
10.1371/journal.pcbi.1003553
10.1371/journal.pcbi.1003915
10.1167/16.6.14
10.1523/JNEUROSCI.4802-13.2014
10.1523/JNEUROSCI.0137-15.2015
10.1167/15.7.5
10.1073/pnas.1402594111
10.1111/1467-9450.00233
10.1523/JNEUROSCI.2036-12.2012
10.1371/journal.pone.0189828
10.1016/j.neuron.2013.06.015
10.1038/nature14539
10.1016/j.tics.2013.06.007
10.1016/j.neuroimage.2016.03.063
10.1073/pnas.1403112111
10.1038/nn.4296
10.7554/eLife.32962
10.1073/pnas.0700622104
10.1152/jn.00003.2007
10.1016/j.csda.2009.09.020
10.1016/j.neuroimage.2012.02.055
10.1038/14819
10.1523/JNEUROSCI.2270-15.2015
10.1073/pnas.1015666108
10.1038/srep27755
10.1016/S0959-4388(03)00040-0
10.1111/j.2044-8295.1958.tb00656.x
10.1073/pnas.1619788114
10.1016/j.neuroimage.2016.04.021
10.1167/15.12.573
10.1038/nn.3043
10.1111/j.1467-9280.2009.02316.x
10.1037/0033-295X.94.2.115
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111
2018 Bonner, Epstein 2018 Bonner, Epstein
2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111
– notice: 2018 Bonner, Epstein 2018 Bonner, Epstein
– notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111
DBID AAYXX
CITATION
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1006111
DatabaseName CrossRef
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Visual computation of scene affordances
EISSN 1553-7358
ExternalDocumentID 2039765171
oai_doaj_org_article_7697a2c3a2d14e90bac4df552b61d435
PMC5933806
A536809430
29684011
10_1371_journal_pcbi_1006111
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Singapore
GeographicLocations_xml – name: Singapore
– name: United States--US
GrantInformation_xml – fundername: NIH HHS
  grantid: EY-022350
– fundername: ;
  grantid: EY022350
– fundername: ;
  grantid: EY027047
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
C1A
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c727t-f43c1ac5c0b70c9d6d6430a6b3828ce3a00cd928ee3114bfdf31639bbe13d59e3
IEDL.DBID M7P
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432169600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun Apr 03 16:02:37 EDT 2022
Fri Oct 03 12:53:18 EDT 2025
Tue Nov 04 01:44:33 EST 2025
Thu Oct 02 11:00:41 EDT 2025
Sat Nov 29 15:08:50 EST 2025
Tue Nov 11 10:39:21 EST 2025
Tue Nov 04 17:59:58 EST 2025
Thu Nov 13 14:31:14 EST 2025
Thu Nov 13 15:46:36 EST 2025
Mon Jul 21 05:52:10 EDT 2025
Sat Nov 29 06:31:15 EST 2025
Tue Nov 18 21:08:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-f43c1ac5c0b70c9d6d6430a6b3828ce3a00cd928ee3114bfdf31639bbe13d59e3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-4992-674X
OpenAccessLink https://www.proquest.com/docview/2039765171?pq-origsite=%requestingapplication%
PMID 29684011
PQID 2039765171
PQPubID 1436340
ParticipantIDs plos_journals_2039765171
doaj_primary_oai_doaj_org_article_7697a2c3a2d14e90bac4df552b61d435
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5933806
proquest_miscellaneous_2031025757
proquest_journals_2039765171
gale_infotracmisc_A536809430
gale_infotracacademiconefile_A536809430
gale_incontextgauss_ISR_A536809430
gale_incontextgauss_ISN_A536809430
pubmed_primary_29684011
crossref_primary_10_1371_journal_pcbi_1006111
crossref_citationtrail_10_1371_journal_pcbi_1006111
PublicationCentury 2000
PublicationDate 20180423
PublicationDateYYYYMMDD 2018-04-23
PublicationDate_xml – month: 4
  year: 2018
  text: 20180423
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JS Cant (ref49) 2012; 32
MD Zeiler (ref17) 2014
B Zhou (ref3) 2014
MS Keil (ref37) 2000; 17
RM Cichy (ref25) 2017; 153
DA Mély (ref52) 2017
H Nili (ref62) 2014; 10
Y LeCun (ref1) 2015; 521
A Krizhevsky (ref2) 2012
ref18
JJ Gibson (ref27) 1958; 49
N Kriegeskorte (ref28) 2013; 17
L van der Maaten (ref63) 2008; 9
R Epstein (ref20) 1998; 392
M Riesenhuber (ref29) 1999; 2
S Nasr (ref36) 2014; 34
A Harel (ref55) 2014; 111
DJ Heeger (ref15) 2017; 114
N Kriegeskorte (ref10) 2015; 1
RM Stolier (ref59) 2016; 19
I Biederman (ref47) 1987; 94
SA Marchette (ref57) 2015; 35
IIA Groen (ref51) 2017; 372
J Yosinski (ref54) 2014
DB Walther (ref45) 2011; 108
D Berman (ref38) 2017; 12
ref42
KN Kay (ref16) 2017
PB Bryan (ref39) 2016; 10
D Garcia (ref60) 2010; 54
S Nasr (ref34) 2012; 32
IIA Groen (ref26) 2018; 7
EH Silson (ref40) 2016; 16
ref5
RA Epstein (ref24) 2014
DB Walther (ref35) 2014
RM Cichy (ref9) 2016; 6
D Marr (ref12) 1982
S Kornblith (ref46) 2013; 79
EA Maguire (ref21) 2001; 42
JB Julian (ref58) 2012; 60
KF Nimon (ref32) 2013; 16
SC Goslee (ref61) 2007; 22
DLK Yamins (ref7) 2014; 111
A Sharif Razavian (ref53) 2014
M Lescroart (ref48) 2015; 15
MR Greene (ref43) 2009; 20
MF Bonner (ref19) 2017; 114
M Carandini (ref14) 2012; 15
W Rawat (ref4) 2017
H Choo (ref44) 2016; 135
K Grill-Spector (ref22) 2003; 13
DLK Yamins (ref11) 2016; 19
T Serre (ref30) 2007; 104
K-I Tsutsui (ref50) 2002; 298
U Güçlü (ref8) 2015; 35
S-M Khaligh-Razavi (ref6) 2014; 10
I Charest (ref56) 2014; 111
RA Epstein (ref23) 2007; 97
EH Silson (ref41) 2015; 35
MR Greene (ref64) 2009; 58
R Rajimehr (ref33) 2011; 9
J DiCarlo James (ref13) 2012; 73
JW Peirce (ref31) 2015; 15
28044013 - Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714)
28167793 - Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1773-1782
17404214 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9
27105060 - J Vis. 2016;16(6):14
12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66
3575582 - Psychol Rev. 1987 Apr;94(2):115-47
27064591 - Front Hum Neurosci. 2016 Mar 30;10:137
25246586 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14565-70
18762289 - Cogn Psychol. 2009 Mar;58(2):137-76
24828628 - J Neurosci. 2014 May 14;34(20):6721-35
24795488 - Comput Stat Data Anal. 2010 Apr 1;54(4):1167-1178
26906502 - Nat Neurosci. 2016 Mar;19(3):356-65
29513219 - Elife. 2018 Mar 07;7:null
28416669 - Proc Natl Acad Sci U S A. 2017 May 2;114(18):4793-4798
26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14
27282108 - Sci Rep. 2016 Jun 10;6:27755
27135216 - Nat Neurosci. 2016 Jun;19(6):795-7
24812127 - Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24
24567402 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E962-71
19399976 - Psychol Sci. 2009 Apr;20(4):464-72
22325196 - Neuron. 2012 Feb 9;73(3):415-34
27039703 - Neuroimage. 2017 Jun;153:346-358
10757177 - J Opt Soc Am A Opt Image Sci Vis. 2000 Apr;17(4):697-710
26017442 - Nature. 2015 May 28;521(7553):436-44
23891401 - Neuron. 2013 Aug 21;79(4):766-81
10526343 - Nat Neurosci. 1999 Nov;2(11):1019-25
23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12
28599112 - Neural Comput. 2017 Sep;29(9):2352-2449
22398396 - Neuroimage. 2012 May 1;60(4):2357-64
24743308 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003553
21593417 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9661-6
29272283 - PLoS One. 2017 Dec 22;12 (12 ):e0189828
11501737 - Scand J Psychol. 2001 Jul;42(3):225-38
24474725 - Psychol Sci. 2014 Apr;25(4):851-60
23100415 - J Neurosci. 2012 Oct 24;32(43):14921-6
28793238 - Neuroimage. 2017 Aug 6;:null
17376855 - J Neurophysiol. 2007 May;97(5):3670-83
26053241 - J Vis. 2015;15(7):5
26311774 - J Neurosci. 2015 Aug 26;35(34):11921-35
26538658 - J Neurosci. 2015 Nov 4;35(44):14896-908
25375136 - PLoS Comput Biol. 2014 Nov 06;10(11):e1003915
12376700 - Science. 2002 Oct 11;298(5592):409-12
22649247 - J Neurosci. 2012 May 30;32(22):7685-700
22449960 - Nat Neurosci. 2012 Mar 27;15(4):507-9
28532370 - Annu Rev Vis Sci. 2015 Nov 24;1:417-446
27118087 - Neuroimage. 2016 Jul 15;135:32-44
13572790 - Br J Psychol. 1958 Aug;49(3):182-94
21483719 - PLoS Biol. 2011 Apr;9(4):e1000608
9560155 - Nature. 1998 Apr 9;392(6676):598-601
References_xml – volume: 17
  start-page: 697
  issue: 4
  year: 2000
  ident: ref37
  article-title: Separating the chaff from the wheat: possible origins of the oblique effect
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.17.000697
– volume: 58
  start-page: 137
  issue: 2
  year: 2009
  ident: ref64
  article-title: Recognition of natural scenes from global properties: Seeing the forest without representing the trees
  publication-title: Cognit Psychol
  doi: 10.1016/j.cogpsych.2008.06.001
– ident: ref5
– volume: 35
  start-page: 10005
  issue: 27
  year: 2015
  ident: ref8
  article-title: Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 9
  issue: 4
  year: 2011
  ident: ref33
  article-title: The "parahippocampal place area" responds preferentially to high spatial frequencies in humans and monkeys
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.1000608
– volume: 19
  start-page: 356
  issue: 3
  year: 2016
  ident: ref11
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4244
– year: 1982
  ident: ref12
– volume: 32
  start-page: 7685
  issue: 22
  year: 2012
  ident: ref49
  article-title: Object ensemble processing in human anterior-medial ventral visual cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3325-11.2012
– volume: 73
  start-page: 415
  issue: 3
  year: 2012
  ident: ref13
  article-title: How Does the Brain Solve Visual Object Recognition?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.01.010
– volume: 1
  start-page: 417
  issue: 1
  year: 2015
  ident: ref10
  article-title: Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing
  publication-title: Annual Review of Vision Science
  doi: 10.1146/annurev-vision-082114-035447
– volume: 22
  start-page: 1
  issue: 7
  year: 2007
  ident: ref61
  article-title: The ecodist Package for Dissimilarity-based Analysis of Ecological Data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v022.i07
– volume: 298
  start-page: 409
  issue: 5592
  year: 2002
  ident: ref50
  article-title: Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient
  publication-title: Science
  doi: 10.1126/science.1074128
– volume: 392
  start-page: 598
  issue: 6676
  year: 1998
  ident: ref20
  article-title: A cortical representation the local visual environment
  publication-title: Nature
  doi: 10.1038/33402
– volume: 16
  start-page: 650
  issue: 4
  year: 2013
  ident: ref32
  article-title: Understanding the Results of Multiple Linear Regression
  publication-title: Organizational Research Methods
  doi: 10.1177/1094428113493929
– volume: 111
  start-page: E962
  issue: 10
  year: 2014
  ident: ref55
  article-title: Task context impacts visual object processing differentially across the cortex
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1312567111
– volume: 114
  start-page: 4793
  issue: 18
  year: 2017
  ident: ref19
  article-title: Coding of navigational affordances in the human visual system
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1618228114
– volume: 10
  start-page: e1003553
  issue: 4
  year: 2014
  ident: ref62
  article-title: A Toolbox for Representational Similarity Analysis
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1003553
– volume: 10
  start-page: e1003915
  issue: 11
  year: 2014
  ident: ref6
  article-title: Deep Supervised, But Not Unsupervised, Models May Explain IT Cortical Representation
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003915
– start-page: 487
  year: 2014
  ident: ref3
  article-title: Learning deep features for scene recognition using places database
  publication-title: Advances in neural information processing systems
– start-page: 3320
  year: 2014
  ident: ref54
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in neural information processing systems
– volume: 16
  start-page: 14
  issue: 6
  year: 2016
  ident: ref40
  article-title: Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex
  publication-title: Journal of Vision
  doi: 10.1167/16.6.14
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref63
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– start-page: 59
  year: 2017
  ident: ref52
  article-title: Computational and Cognitive Neuroscience of Vision
– volume: 372
  issue: 1714
  year: 2017
  ident: ref51
  article-title: Contributions of low- and high-level properties to neural processing of visual scenes in the human brain
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 10
  issue: 137
  year: 2016
  ident: ref39
  article-title: Rectilinear Edge Selectivity Is Insufficient to Explain the Category Selectivity of the Parahippocampal Place Area
  publication-title: Frontiers in Human Neuroscience
– volume: 34
  start-page: 6721
  issue: 20
  year: 2014
  ident: ref36
  article-title: Thinking Outside the Box: Rectilinear Shapes Selectively Activate Scene-Selective Cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4802-13.2014
– volume: 35
  start-page: 11921
  issue: 34
  year: 2015
  ident: ref41
  article-title: A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0137-15.2015
– volume: 15
  start-page: 5
  issue: 7
  year: 2015
  ident: ref31
  article-title: Understanding mid-level representations in visual processing
  publication-title: Journal of Vision
  doi: 10.1167/15.7.5
– volume: 111
  start-page: 14565
  issue: 40
  year: 2014
  ident: ref56
  article-title: Unique semantic space in the brain of each beholder predicts perceived similarity
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1402594111
– volume: 42
  start-page: 225
  issue: 3
  year: 2001
  ident: ref21
  article-title: The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings
  publication-title: Scand J Psychol
  doi: 10.1111/1467-9450.00233
– volume: 32
  start-page: 14921
  issue: 43
  year: 2012
  ident: ref34
  article-title: A cardinal orientation bias in scene-selective visual cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2036-12.2012
– volume: 12
  start-page: e0189828
  issue: 12
  year: 2017
  ident: ref38
  article-title: Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0189828
– volume: 79
  start-page: 766
  issue: 4
  year: 2013
  ident: ref46
  article-title: A network for scene processing in the macaque temporal lobe
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.06.015
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: ref1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 17
  start-page: 401
  issue: 8
  year: 2013
  ident: ref28
  article-title: Representational geometry: integrating cognition, computation, and the brain
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2013.06.007
– volume: 153
  start-page: 346
  year: 2017
  ident: ref25
  article-title: Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.063
– volume: 111
  start-page: 8619
  issue: 23
  year: 2014
  ident: ref7
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1403112111
– volume: 19
  start-page: 795
  issue: 6
  year: 2016
  ident: ref59
  article-title: Neural pattern similarity reveals the inherent intersection of social categories
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4296
– volume: 7
  start-page: e32962
  year: 2018
  ident: ref26
  article-title: Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior
  publication-title: eLife
  doi: 10.7554/eLife.32962
– volume: 104
  start-page: 6424
  issue: 15
  year: 2007
  ident: ref30
  article-title: A feedforward architecture accounts for rapid categorization
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0700622104
– year: 2014
  ident: ref35
  article-title: Nonaccidental Properties Underlie Human Categorization of Complex Natural Scenes
  publication-title: Psychological Science
– volume: 97
  start-page: 3670
  issue: 5
  year: 2007
  ident: ref23
  article-title: Visual scene processing in familiar and unfamiliar environments
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00003.2007
– volume: 54
  start-page: 1167
  issue: 4
  year: 2010
  ident: ref60
  article-title: Robust smoothing of gridded data in one and higher dimensions with missing values
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2009.09.020
– start-page: 1097
  year: 2012
  ident: ref2
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 60
  start-page: 2357
  issue: 4
  year: 2012
  ident: ref58
  article-title: An algorithmic method for functionally defining regions of interest in the ventral visual pathway
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.055
– volume: 2
  start-page: 1019
  issue: 11
  year: 1999
  ident: ref29
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nat Neurosci
  doi: 10.1038/14819
– year: 2017
  ident: ref4
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Comput
– volume: 35
  start-page: 14896
  issue: 44
  year: 2015
  ident: ref57
  article-title: Outside Looking In: Landmark Generalization in the Human Navigational System
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2270-15.2015
– volume: 108
  start-page: 9661
  issue: 23
  year: 2011
  ident: ref45
  article-title: Simple line drawings suffice for functional MRI decoding of natural scene categories
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1015666108
– start-page: 806
  year: 2014
  ident: ref53
  article-title: CNN features off-the-shelf: an astounding baseline for recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 6
  start-page: 27755
  year: 2016
  ident: ref9
  article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
  publication-title: Scientific Reports
  doi: 10.1038/srep27755
– volume: 13
  start-page: 159
  issue: 2
  year: 2003
  ident: ref22
  article-title: The neural basis of object perception
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(03)00040-0
– year: 2017
  ident: ref16
  article-title: Principles for models of neural information processing
  publication-title: Neuroimage
– year: 2014
  ident: ref17
  article-title: European conference on computer vision
– volume: 49
  start-page: 182
  issue: 3
  year: 1958
  ident: ref27
  article-title: Visually controlled locomotion and visual orientation in animals
  publication-title: Br J Psychol
  doi: 10.1111/j.2044-8295.1958.tb00656.x
– volume: 114
  start-page: 1773
  issue: 8
  year: 2017
  ident: ref15
  article-title: Theory of cortical function
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1619788114
– volume: 135
  start-page: 32
  year: 2016
  ident: ref44
  article-title: Contour junctions underlie neural representations of scene categories in high-level human visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.021
– ident: ref42
– volume: 15
  start-page: 573
  issue: 12
  year: 2015
  ident: ref48
  article-title: A model of surface depth and orientation predicts BOLD responses in human scene-selective cortex
  publication-title: Journal of Vision
  doi: 10.1167/15.12.573
– volume: 15
  start-page: 507
  issue: 4
  year: 2012
  ident: ref14
  article-title: From circuits to behavior: a bridge too far?
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3043
– start-page: 105
  year: 2014
  ident: ref24
  article-title: Scene vision: making sense of what we see
– volume: 20
  start-page: 464
  issue: 4
  year: 2009
  ident: ref43
  article-title: The Briefest of Glances: The Time Course of Natural Scene Understanding
  publication-title: Psychological Science
  doi: 10.1111/j.1467-9280.2009.02316.x
– volume: 94
  start-page: 115
  issue: 2
  year: 1987
  ident: ref47
  article-title: Recognition-by-components: A theory of human image understanding
  publication-title: Psychol Rev
  doi: 10.1037/0033-295X.94.2.115
– ident: ref18
– reference: 27105060 - J Vis. 2016;16(6):14
– reference: 22325196 - Neuron. 2012 Feb 9;73(3):415-34
– reference: 22449960 - Nat Neurosci. 2012 Mar 27;15(4):507-9
– reference: 21593417 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9661-6
– reference: 29272283 - PLoS One. 2017 Dec 22;12 (12 ):e0189828
– reference: 24828628 - J Neurosci. 2014 May 14;34(20):6721-35
– reference: 24795488 - Comput Stat Data Anal. 2010 Apr 1;54(4):1167-1178
– reference: 28044013 - Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714):
– reference: 12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66
– reference: 27282108 - Sci Rep. 2016 Jun 10;6:27755
– reference: 26311774 - J Neurosci. 2015 Aug 26;35(34):11921-35
– reference: 18762289 - Cogn Psychol. 2009 Mar;58(2):137-76
– reference: 27135216 - Nat Neurosci. 2016 Jun;19(6):795-7
– reference: 23891401 - Neuron. 2013 Aug 21;79(4):766-81
– reference: 27039703 - Neuroimage. 2017 Jun;153:346-358
– reference: 28793238 - Neuroimage. 2017 Aug 6;:null
– reference: 28532370 - Annu Rev Vis Sci. 2015 Nov 24;1:417-446
– reference: 27064591 - Front Hum Neurosci. 2016 Mar 30;10:137
– reference: 26053241 - J Vis. 2015;15(7):5
– reference: 12376700 - Science. 2002 Oct 11;298(5592):409-12
– reference: 19399976 - Psychol Sci. 2009 Apr;20(4):464-72
– reference: 27118087 - Neuroimage. 2016 Jul 15;135:32-44
– reference: 28416669 - Proc Natl Acad Sci U S A. 2017 May 2;114(18):4793-4798
– reference: 21483719 - PLoS Biol. 2011 Apr;9(4):e1000608
– reference: 26017442 - Nature. 2015 May 28;521(7553):436-44
– reference: 24743308 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003553
– reference: 26906502 - Nat Neurosci. 2016 Mar;19(3):356-65
– reference: 28599112 - Neural Comput. 2017 Sep;29(9):2352-2449
– reference: 10526343 - Nat Neurosci. 1999 Nov;2(11):1019-25
– reference: 3575582 - Psychol Rev. 1987 Apr;94(2):115-47
– reference: 25246586 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14565-70
– reference: 11501737 - Scand J Psychol. 2001 Jul;42(3):225-38
– reference: 23100415 - J Neurosci. 2012 Oct 24;32(43):14921-6
– reference: 17376855 - J Neurophysiol. 2007 May;97(5):3670-83
– reference: 25375136 - PLoS Comput Biol. 2014 Nov 06;10(11):e1003915
– reference: 22649247 - J Neurosci. 2012 May 30;32(22):7685-700
– reference: 10757177 - J Opt Soc Am A Opt Image Sci Vis. 2000 Apr;17(4):697-710
– reference: 24812127 - Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24
– reference: 24474725 - Psychol Sci. 2014 Apr;25(4):851-60
– reference: 28167793 - Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1773-1782
– reference: 23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12
– reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601
– reference: 24567402 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E962-71
– reference: 17404214 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9
– reference: 26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14
– reference: 29513219 - Elife. 2018 Mar 07;7:null
– reference: 26538658 - J Neurosci. 2015 Nov 4;35(44):14896-908
– reference: 22398396 - Neuroimage. 2012 May 1;60(4):2357-64
– reference: 13572790 - Br J Psychol. 1958 Aug;49(3):182-94
SSID ssj0035896
Score 2.4776192
Snippet Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1006111
SubjectTerms Algorithms
Artificial neural networks
Biology and Life Sciences
Coding
Computation
Computer and Information Sciences
Computer applications
Computer vision
Cortex (occipital)
Cortex (somatosensory)
Engineering and Technology
Functional magnetic resonance imaging
Image classification
Investigations
Magnetic resonance imaging
Medicine and Health Sciences
Navigation behavior
Neural circuitry
Neural networks
Neurobiology
Neurosciences
Physical Sciences
Physiological aspects
Research and Analysis Methods
Retina
Social Sciences
Software
Somatosensory cortex
Spatial distribution
Visual cortex
Visual field
Visual fields
Visual stimuli
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKPgift_erRJF8Kle07RJ83iKh4Is4gfsW8mnFvbapd098L-_maa7XOXkXnxtpoXMTJLfpDO_IeRNKEMAoGoTy4xIABHLxKTcJbA4skwrI0s_FAp_kctluVqpr9dafWFOWKQHjoo7lUJJnVmuM8dyr1Kjbe7g85kRzMFZj7tvKtU-mIp7MC_KoTMXNsVJJM9XY9Ecl-x0tNG7jTU15ggIxtjkUBq4-w879Gyzbvub4OffWZTXjqXzh-TBiCfpWZzHI3LHN4_Jvdhh8s8T4mLXhvHGj154LPSt-4ueYvFYt8YiJwoB6HCjTbuYMOt7um0pIEOqA-a-o2PQDd7ad0i_SttAL-t-By8gFZTvn5Kf5x9_fPiUjI0VEgtwZZuEnFumbWFTI1OrnHCAS1ItDIf4y3qu09Q6lYGZOIRLJrjAAbYpYzzjrlCePyOzpm38EaHKSmN0EYTIZR4YwEEksDd5nqsASEHPCd9rtrIj6zg2v1hXw680CdFHVFSF9qhGe8xJcnhrE1k3bpF_j0Y7yCJn9vAAPKkaPam6zZPm5DWavEJWjAbTbn7pXd9Xn78vq7OCixJzMNN_Cn2bCL0dhUILk7V6LHUAlSHb1kRyMZGEtW0nw0fofvs591WWIn4smIQpL_YuefPwq8MwfhRT6Rrf7gYZAJWA0uWcPI8efNBbppD7B_UpJ749Uex0pKl_D6TkheJgenH8PyxxQu4DLi3xp13GF2S27Xb-BblrL7d1370cVvoVXfFY1A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS)
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA4yKvjiXXd0lCiCT9W2aZPmcRUHhWVYvMC-hVzXwmw7tDML_nvPaTvVLjuIr5OToTmX9jvJOV8IeROKEACo2sgmhkeAiEVkYuYiCI401dKIwneNwiditSrOzuTpn0Txygk-E8n7QafvNtaUeKbPE2zlvZkyzjHZWp6e7N-8LC8kH9rjDs2cfH46lv7xXTzbrOv2OqB5tV7yrw_Q8t7_Pvp9cneAmvS4940H5IavHpLb_eWTvx4R11_oMGwG0guPPcBle9FS7Ctr1tj_RCE37Ta7adPX0vqWbmsKoJHqgGXx6DN0gxv6DTKz0jrQy7LdwQRkifLtY_Jj-en7x8_RcOdCZAHJbKOQMZtom9vYiNhKxx1AllhzwyA1s57pOLZOpmBBBpmUCS4wQHTSGJ8wl0vPnpBZVVf-iFBphTE6D5xnIgsJIEXktjdZlskAIELPCdubQtmBkBzvxVir7pRNQGLSK0qh_tSgvzmJxlmbnpDjH_If0MqjLNJpdz-AodQQnUpwKXRqmU5dknkZG20zBz6cGp44AJRz8hp9RCFhRoUVOed617bqy7eVOs4ZL7A8Mz4o9HUi9HYQCjUs1uqhCwJUhkRcE8nFRBLC3k6Gj9Bf92tuVRojtMwTAUte7H34-uFX4zD-KVbZVb7edTKANwHAizl52rv8qLdUIi0Q6lNMgmGi2OlIVf7s-MpzycD0_NnhJ35O7gAQLfCULmULMts2O_-C3LKX27JtXnZB_hu0Y1Lp
  priority: 102
  providerName: Public Library of Science
Title Computational mechanisms underlying cortical responses to the affordance properties of visual scenes
URI https://www.ncbi.nlm.nih.gov/pubmed/29684011
https://www.proquest.com/docview/2039765171
https://www.proquest.com/docview/2031025757
https://pubmed.ncbi.nlm.nih.gov/PMC5933806
https://doaj.org/article/7697a2c3a2d14e90bac4df552b61d435
http://dx.doi.org/10.1371/journal.pcbi.1006111
Volume 14
WOSCitedRecordID wos000432169600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMKozIIiaewOE7i-AltaBUTo4oGSIWXyHbiUalLStNO4r_nznELQQMeePFDfK5q3_n88_k-CHlhM2sBqJrAMJ0GgIhFoENeBrA5okhJLbLKBQqfiskkm05l7g1urXer3OhEp6jLxqCNHC7peHImTLDXi28BVo3C11VfQmOH7GKWhMi57uUbTcyTzNXnwtI4geDx1IfOccEOPKdeLYyeoadAyhjrHU0ug_9WTw8W86a9CoT-7kv5y-E0vv2_07pDbnlYSg87ObpLrlX1PXKjK1T5_T4pu-IP3nBILyqMF561Fy3FGLTlHGOlKNxjnWGcLju_26qlq4YCwKTKogs9yhddoPF_iVlcaWPp5axdwwDMKFW1D8in8fHHN28DX58hMIB6VoGNuWHKJCbUIjSyTEuAN6FKNYdrnKm4CkNTygi4zeHWpW1pOaA_qXXFeJnIij8kg7qpqz1CpRFaq8SmaSxiywBVYh58HcextAA41JDwDWsK45OXYw2NeeFe5ARcYrqFKpChhWfokATbUYsuecc_6I-Q61taTL3tPjTL88Lv5EKkUqjIcBWVLK5kqJWJS5D3SKesBPA5JM9RZgpMrlGj9865WrdtcfJhUhwmPM3QlTP8I9FZj-ilJ7INTNYoHzEBS4ZJu3qU-z1KUBGm172H8ruZc1v8lDoYuZHLq7ufbbvxR9Ejr66ataMBbApgXwzJo24LbNctkphCCNdT9DZHb2H7PfXsq8ttnkgOrE8f__1vPSE3Abhm-KoX8X0yWC3X1VNy3VyuZu1yRHbEVLg2G5Hdo-NJfjZythZox_kptO9EMHKqAto8-QJU-cn7_PMP8INvvg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoILb-hCAYNAnAJxnMTxAaHyqLraskLQSnsLtmOXlbbJkuwW9U_xG5nJYyGowKkHrvE4iicz42_seRDyxCXOAVA1nmE69gARC0_7PPNAOYJASS0SWycK74nJJJlO5YcN8r3LhcGwys4m1oY6KwyekYOTjjtnxAR7tfjqYdcovF3tWmg0YjG2J9_AZatejt7C_30aBDvv9t_sem1XAc_AXr30XMgNUyYyvha-kVmcwabsq1hzcD6M5cr3TSYD-EYOvoJ2meOAWaTWlvEskpbDe8-R8yFPBOrVWHid5edRUvcDw1Y8nuDhtE3V44K9aCXj-cLoGUYmxIyx3lZYdwxY7wuDxbyoTgO9v8du_rIZ7lz939h4jVxpYTfdbvTkOtmw-Q1ysWnEeXKTZE1zi_ZglB5ZzIeeVUcVxRy7co65YBT89Prgn5ZNXLGt6LKgAKCpcpgigPpDF3i5UWKVWlo4ejyrVjABK2bZ6hY5OJMl3iaDvMjtJqHSCK1V5OI4FKFjgJqxzr8Ow1A6AFRqSHgnCqlpi7Njj5B5Wt84CnDSGkalKEBpK0BD4q1nLZriJP-gf41StqbF0uL1g6I8TFtLlYpYChUYroKMhVb6WpkwA30OdMwyANdD8hhlNMXiITlGJx2qVVWlo0-TdDvicYKhqv4fiT72iJ61RK6AxRrVZoQAy7AoWY9yq0cJJtD0hjdRX7o1V-lPKYeZnR6cPvxoPYwvxYjD3BarmgawNzgzYkjuNCq35lsgsUQS8lP0lLHH2P5IPvtS126PJIdfH9_9-2c9JJd299_vpXujyfgeuQwgPcEbzIBvkcGyXNn75II5Xs6q8kFtgCj5fNaq-gN5gMS1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbK8hAX3tCFAgaBOAXiOInjA0KFUrFqtVrxkFa9BNuxy0rbZEl2i_rX-HXM5LEQVODUA9d4HNmTGc838TwIeeIS5wCoGs8wHXuAiIWnfZ55oBxBoKQWia0ThffFeJxMp3KyQb53uTAYVtmdifVBnRUG_5GDk46WM2KCvXBtWMRkZ_fV4quHHaTwprVrp9GIyJ49-QbuW_VytAPf-mkQ7L79-Oad13YY8AzY7aXnQm6YMpHxtfCNzOIMDLSvYs3BETGWK983mQxgvRz8Bu0yxwG_SK0t41kkLYf3niPnBfiYGE44iQ46K8CjpO4Nhm15PMHDaZu2x2H9rZQ8Xxg9wyiFmDHWM4t194C1jRgs5kV1GgD-PY7zF8O4e_V_Zuk1cqWF43S70Z_rZMPmN8jFpkHnyU2SNU0v2h-m9MhinvSsOqoo5t6Vc8wRo-C_1xcCtGzijW1FlwUFYE2Vw9QB1Cu6wEuPEqvX0sLR41m1gglYSctWt8inM9nibTLIi9xuEiqN0FpFLo5DEToGaBrr_-swDKUDoKWGhHdikZq2aDv2Dpmn9U2kAOetYVSKwpS2wjQk3nrWoila8g_61yhxa1osOV4_KMrDtD3BUhFLoQLDVZCx0EpfKxNmoOeBjlkGoHtIHqO8plhUJEdZOlSrqkpHH8bpdsTjBENY_T8Sve8RPWuJXAGbNarNFAGWYbGyHuVWjxKORtMb3kTd6fZcpT8lHmZ2OnH68KP1ML4UIxFzW6xqGsDk4OSIIbnTqN-ab4HE0knIT9FTzB5j-yP57Etd0z2SHD59fPfvy3pILoGGpvuj8d49chmwe4IXmwHfIoNlubL3yQVzvJxV5YP6LKLk81lr6g_tq83Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+mechanisms+underlying+cortical+responses+to+the+affordance+properties+of+visual+scenes&rft.jtitle=PLoS+computational+biology&rft.au=Bonner%2C+Michael+F&rft.au=Epstein%2C+Russell+A&rft.date=2018-04-23&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006111&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon