Computational mechanisms underlying cortical responses to the affordance properties of visual scenes
Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are un...
Uloženo v:
| Vydáno v: | PLoS computational biology Ročník 14; číslo 4; s. e1006111 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
23.04.2018
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms. |
|---|---|
| AbstractList | Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms. Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms.Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms. Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms. How does visual cortex compute behaviorally relevant properties of the local environment from sensory inputs? For decades, computational models have been able to explain only the earliest stages of biological vision, but recent advances in deep neural networks have yielded a breakthrough in the modeling of high-level visual cortex. However, these models are not explicitly designed for testing neurobiological theories, and, like the brain itself, their internal operations remain poorly understood. We examined a deep neural network for insights into the cortical representation of navigational affordances in visual scenes. In doing so, we developed a set of high-throughput techniques and statistical tools that are broadly useful for relating the internal operations of neural networks with the information processes of the brain. Our findings demonstrate that a deep neural network with purely feedforward computations can account for the processing of navigational layout in high-level visual cortex. We next performed a series of experiments and visualization analyses on this neural network. These analyses characterized a set of stimulus input features that may be critical for computing navigationally related cortical representations, and they identified a set of high-level, complex scene features that may serve as a basis set for the cortical coding of navigational layout. These findings suggest a computational mechanism through which high-level visual cortex might encode the spatial structure of the local navigational environment, and they demonstrate an experimental approach for leveraging the power of deep neural networks to understand the visual computations of the brain. |
| Audience | Academic |
| Author | Epstein, Russell A. Bonner, Michael F. |
| AuthorAffiliation | Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America Technische Universitat Chemnitz, GERMANY |
| AuthorAffiliation_xml | – name: Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America – name: Technische Universitat Chemnitz, GERMANY |
| Author_xml | – sequence: 1 givenname: Michael F. orcidid: 0000-0002-4992-674X surname: Bonner fullname: Bonner, Michael F. – sequence: 2 givenname: Russell A. surname: Epstein fullname: Epstein, Russell A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29684011$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk1tr3DAQhU1JaS7tPyitoS_tw24ly5LtPhTC0stCaKGXZyFL410ttuRIdmj-fWezTohDKBQ_WGi-c6Q5jE6TI-cdJMlLSpaUFfT9zo_BqXbZ69ouKSGCUvokOaGcs0XBeHl0b32cnMa4IwSXlXiWHGeVKHNC6UliVr7rx0EN1qNZ2oHeKmdjF9PRGQjttXWbVPswWI3lALH3LkJMB58OW0hV0_hglNOQ9sH3gBwWfZNe2TiiIGpwEJ8nTxvVRngx_c-S358__Vp9XVx8_7JenV8sdJEVw6LJmaZKc03qgujKCCNyRpSoWZmVGpgiRJsqKwEYpXndmIZRwaq6BsoMr4CdJa8Pvn3ro5wCijIjrCoEpwVFYn0gjFc72QfbqXAtvbLyZsOHjVT7XluQhagKlWmmMkNzqEitdG4azrNaUJMzjl4fp9PGugODnQ5BtTPTecXZrdz4K8krxkoi0ODtZBD85QhxkJ3FwNpWOfDjzb0pyXjBC0TfPEAf726iNgobsK7xeK7em8pzzkRJKswTqeUjFH4GOqtxyBqL-zPBu5kAmQH-DBs1xijXP3_8B_ttzr66H-BdcrfTiUB-AHTwMQZo7hBK5P4R3KYg949ATo8AZR8eyLQ9TDg2att_i_8CDKEPNg |
| CitedBy_id | crossref_primary_10_1016_j_neurad_2025_101387 crossref_primary_10_7554_eLife_47492 crossref_primary_10_1002_hbm_26285 crossref_primary_10_1016_j_cognition_2024_106008 crossref_primary_10_3758_s13414_018_1594_8 crossref_primary_10_1016_j_neuropsychologia_2021_108092 crossref_primary_10_1016_j_neuropsychologia_2021_108010 crossref_primary_10_1038_s41467_018_07471_9 crossref_primary_10_1523_JNEUROSCI_1991_19_2020 crossref_primary_10_1016_j_braen_2025_100003 crossref_primary_10_3389_fninf_2020_563669 crossref_primary_10_1016_j_visres_2024_108539 crossref_primary_10_1073_pnas_2304085120 crossref_primary_10_7554_eLife_47686 crossref_primary_10_1073_pnas_1905334117 crossref_primary_10_1146_annurev_psych_032720_041031 crossref_primary_10_1016_j_neuroimage_2019_04_079 crossref_primary_10_1162_jocn_a_01810 crossref_primary_10_1177_0956797620984464 crossref_primary_10_3390_vision3030033 crossref_primary_10_1016_j_neuron_2018_11_004 crossref_primary_10_1371_journal_pcbi_1009267 crossref_primary_10_1073_pnas_2414005122 crossref_primary_10_1038_s41598_020_61409_0 crossref_primary_10_1016_j_cub_2018_04_057 crossref_primary_10_3390_vision4020029 crossref_primary_10_1016_j_cognition_2023_105535 crossref_primary_10_1162_jocn_a_01788 crossref_primary_10_1146_annurev_vision_121219_081745 crossref_primary_10_1162_jocn_a_01624 crossref_primary_10_1162_jocn_a_01544 crossref_primary_10_1162_imag_a_00424 crossref_primary_10_1016_j_pneurobio_2019_01_008 crossref_primary_10_1007_s00429_021_02411_8 crossref_primary_10_1016_j_cub_2023_10_015 crossref_primary_10_1371_journal_pone_0270667 crossref_primary_10_1016_j_neubiorev_2019_06_012 crossref_primary_10_1038_s41598_019_45268_y crossref_primary_10_1146_annurev_vision_091718_014809 crossref_primary_10_1016_j_neuropsychologia_2020_107340 crossref_primary_10_1016_j_tics_2021_10_011 crossref_primary_10_1038_s41583_022_00655_9 crossref_primary_10_1523_JNEUROSCI_2157_23_2024 crossref_primary_10_1016_j_neuroimage_2021_118741 crossref_primary_10_3389_fnins_2023_1167719 crossref_primary_10_1016_j_neuron_2019_04_014 crossref_primary_10_1016_j_neuroimage_2021_118264 crossref_primary_10_1038_s41598_024_55652_y crossref_primary_10_1523_JNEUROSCI_1424_22_2022 crossref_primary_10_1523_JNEUROSCI_0700_22_2023 |
| Cites_doi | 10.1364/JOSAA.17.000697 10.1016/j.cogpsych.2008.06.001 10.1523/JNEUROSCI.5023-14.2015 10.1371/journal.pbio.1000608 10.1038/nn.4244 10.1523/JNEUROSCI.3325-11.2012 10.1016/j.neuron.2012.01.010 10.1146/annurev-vision-082114-035447 10.18637/jss.v022.i07 10.1126/science.1074128 10.1038/33402 10.1177/1094428113493929 10.1073/pnas.1312567111 10.1073/pnas.1618228114 10.1371/journal.pcbi.1003553 10.1371/journal.pcbi.1003915 10.1167/16.6.14 10.1523/JNEUROSCI.4802-13.2014 10.1523/JNEUROSCI.0137-15.2015 10.1167/15.7.5 10.1073/pnas.1402594111 10.1111/1467-9450.00233 10.1523/JNEUROSCI.2036-12.2012 10.1371/journal.pone.0189828 10.1016/j.neuron.2013.06.015 10.1038/nature14539 10.1016/j.tics.2013.06.007 10.1016/j.neuroimage.2016.03.063 10.1073/pnas.1403112111 10.1038/nn.4296 10.7554/eLife.32962 10.1073/pnas.0700622104 10.1152/jn.00003.2007 10.1016/j.csda.2009.09.020 10.1016/j.neuroimage.2012.02.055 10.1038/14819 10.1523/JNEUROSCI.2270-15.2015 10.1073/pnas.1015666108 10.1038/srep27755 10.1016/S0959-4388(03)00040-0 10.1111/j.2044-8295.1958.tb00656.x 10.1073/pnas.1619788114 10.1016/j.neuroimage.2016.04.021 10.1167/15.12.573 10.1038/nn.3043 10.1111/j.1467-9280.2009.02316.x 10.1037/0033-295X.94.2.115 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111 2018 Bonner, Epstein 2018 Bonner, Epstein 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111 |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111 – notice: 2018 Bonner, Epstein 2018 Bonner, Epstein – notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bonner MF, Epstein RA (2018) Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol 14(4): e1006111. https://doi.org/10.1371/journal.pcbi.1006111 |
| DBID | AAYXX CITATION NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1006111 |
| DatabaseName | CrossRef PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Visual computation of scene affordances |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2039765171 oai_doaj_org_article_7697a2c3a2d14e90bac4df552b61d435 PMC5933806 A536809430 29684011 10_1371_journal_pcbi_1006111 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Singapore |
| GeographicLocations_xml | – name: Singapore – name: United States--US |
| GrantInformation_xml | – fundername: NIH HHS grantid: EY-022350 – fundername: ; grantid: EY022350 – fundername: ; grantid: EY027047 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV C1A H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM - AAPBV ABPTK ADACO BBAFP M~E |
| ID | FETCH-LOGICAL-c727t-f43c1ac5c0b70c9d6d6430a6b3828ce3a00cd928ee3114bfdf31639bbe13d59e3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432169600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Apr 03 16:02:37 EDT 2022 Fri Oct 03 12:53:18 EDT 2025 Tue Nov 04 01:44:33 EST 2025 Thu Oct 02 11:00:41 EDT 2025 Sat Nov 29 15:08:50 EST 2025 Tue Nov 11 10:39:21 EST 2025 Tue Nov 04 17:59:58 EST 2025 Thu Nov 13 14:31:14 EST 2025 Thu Nov 13 15:46:36 EST 2025 Mon Jul 21 05:52:10 EDT 2025 Sat Nov 29 06:31:15 EST 2025 Tue Nov 18 21:08:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c727t-f43c1ac5c0b70c9d6d6430a6b3828ce3a00cd928ee3114bfdf31639bbe13d59e3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-4992-674X |
| OpenAccessLink | https://www.proquest.com/docview/2039765171?pq-origsite=%requestingapplication% |
| PMID | 29684011 |
| PQID | 2039765171 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2039765171 doaj_primary_oai_doaj_org_article_7697a2c3a2d14e90bac4df552b61d435 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5933806 proquest_miscellaneous_2031025757 proquest_journals_2039765171 gale_infotracmisc_A536809430 gale_infotracacademiconefile_A536809430 gale_incontextgauss_ISR_A536809430 gale_incontextgauss_ISN_A536809430 pubmed_primary_29684011 crossref_primary_10_1371_journal_pcbi_1006111 crossref_citationtrail_10_1371_journal_pcbi_1006111 |
| PublicationCentury | 2000 |
| PublicationDate | 20180423 |
| PublicationDateYYYYMMDD | 2018-04-23 |
| PublicationDate_xml | – month: 4 year: 2018 text: 20180423 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | JS Cant (ref49) 2012; 32 MD Zeiler (ref17) 2014 B Zhou (ref3) 2014 MS Keil (ref37) 2000; 17 RM Cichy (ref25) 2017; 153 DA Mély (ref52) 2017 H Nili (ref62) 2014; 10 Y LeCun (ref1) 2015; 521 A Krizhevsky (ref2) 2012 ref18 JJ Gibson (ref27) 1958; 49 N Kriegeskorte (ref28) 2013; 17 L van der Maaten (ref63) 2008; 9 R Epstein (ref20) 1998; 392 M Riesenhuber (ref29) 1999; 2 S Nasr (ref36) 2014; 34 A Harel (ref55) 2014; 111 DJ Heeger (ref15) 2017; 114 N Kriegeskorte (ref10) 2015; 1 RM Stolier (ref59) 2016; 19 I Biederman (ref47) 1987; 94 SA Marchette (ref57) 2015; 35 IIA Groen (ref51) 2017; 372 J Yosinski (ref54) 2014 DB Walther (ref45) 2011; 108 D Berman (ref38) 2017; 12 ref42 KN Kay (ref16) 2017 PB Bryan (ref39) 2016; 10 D Garcia (ref60) 2010; 54 S Nasr (ref34) 2012; 32 IIA Groen (ref26) 2018; 7 EH Silson (ref40) 2016; 16 ref5 RA Epstein (ref24) 2014 DB Walther (ref35) 2014 RM Cichy (ref9) 2016; 6 D Marr (ref12) 1982 S Kornblith (ref46) 2013; 79 EA Maguire (ref21) 2001; 42 JB Julian (ref58) 2012; 60 KF Nimon (ref32) 2013; 16 SC Goslee (ref61) 2007; 22 DLK Yamins (ref7) 2014; 111 A Sharif Razavian (ref53) 2014 M Lescroart (ref48) 2015; 15 MR Greene (ref43) 2009; 20 MF Bonner (ref19) 2017; 114 M Carandini (ref14) 2012; 15 W Rawat (ref4) 2017 H Choo (ref44) 2016; 135 K Grill-Spector (ref22) 2003; 13 DLK Yamins (ref11) 2016; 19 T Serre (ref30) 2007; 104 K-I Tsutsui (ref50) 2002; 298 U Güçlü (ref8) 2015; 35 S-M Khaligh-Razavi (ref6) 2014; 10 I Charest (ref56) 2014; 111 RA Epstein (ref23) 2007; 97 EH Silson (ref41) 2015; 35 MR Greene (ref64) 2009; 58 R Rajimehr (ref33) 2011; 9 J DiCarlo James (ref13) 2012; 73 JW Peirce (ref31) 2015; 15 28044013 - Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714) 28167793 - Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1773-1782 17404214 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9 27105060 - J Vis. 2016;16(6):14 12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66 3575582 - Psychol Rev. 1987 Apr;94(2):115-47 27064591 - Front Hum Neurosci. 2016 Mar 30;10:137 25246586 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14565-70 18762289 - Cogn Psychol. 2009 Mar;58(2):137-76 24828628 - J Neurosci. 2014 May 14;34(20):6721-35 24795488 - Comput Stat Data Anal. 2010 Apr 1;54(4):1167-1178 26906502 - Nat Neurosci. 2016 Mar;19(3):356-65 29513219 - Elife. 2018 Mar 07;7:null 28416669 - Proc Natl Acad Sci U S A. 2017 May 2;114(18):4793-4798 26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14 27282108 - Sci Rep. 2016 Jun 10;6:27755 27135216 - Nat Neurosci. 2016 Jun;19(6):795-7 24812127 - Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24 24567402 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E962-71 19399976 - Psychol Sci. 2009 Apr;20(4):464-72 22325196 - Neuron. 2012 Feb 9;73(3):415-34 27039703 - Neuroimage. 2017 Jun;153:346-358 10757177 - J Opt Soc Am A Opt Image Sci Vis. 2000 Apr;17(4):697-710 26017442 - Nature. 2015 May 28;521(7553):436-44 23891401 - Neuron. 2013 Aug 21;79(4):766-81 10526343 - Nat Neurosci. 1999 Nov;2(11):1019-25 23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12 28599112 - Neural Comput. 2017 Sep;29(9):2352-2449 22398396 - Neuroimage. 2012 May 1;60(4):2357-64 24743308 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003553 21593417 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9661-6 29272283 - PLoS One. 2017 Dec 22;12 (12 ):e0189828 11501737 - Scand J Psychol. 2001 Jul;42(3):225-38 24474725 - Psychol Sci. 2014 Apr;25(4):851-60 23100415 - J Neurosci. 2012 Oct 24;32(43):14921-6 28793238 - Neuroimage. 2017 Aug 6;:null 17376855 - J Neurophysiol. 2007 May;97(5):3670-83 26053241 - J Vis. 2015;15(7):5 26311774 - J Neurosci. 2015 Aug 26;35(34):11921-35 26538658 - J Neurosci. 2015 Nov 4;35(44):14896-908 25375136 - PLoS Comput Biol. 2014 Nov 06;10(11):e1003915 12376700 - Science. 2002 Oct 11;298(5592):409-12 22649247 - J Neurosci. 2012 May 30;32(22):7685-700 22449960 - Nat Neurosci. 2012 Mar 27;15(4):507-9 28532370 - Annu Rev Vis Sci. 2015 Nov 24;1:417-446 27118087 - Neuroimage. 2016 Jul 15;135:32-44 13572790 - Br J Psychol. 1958 Aug;49(3):182-94 21483719 - PLoS Biol. 2011 Apr;9(4):e1000608 9560155 - Nature. 1998 Apr 9;392(6676):598-601 |
| References_xml | – volume: 17 start-page: 697 issue: 4 year: 2000 ident: ref37 article-title: Separating the chaff from the wheat: possible origins of the oblique effect publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.17.000697 – volume: 58 start-page: 137 issue: 2 year: 2009 ident: ref64 article-title: Recognition of natural scenes from global properties: Seeing the forest without representing the trees publication-title: Cognit Psychol doi: 10.1016/j.cogpsych.2008.06.001 – ident: ref5 – volume: 35 start-page: 10005 issue: 27 year: 2015 ident: ref8 article-title: Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 9 issue: 4 year: 2011 ident: ref33 article-title: The "parahippocampal place area" responds preferentially to high spatial frequencies in humans and monkeys publication-title: PLoS Biology doi: 10.1371/journal.pbio.1000608 – volume: 19 start-page: 356 issue: 3 year: 2016 ident: ref11 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat Neurosci doi: 10.1038/nn.4244 – year: 1982 ident: ref12 – volume: 32 start-page: 7685 issue: 22 year: 2012 ident: ref49 article-title: Object ensemble processing in human anterior-medial ventral visual cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3325-11.2012 – volume: 73 start-page: 415 issue: 3 year: 2012 ident: ref13 article-title: How Does the Brain Solve Visual Object Recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – volume: 1 start-page: 417 issue: 1 year: 2015 ident: ref10 article-title: Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing publication-title: Annual Review of Vision Science doi: 10.1146/annurev-vision-082114-035447 – volume: 22 start-page: 1 issue: 7 year: 2007 ident: ref61 article-title: The ecodist Package for Dissimilarity-based Analysis of Ecological Data publication-title: Journal of Statistical Software doi: 10.18637/jss.v022.i07 – volume: 298 start-page: 409 issue: 5592 year: 2002 ident: ref50 article-title: Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient publication-title: Science doi: 10.1126/science.1074128 – volume: 392 start-page: 598 issue: 6676 year: 1998 ident: ref20 article-title: A cortical representation the local visual environment publication-title: Nature doi: 10.1038/33402 – volume: 16 start-page: 650 issue: 4 year: 2013 ident: ref32 article-title: Understanding the Results of Multiple Linear Regression publication-title: Organizational Research Methods doi: 10.1177/1094428113493929 – volume: 111 start-page: E962 issue: 10 year: 2014 ident: ref55 article-title: Task context impacts visual object processing differentially across the cortex publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1312567111 – volume: 114 start-page: 4793 issue: 18 year: 2017 ident: ref19 article-title: Coding of navigational affordances in the human visual system publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1618228114 – volume: 10 start-page: e1003553 issue: 4 year: 2014 ident: ref62 article-title: A Toolbox for Representational Similarity Analysis publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1003553 – volume: 10 start-page: e1003915 issue: 11 year: 2014 ident: ref6 article-title: Deep Supervised, But Not Unsupervised, Models May Explain IT Cortical Representation publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003915 – start-page: 487 year: 2014 ident: ref3 article-title: Learning deep features for scene recognition using places database publication-title: Advances in neural information processing systems – start-page: 3320 year: 2014 ident: ref54 article-title: How transferable are features in deep neural networks? publication-title: Advances in neural information processing systems – volume: 16 start-page: 14 issue: 6 year: 2016 ident: ref40 article-title: Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex publication-title: Journal of Vision doi: 10.1167/16.6.14 – volume: 9 start-page: 2579 year: 2008 ident: ref63 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – start-page: 59 year: 2017 ident: ref52 article-title: Computational and Cognitive Neuroscience of Vision – volume: 372 issue: 1714 year: 2017 ident: ref51 article-title: Contributions of low- and high-level properties to neural processing of visual scenes in the human brain publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 10 issue: 137 year: 2016 ident: ref39 article-title: Rectilinear Edge Selectivity Is Insufficient to Explain the Category Selectivity of the Parahippocampal Place Area publication-title: Frontiers in Human Neuroscience – volume: 34 start-page: 6721 issue: 20 year: 2014 ident: ref36 article-title: Thinking Outside the Box: Rectilinear Shapes Selectively Activate Scene-Selective Cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4802-13.2014 – volume: 35 start-page: 11921 issue: 34 year: 2015 ident: ref41 article-title: A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0137-15.2015 – volume: 15 start-page: 5 issue: 7 year: 2015 ident: ref31 article-title: Understanding mid-level representations in visual processing publication-title: Journal of Vision doi: 10.1167/15.7.5 – volume: 111 start-page: 14565 issue: 40 year: 2014 ident: ref56 article-title: Unique semantic space in the brain of each beholder predicts perceived similarity publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1402594111 – volume: 42 start-page: 225 issue: 3 year: 2001 ident: ref21 article-title: The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings publication-title: Scand J Psychol doi: 10.1111/1467-9450.00233 – volume: 32 start-page: 14921 issue: 43 year: 2012 ident: ref34 article-title: A cardinal orientation bias in scene-selective visual cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2036-12.2012 – volume: 12 start-page: e0189828 issue: 12 year: 2017 ident: ref38 article-title: Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex publication-title: PLOS ONE doi: 10.1371/journal.pone.0189828 – volume: 79 start-page: 766 issue: 4 year: 2013 ident: ref46 article-title: A network for scene processing in the macaque temporal lobe publication-title: Neuron doi: 10.1016/j.neuron.2013.06.015 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: ref1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 17 start-page: 401 issue: 8 year: 2013 ident: ref28 article-title: Representational geometry: integrating cognition, computation, and the brain publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2013.06.007 – volume: 153 start-page: 346 year: 2017 ident: ref25 article-title: Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.063 – volume: 111 start-page: 8619 issue: 23 year: 2014 ident: ref7 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1403112111 – volume: 19 start-page: 795 issue: 6 year: 2016 ident: ref59 article-title: Neural pattern similarity reveals the inherent intersection of social categories publication-title: Nat Neurosci doi: 10.1038/nn.4296 – volume: 7 start-page: e32962 year: 2018 ident: ref26 article-title: Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior publication-title: eLife doi: 10.7554/eLife.32962 – volume: 104 start-page: 6424 issue: 15 year: 2007 ident: ref30 article-title: A feedforward architecture accounts for rapid categorization publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0700622104 – year: 2014 ident: ref35 article-title: Nonaccidental Properties Underlie Human Categorization of Complex Natural Scenes publication-title: Psychological Science – volume: 97 start-page: 3670 issue: 5 year: 2007 ident: ref23 article-title: Visual scene processing in familiar and unfamiliar environments publication-title: J Neurophysiol doi: 10.1152/jn.00003.2007 – volume: 54 start-page: 1167 issue: 4 year: 2010 ident: ref60 article-title: Robust smoothing of gridded data in one and higher dimensions with missing values publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2009.09.020 – start-page: 1097 year: 2012 ident: ref2 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – volume: 60 start-page: 2357 issue: 4 year: 2012 ident: ref58 article-title: An algorithmic method for functionally defining regions of interest in the ventral visual pathway publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.055 – volume: 2 start-page: 1019 issue: 11 year: 1999 ident: ref29 article-title: Hierarchical models of object recognition in cortex publication-title: Nat Neurosci doi: 10.1038/14819 – year: 2017 ident: ref4 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput – volume: 35 start-page: 14896 issue: 44 year: 2015 ident: ref57 article-title: Outside Looking In: Landmark Generalization in the Human Navigational System publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2270-15.2015 – volume: 108 start-page: 9661 issue: 23 year: 2011 ident: ref45 article-title: Simple line drawings suffice for functional MRI decoding of natural scene categories publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1015666108 – start-page: 806 year: 2014 ident: ref53 article-title: CNN features off-the-shelf: an astounding baseline for recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 6 start-page: 27755 year: 2016 ident: ref9 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Scientific Reports doi: 10.1038/srep27755 – volume: 13 start-page: 159 issue: 2 year: 2003 ident: ref22 article-title: The neural basis of object perception publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(03)00040-0 – year: 2017 ident: ref16 article-title: Principles for models of neural information processing publication-title: Neuroimage – year: 2014 ident: ref17 article-title: European conference on computer vision – volume: 49 start-page: 182 issue: 3 year: 1958 ident: ref27 article-title: Visually controlled locomotion and visual orientation in animals publication-title: Br J Psychol doi: 10.1111/j.2044-8295.1958.tb00656.x – volume: 114 start-page: 1773 issue: 8 year: 2017 ident: ref15 article-title: Theory of cortical function publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1619788114 – volume: 135 start-page: 32 year: 2016 ident: ref44 article-title: Contour junctions underlie neural representations of scene categories in high-level human visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.021 – ident: ref42 – volume: 15 start-page: 573 issue: 12 year: 2015 ident: ref48 article-title: A model of surface depth and orientation predicts BOLD responses in human scene-selective cortex publication-title: Journal of Vision doi: 10.1167/15.12.573 – volume: 15 start-page: 507 issue: 4 year: 2012 ident: ref14 article-title: From circuits to behavior: a bridge too far? publication-title: Nat Neurosci doi: 10.1038/nn.3043 – start-page: 105 year: 2014 ident: ref24 article-title: Scene vision: making sense of what we see – volume: 20 start-page: 464 issue: 4 year: 2009 ident: ref43 article-title: The Briefest of Glances: The Time Course of Natural Scene Understanding publication-title: Psychological Science doi: 10.1111/j.1467-9280.2009.02316.x – volume: 94 start-page: 115 issue: 2 year: 1987 ident: ref47 article-title: Recognition-by-components: A theory of human image understanding publication-title: Psychol Rev doi: 10.1037/0033-295X.94.2.115 – ident: ref18 – reference: 27105060 - J Vis. 2016;16(6):14 – reference: 22325196 - Neuron. 2012 Feb 9;73(3):415-34 – reference: 22449960 - Nat Neurosci. 2012 Mar 27;15(4):507-9 – reference: 21593417 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9661-6 – reference: 29272283 - PLoS One. 2017 Dec 22;12 (12 ):e0189828 – reference: 24828628 - J Neurosci. 2014 May 14;34(20):6721-35 – reference: 24795488 - Comput Stat Data Anal. 2010 Apr 1;54(4):1167-1178 – reference: 28044013 - Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714): – reference: 12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66 – reference: 27282108 - Sci Rep. 2016 Jun 10;6:27755 – reference: 26311774 - J Neurosci. 2015 Aug 26;35(34):11921-35 – reference: 18762289 - Cogn Psychol. 2009 Mar;58(2):137-76 – reference: 27135216 - Nat Neurosci. 2016 Jun;19(6):795-7 – reference: 23891401 - Neuron. 2013 Aug 21;79(4):766-81 – reference: 27039703 - Neuroimage. 2017 Jun;153:346-358 – reference: 28793238 - Neuroimage. 2017 Aug 6;:null – reference: 28532370 - Annu Rev Vis Sci. 2015 Nov 24;1:417-446 – reference: 27064591 - Front Hum Neurosci. 2016 Mar 30;10:137 – reference: 26053241 - J Vis. 2015;15(7):5 – reference: 12376700 - Science. 2002 Oct 11;298(5592):409-12 – reference: 19399976 - Psychol Sci. 2009 Apr;20(4):464-72 – reference: 27118087 - Neuroimage. 2016 Jul 15;135:32-44 – reference: 28416669 - Proc Natl Acad Sci U S A. 2017 May 2;114(18):4793-4798 – reference: 21483719 - PLoS Biol. 2011 Apr;9(4):e1000608 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 – reference: 24743308 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003553 – reference: 26906502 - Nat Neurosci. 2016 Mar;19(3):356-65 – reference: 28599112 - Neural Comput. 2017 Sep;29(9):2352-2449 – reference: 10526343 - Nat Neurosci. 1999 Nov;2(11):1019-25 – reference: 3575582 - Psychol Rev. 1987 Apr;94(2):115-47 – reference: 25246586 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14565-70 – reference: 11501737 - Scand J Psychol. 2001 Jul;42(3):225-38 – reference: 23100415 - J Neurosci. 2012 Oct 24;32(43):14921-6 – reference: 17376855 - J Neurophysiol. 2007 May;97(5):3670-83 – reference: 25375136 - PLoS Comput Biol. 2014 Nov 06;10(11):e1003915 – reference: 22649247 - J Neurosci. 2012 May 30;32(22):7685-700 – reference: 10757177 - J Opt Soc Am A Opt Image Sci Vis. 2000 Apr;17(4):697-710 – reference: 24812127 - Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24 – reference: 24474725 - Psychol Sci. 2014 Apr;25(4):851-60 – reference: 28167793 - Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1773-1782 – reference: 23876494 - Trends Cogn Sci. 2013 Aug;17(8):401-12 – reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601 – reference: 24567402 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E962-71 – reference: 17404214 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9 – reference: 26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14 – reference: 29513219 - Elife. 2018 Mar 07;7:null – reference: 26538658 - J Neurosci. 2015 Nov 4;35(44):14896-908 – reference: 22398396 - Neuroimage. 2012 May 1;60(4):2357-64 – reference: 13572790 - Br J Psychol. 1958 Aug;49(3):182-94 |
| SSID | ssj0035896 |
| Score | 2.4776192 |
| Snippet | Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1006111 |
| SubjectTerms | Algorithms Artificial neural networks Biology and Life Sciences Coding Computation Computer and Information Sciences Computer applications Computer vision Cortex (occipital) Cortex (somatosensory) Engineering and Technology Functional magnetic resonance imaging Image classification Investigations Magnetic resonance imaging Medicine and Health Sciences Navigation behavior Neural circuitry Neural networks Neurobiology Neurosciences Physical Sciences Physiological aspects Research and Analysis Methods Retina Social Sciences Software Somatosensory cortex Spatial distribution Visual cortex Visual field Visual fields Visual stimuli |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKPgift_erRJF8Kle07RJ83iKh4Is4gfsW8mnFvbapd098L-_maa7XOXkXnxtpoXMTJLfpDO_IeRNKEMAoGoTy4xIABHLxKTcJbA4skwrI0s_FAp_kctluVqpr9dafWFOWKQHjoo7lUJJnVmuM8dyr1Kjbe7g85kRzMFZj7tvKtU-mIp7MC_KoTMXNsVJJM9XY9Ecl-x0tNG7jTU15ggIxtjkUBq4-w879Gyzbvub4OffWZTXjqXzh-TBiCfpWZzHI3LHN4_Jvdhh8s8T4mLXhvHGj154LPSt-4ueYvFYt8YiJwoB6HCjTbuYMOt7um0pIEOqA-a-o2PQDd7ad0i_SttAL-t-By8gFZTvn5Kf5x9_fPiUjI0VEgtwZZuEnFumbWFTI1OrnHCAS1ItDIf4y3qu09Q6lYGZOIRLJrjAAbYpYzzjrlCePyOzpm38EaHKSmN0EYTIZR4YwEEksDd5nqsASEHPCd9rtrIj6zg2v1hXw680CdFHVFSF9qhGe8xJcnhrE1k3bpF_j0Y7yCJn9vAAPKkaPam6zZPm5DWavEJWjAbTbn7pXd9Xn78vq7OCixJzMNN_Cn2bCL0dhUILk7V6LHUAlSHb1kRyMZGEtW0nw0fofvs591WWIn4smIQpL_YuefPwq8MwfhRT6Rrf7gYZAJWA0uWcPI8efNBbppD7B_UpJ749Uex0pKl_D6TkheJgenH8PyxxQu4DLi3xp13GF2S27Xb-BblrL7d1370cVvoVXfFY1A priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA4yKvjiXXd0lCiCT9W2aZPmcRUHhWVYvMC-hVzXwmw7tDML_nvPaTvVLjuIr5OToTmX9jvJOV8IeROKEACo2sgmhkeAiEVkYuYiCI401dKIwneNwiditSrOzuTpn0Txygk-E8n7QafvNtaUeKbPE2zlvZkyzjHZWp6e7N-8LC8kH9rjDs2cfH46lv7xXTzbrOv2OqB5tV7yrw_Q8t7_Pvp9cneAmvS4940H5IavHpLb_eWTvx4R11_oMGwG0guPPcBle9FS7Ctr1tj_RCE37Ta7adPX0vqWbmsKoJHqgGXx6DN0gxv6DTKz0jrQy7LdwQRkifLtY_Jj-en7x8_RcOdCZAHJbKOQMZtom9vYiNhKxx1AllhzwyA1s57pOLZOpmBBBpmUCS4wQHTSGJ8wl0vPnpBZVVf-iFBphTE6D5xnIgsJIEXktjdZlskAIELPCdubQtmBkBzvxVir7pRNQGLSK0qh_tSgvzmJxlmbnpDjH_If0MqjLNJpdz-AodQQnUpwKXRqmU5dknkZG20zBz6cGp44AJRz8hp9RCFhRoUVOed617bqy7eVOs4ZL7A8Mz4o9HUi9HYQCjUs1uqhCwJUhkRcE8nFRBLC3k6Gj9Bf92tuVRojtMwTAUte7H34-uFX4zD-KVbZVb7edTKANwHAizl52rv8qLdUIi0Q6lNMgmGi2OlIVf7s-MpzycD0_NnhJ35O7gAQLfCULmULMts2O_-C3LKX27JtXnZB_hu0Y1Lp priority: 102 providerName: Public Library of Science |
| Title | Computational mechanisms underlying cortical responses to the affordance properties of visual scenes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29684011 https://www.proquest.com/docview/2039765171 https://www.proquest.com/docview/2031025757 https://pubmed.ncbi.nlm.nih.gov/PMC5933806 https://doaj.org/article/7697a2c3a2d14e90bac4df552b61d435 http://dx.doi.org/10.1371/journal.pcbi.1006111 |
| Volume | 14 |
| WOSCitedRecordID | wos000432169600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMKozIIiaewOE7i-AltaBUTo4oGSIWXyHbiUalLStNO4r_nznELQQMeePFDfK5q3_n88_k-CHlhM2sBqJrAMJ0GgIhFoENeBrA5okhJLbLKBQqfiskkm05l7g1urXer3OhEp6jLxqCNHC7peHImTLDXi28BVo3C11VfQmOH7GKWhMi57uUbTcyTzNXnwtI4geDx1IfOccEOPKdeLYyeoadAyhjrHU0ug_9WTw8W86a9CoT-7kv5y-E0vv2_07pDbnlYSg87ObpLrlX1PXKjK1T5_T4pu-IP3nBILyqMF561Fy3FGLTlHGOlKNxjnWGcLju_26qlq4YCwKTKogs9yhddoPF_iVlcaWPp5axdwwDMKFW1D8in8fHHN28DX58hMIB6VoGNuWHKJCbUIjSyTEuAN6FKNYdrnKm4CkNTygi4zeHWpW1pOaA_qXXFeJnIij8kg7qpqz1CpRFaq8SmaSxiywBVYh58HcextAA41JDwDWsK45OXYw2NeeFe5ARcYrqFKpChhWfokATbUYsuecc_6I-Q61taTL3tPjTL88Lv5EKkUqjIcBWVLK5kqJWJS5D3SKesBPA5JM9RZgpMrlGj9865WrdtcfJhUhwmPM3QlTP8I9FZj-ilJ7INTNYoHzEBS4ZJu3qU-z1KUBGm172H8ruZc1v8lDoYuZHLq7ufbbvxR9Ejr66ataMBbApgXwzJo24LbNctkphCCNdT9DZHb2H7PfXsq8ttnkgOrE8f__1vPSE3Abhm-KoX8X0yWC3X1VNy3VyuZu1yRHbEVLg2G5Hdo-NJfjZythZox_kptO9EMHKqAto8-QJU-cn7_PMP8INvvg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoILb-hCAYNAnAJxnMTxAaHyqLraskLQSnsLtmOXlbbJkuwW9U_xG5nJYyGowKkHrvE4iicz42_seRDyxCXOAVA1nmE69gARC0_7PPNAOYJASS0SWycK74nJJJlO5YcN8r3LhcGwys4m1oY6KwyekYOTjjtnxAR7tfjqYdcovF3tWmg0YjG2J9_AZatejt7C_30aBDvv9t_sem1XAc_AXr30XMgNUyYyvha-kVmcwabsq1hzcD6M5cr3TSYD-EYOvoJ2meOAWaTWlvEskpbDe8-R8yFPBOrVWHid5edRUvcDw1Y8nuDhtE3V44K9aCXj-cLoGUYmxIyx3lZYdwxY7wuDxbyoTgO9v8du_rIZ7lz939h4jVxpYTfdbvTkOtmw-Q1ysWnEeXKTZE1zi_ZglB5ZzIeeVUcVxRy7co65YBT89Prgn5ZNXLGt6LKgAKCpcpgigPpDF3i5UWKVWlo4ejyrVjABK2bZ6hY5OJMl3iaDvMjtJqHSCK1V5OI4FKFjgJqxzr8Ow1A6AFRqSHgnCqlpi7Njj5B5Wt84CnDSGkalKEBpK0BD4q1nLZriJP-gf41StqbF0uL1g6I8TFtLlYpYChUYroKMhVb6WpkwA30OdMwyANdD8hhlNMXiITlGJx2qVVWlo0-TdDvicYKhqv4fiT72iJ61RK6AxRrVZoQAy7AoWY9yq0cJJtD0hjdRX7o1V-lPKYeZnR6cPvxoPYwvxYjD3BarmgawNzgzYkjuNCq35lsgsUQS8lP0lLHH2P5IPvtS126PJIdfH9_9-2c9JJd299_vpXujyfgeuQwgPcEbzIBvkcGyXNn75II5Xs6q8kFtgCj5fNaq-gN5gMS1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbK8hAX3tCFAgaBOAXiOInjA0KFUrFqtVrxkFa9BNuxy0rbZEl2i_rX-HXM5LEQVODUA9d4HNmTGc838TwIeeIS5wCoGs8wHXuAiIWnfZ55oBxBoKQWia0ThffFeJxMp3KyQb53uTAYVtmdifVBnRUG_5GDk46WM2KCvXBtWMRkZ_fV4quHHaTwprVrp9GIyJ49-QbuW_VytAPf-mkQ7L79-Oad13YY8AzY7aXnQm6YMpHxtfCNzOIMDLSvYs3BETGWK983mQxgvRz8Bu0yxwG_SK0t41kkLYf3niPnBfiYGE44iQ46K8CjpO4Nhm15PMHDaZu2x2H9rZQ8Xxg9wyiFmDHWM4t194C1jRgs5kV1GgD-PY7zF8O4e_V_Zuk1cqWF43S70Z_rZMPmN8jFpkHnyU2SNU0v2h-m9MhinvSsOqoo5t6Vc8wRo-C_1xcCtGzijW1FlwUFYE2Vw9QB1Cu6wEuPEqvX0sLR41m1gglYSctWt8inM9nibTLIi9xuEiqN0FpFLo5DEToGaBrr_-swDKUDoKWGhHdikZq2aDv2Dpmn9U2kAOetYVSKwpS2wjQk3nrWoila8g_61yhxa1osOV4_KMrDtD3BUhFLoQLDVZCx0EpfKxNmoOeBjlkGoHtIHqO8plhUJEdZOlSrqkpHH8bpdsTjBENY_T8Sve8RPWuJXAGbNarNFAGWYbGyHuVWjxKORtMb3kTd6fZcpT8lHmZ2OnH68KP1ML4UIxFzW6xqGsDk4OSIIbnTqN-ab4HE0knIT9FTzB5j-yP57Etd0z2SHD59fPfvy3pILoGGpvuj8d49chmwe4IXmwHfIoNlubL3yQVzvJxV5YP6LKLk81lr6g_tq83Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+mechanisms+underlying+cortical+responses+to+the+affordance+properties+of+visual+scenes&rft.jtitle=PLoS+computational+biology&rft.au=Bonner%2C+Michael+F&rft.au=Epstein%2C+Russell+A&rft.date=2018-04-23&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006111&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |