Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model

The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of ge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS genetics Ročník 19; číslo 9; s. e1010942
Hlavní autoři: Wang, Jiacheng, Chen, Yaojia, Zou, Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 13.09.2023
Public Library of Science (PLoS)
Témata:
ISSN:1553-7404, 1553-7390, 1553-7404
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.
AbstractList The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition. Although many methods have been proposed to infer the gene regulatory network of a single cell, they only focus on the regulatory relationships of pairs of genes and ignore the global regulatory structure. Here, we present a deep learning-based model to learn the global regulatory structure and reconstruct the gene regulatory networks from single-cell RNA sequencing data with a graph view. We utilize the weighted gene co-expression analysis to build a prior regulatory graph of gene and a graph autoencoder to deconstruct the latent regulatory structure among genes. We performed extensive experiments on varieties of single-cell RNA sequencing datasets and compared our method with 9 stat-of-the-art gene regulatory network inference method. The results show that our method can significantly improve the accuracy of gene regulatory network inference and can be applied to identify key regulators in a wide range of scenarios.
The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.
The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.
Audience Academic
Author Chen, Yaojia
Wang, Jiacheng
Zou, Quan
AuthorAffiliation The Institute of Biomedical Sciences, CHINA
2 Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
1 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
AuthorAffiliation_xml – name: 1 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
– name: 2 Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
– name: The Institute of Biomedical Sciences, CHINA
Author_xml – sequence: 1
  givenname: Jiacheng
  orcidid: 0000-0001-8580-0493
  surname: Wang
  fullname: Wang, Jiacheng
– sequence: 2
  givenname: Yaojia
  surname: Chen
  fullname: Chen, Yaojia
– sequence: 3
  givenname: Quan
  orcidid: 0000-0001-6406-1142
  surname: Zou
  fullname: Zou, Quan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37703293$$D View this record in MEDLINE/PubMed
BookMark eNqVk2uL1DAUhousuBf9B6IFQfTDjEnTTpr9IsviZWBxwdtHQyY96WRNkzFJXfffmzrdZbosohTSkjzve3rOyTnM9qyzkGWPMZpjQvGrC9d7K8x804KdY4QRK4t72QGuKjKjJSr3dr73s8MQLhAiVc3og2yfUIpIwchB9m1pFXivbZsnH8g9tL0R0fmr3EK8dP57rrzr8pAIAzMJxuTRCxuk15voOgj5pY7rvPVis85FHx1Y6RrweZdW8zC7r4QJ8Gh8H2Vf3r75fPp-dnb-bnl6cjaTtKBxJglWpKoQbhRVBSLQwGIlaMOUoowWJa0lyLpWlAIugeCyrMq6oqIQQpGC1OQoe7r13RgX-FiawAlaMExZhUgilluiceKCb7zuhL_iTmj-Z8P5lgsftTTAm0pWtC6SEBelYlQwIVdsgYnChWxKlLxej9H6VQeNBJtKYiam0xOr17x1PzlGFWYVGxxejA7e_eghRN7pMBRXWHB94EW9KBlKDRt-_Nkt9O70RqoVKQNtlUuB5WDKT-giZVNTTBM1v4NKTwOdlul-KZ32J4KXE0FiIvyKrehD4MtPH_-D_fDv7PnXKft8h12DMHEdnOmjdjZMwSe7bbnpx_VtT0C5BaR3IXhQNwhGfBiq69LyYaj4OFRJdnxLJnUUQ_hUPW3-Lv4NhA4nIw
CitedBy_id crossref_primary_10_1016_j_jorganchem_2025_123572
crossref_primary_10_1007_s41060_025_00815_x
crossref_primary_10_1080_09276440_2025_2512679
crossref_primary_10_3390_computation13050124
crossref_primary_10_1080_03639045_2025_2542467
crossref_primary_10_1093_bib_bbaf490
crossref_primary_10_1016_j_engappai_2024_109914
crossref_primary_10_1038_s41592_024_02390_8
crossref_primary_10_1080_09276440_2025_2532916
crossref_primary_10_1093_bioinformatics_btaf210
crossref_primary_10_1016_j_rineng_2025_105389
crossref_primary_10_1016_j_ecmx_2025_101023
crossref_primary_10_1016_j_engappai_2025_110900
crossref_primary_10_1016_j_jcou_2025_103218
crossref_primary_10_1080_12269328_2025_2505174
crossref_primary_10_1016_j_engappai_2024_108938
crossref_primary_10_1007_s10586_025_05202_6
crossref_primary_10_1016_j_rechem_2025_102441
crossref_primary_10_1016_j_rineng_2025_106514
crossref_primary_10_52601_bpr_2024_240006
crossref_primary_10_1038_s41598_025_92564_x
crossref_primary_10_1016_j_neucom_2025_129700
crossref_primary_10_1016_j_knosys_2025_113724
crossref_primary_10_1186_s12967_024_05706_6
crossref_primary_10_1007_s10586_024_05086_y
crossref_primary_10_1016_j_omtn_2025_102583
crossref_primary_10_1063_5_0258440
crossref_primary_10_26599_BDMA_2024_9020018
crossref_primary_10_1007_s10278_025_01435_4
crossref_primary_10_1016_j_bmcl_2025_130396
crossref_primary_10_1016_j_xpro_2023_102835
crossref_primary_10_1038_s41598_025_05003_2
crossref_primary_10_1007_s10661_025_13616_3
crossref_primary_10_1016_j_epsr_2025_111717
crossref_primary_10_1016_j_asej_2025_103414
crossref_primary_10_1093_bib_bbaf359
crossref_primary_10_1080_15397734_2025_2555424
crossref_primary_10_1039_D5BM00609K
crossref_primary_10_1038_s41598_025_95969_w
crossref_primary_10_1186_s40537_025_01073_1
crossref_primary_10_1002_advs_202409990
crossref_primary_10_1093_bioinformatics_btaf074
crossref_primary_10_1109_JBHI_2024_3476490
crossref_primary_10_1016_j_jics_2024_101530
crossref_primary_10_1093_bib_bbaf349
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1016_j_compbiomed_2024_108174
crossref_primary_10_1080_1536383X_2025_2553699
crossref_primary_10_1007_s10586_025_05455_1
crossref_primary_10_1016_j_indcrop_2025_121602
crossref_primary_10_1093_bib_bbae457
crossref_primary_10_1002_bies_202300210
crossref_primary_10_3390_ijms25179482
crossref_primary_10_1098_rsfs_2025_0014
crossref_primary_10_1039_D5BM01060H
crossref_primary_10_1016_j_engappai_2025_110177
crossref_primary_10_1016_j_jcou_2025_103021
crossref_primary_10_1016_j_ymeth_2024_09_010
crossref_primary_10_1016_j_neucom_2025_129687
crossref_primary_10_1016_j_aej_2025_08_007
crossref_primary_10_1016_j_cjac_2025_100626
crossref_primary_10_1093_bib_bbae526
crossref_primary_10_1016_j_compbiolchem_2024_108207
crossref_primary_10_1016_j_indcrop_2025_121916
crossref_primary_10_1016_j_jprocont_2025_103411
crossref_primary_10_1038_s41598_025_17610_0
crossref_primary_10_1038_s41598_025_98604_w
crossref_primary_10_1038_s41540_025_00517_x
Cites_doi 10.1038/s41592-019-0690-6
10.2202/1544-6115.1128
10.1093/bib/bbab325
10.1073/pnas.0306244101
10.1186/s13059-016-1033-x
10.1111/his.13184
10.1093/bioinformatics/btx194
10.1016/j.celrep.2015.05.016
10.1016/j.cellsig.2012.02.007
10.1084/jem.188.3.589
10.1093/bioinformatics/btw729
10.1016/j.cell.2021.12.045
10.1186/1471-213X-7-80
10.1371/journal.pone.0111430
10.1016/j.cell.2019.01.006
10.1038/s41467-023-36559-0
10.1158/1538-7445.AM2020-4409
10.1182/blood-2011-05-356352
10.1186/s13059-017-1382-0
10.1038/ni.1609
10.1038/sj.onc.1208404
10.1038/nbt.2859
10.1093/nar/gkaa394
10.1016/j.gpb.2019.09.006
10.3389/fimmu.2019.01433
10.1038/ni1454
10.1038/35036627
10.1038/s43588-021-00099-8
10.1016/S0002-9440(10)65639-8
10.1158/1538-7445.AM2021-1229
10.1038/nature13437
10.1158/1538-7445.SABCS19-P3-01-24
10.1371/journal.pcbi.1006098
10.1038/srep11432
10.1182/blood-2013-02-484188
10.1016/j.cels.2017.08.014
10.1093/bioinformatics/btx605
10.1093/bioinformatics/btp101
10.1016/j.tibtech.2020.02.013
10.18632/oncotarget.11743
10.1016/j.celrep.2022.110333
10.1093/bioinformatics/btaa576
10.1182/blood.V85.10.2918.bloodjournal85102918
10.1093/database/bav095
10.4049/jimmunol.181.7.4590
10.1016/j.sigpro.2014.04.003
10.1158/1541-7786.MCR-09-0494
10.1093/bioinformatics/bty916
10.1038/s41523-021-00257-1
10.1073/pnas.1911536116
10.1182/blood-2016-05-716480
10.1038/nmeth.4463
10.1038/s41467-018-02866-0
10.1038/s41467-018-06052-0
10.1126/science.1245316
10.1016/j.cels.2020.02.003
10.1371/journal.pcbi.1000936
10.15252/embr.201846255
10.1186/s12976-015-0023-0
10.1016/j.omto.2021.09.002
10.1038/nature13119
10.1371/journal.pone.0022649
10.1093/bioinformatics/btx575
ContentType Journal Article
Copyright Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Wang et al 2023 Wang et al
Copyright_xml – notice: Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Wang et al 2023 Wang et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1010942
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef

MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate DeepRIG for single-cell gene regulatory network inference
EISSN 1553-7404
ExternalDocumentID 3069179503
oai_doaj_org_article_d5c5782179124f97a9acb9613f12cd40
PMC10519590
A767828717
37703293
10_1371_journal_pgen_1010942
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 62131004 and 62250028
– fundername: ;
  grantid: 2022D040
– fundername: ;
  grantid: 62301369
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c727t-c31f35501df7f203ede6ba7d9ff7972478cec88f77e14e314454857a2aaf32383
IEDL.DBID M7P
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001067521400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Tue Aug 12 00:51:26 EDT 2025
Fri Oct 03 12:53:32 EDT 2025
Tue Nov 04 02:06:10 EST 2025
Fri Sep 05 11:44:43 EDT 2025
Sat Nov 29 14:45:14 EST 2025
Sat Nov 29 14:12:44 EST 2025
Tue Nov 04 18:33:47 EST 2025
Wed Nov 26 11:14:26 EST 2025
Wed Nov 26 11:04:52 EST 2025
Wed Nov 26 11:16:59 EST 2025
Thu May 22 21:21:53 EDT 2025
Wed Feb 19 02:06:38 EST 2025
Tue Nov 18 22:32:11 EST 2025
Sat Nov 29 02:18:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-c31f35501df7f203ede6ba7d9ff7972478cec88f77e14e314454857a2aaf32383
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-8580-0493
0000-0001-6406-1142
OpenAccessLink https://www.proquest.com/docview/3069179503?pq-origsite=%requestingapplication%
PMID 37703293
PQID 3069179503
PQPubID 1436339
PageCount e1010942
ParticipantIDs plos_journals_3069179503
doaj_primary_oai_doaj_org_article_d5c5782179124f97a9acb9613f12cd40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10519590
proquest_miscellaneous_2864900033
proquest_journals_3069179503
gale_infotracmisc_A767828717
gale_infotracacademiconefile_A767828717
gale_incontextgauss_ISR_A767828717
gale_incontextgauss_ISN_A767828717
gale_incontextgauss_IOV_A767828717
gale_healthsolutions_A767828717
pubmed_primary_37703293
crossref_primary_10_1371_journal_pgen_1010942
crossref_citationtrail_10_1371_journal_pgen_1010942
PublicationCentury 2000
PublicationDate 2023-09-13
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Z-P Liu (pgen.1010942.ref033) 2015; 2015
S Kongara (pgen.1010942.ref065) 2010; 8
HR Ueda (pgen.1010942.ref056) 2004; 101
M Sanchez-Castillo (pgen.1010942.ref008) 2018; 34
H-m Chen (pgen.1010942.ref046) 1995; 85
A Deshpande (pgen.1010942.ref010) 2022; 38
A Lovrics (pgen.1010942.ref024) 2014; 9
R Ma (pgen.1010942.ref037) 2014; 104
R Vishnubalaji (pgen.1010942.ref064) 2021; 23
T Kipf (pgen.1010942.ref039) 2017
X Glorot (pgen.1010942.ref042) 2010
M Miyake (pgen.1010942.ref059) 1996; 56 6
HJ Kwon (pgen.1010942.ref061) 2017; 70
G Bindea (pgen.1010942.ref067) 2009; 25
J Krumsiek (pgen.1010942.ref025) 2011; 6
C Schmidl (pgen.1010942.ref047) 2014; 123
AP Hsu (pgen.1010942.ref048) 2011; 118
AT Specht (pgen.1010942.ref003) 2016; 33
Y Cui (pgen.1010942.ref063) 2020; 80
A Ma (pgen.1010942.ref016) 2020; 48
M Gururajan (pgen.1010942.ref051) 2008; 181
LC Spender (pgen.1010942.ref053) 2005; 24
Assoc Advancement Artificial I (pgen.1010942.ref020)
T Hayashi (pgen.1010942.ref043) 2018; 9
A Ma (pgen.1010942.ref072) 2020; 38
X Qiu (pgen.1010942.ref006) 2020; 10
AK Shalek (pgen.1010942.ref028) 2014; 510
C Trapnell (pgen.1010942.ref002) 2014; 32
S. Kim (pgen.1010942.ref004) 2015; 22
C Zhang (pgen.1010942.ref070) 2016; 7
P-C Aubin-Frankowski (pgen.1010942.ref012) 2020; 36
S Nestorowa (pgen.1010942.ref030) 2016; 128
DP Kingma (pgen.1010942.ref041) 2015
O Zimmerman (pgen.1010942.ref049) 2019; 10
Q Deng (pgen.1010942.ref001) 2014; 343
H Shu (pgen.1010942.ref021) 2021; 1
H Jeong (pgen.1010942.ref054) 2000; 407
TN Kipf (pgen.1010942.ref038) 2016
E Almaas (pgen.1010942.ref055) 2006
Q Ma (pgen.1010942.ref017) 2020; 80
PR Wilker (pgen.1010942.ref050) 2008; 9
J Chen (pgen.1010942.ref019) 2021; 22
H Han (pgen.1010942.ref034) 2015; 5
X Chen (pgen.1010942.ref069) 2014; 508
S Oki (pgen.1010942.ref031) 2018; 19
FA Wolf (pgen.1010942.ref032) 2018; 19
C Cobaleda (pgen.1010942.ref052) 2007; 8
H Matsumoto (pgen.1010942.ref013) 2017; 33
SE Stanton (pgen.1010942.ref066) 2021; 7
T Moerman (pgen.1010942.ref009) 2019; 35
WZ Ouma (pgen.1010942.ref057) 2018; 14
Y Yuan (pgen.1010942.ref018) 2019; 116
G Schiebinger (pgen.1010942.ref014) 2019; 176
D Shimosato (pgen.1010942.ref029) 2007; 7
B Yang (pgen.1010942.ref040) 2015
N Papili Gao (pgen.1010942.ref011) 2018; 34
TE Chan (pgen.1010942.ref005) 2017; 5
CE Giacomantonio (pgen.1010942.ref023) 2010; 6
A Ma (pgen.1010942.ref071) 2023; 14
M Karaayvaz (pgen.1010942.ref058) 2018; 9
CI Huang (pgen.1010942.ref060) 1998; 153
A Pratapa (pgen.1010942.ref022) 2020; 17
Q Zhang (pgen.1010942.ref044) 2020; 18
S Aibar (pgen.1010942.ref015) 2017; 14
R Huber (pgen.1010942.ref045) 2012; 24
O Ríos (pgen.1010942.ref026) 2015; 12
L He (pgen.1010942.ref062) 2021; 81
X Qiu (pgen.1010942.ref007) 2022; 185
L-F Chu (pgen.1010942.ref027) 2016; 17
C Pina (pgen.1010942.ref035) 2015; 11
B Zhang (pgen.1010942.ref036) 2005; 4
K Boggio (pgen.1010942.ref068) 1998; 188
References_xml – volume: 17
  start-page: 147
  issue: 2
  year: 2020
  ident: pgen.1010942.ref022
  article-title: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0690-6
– volume: 4
  issue: 1
  year: 2005
  ident: pgen.1010942.ref036
  article-title: A General Framework for Weighted Gene Co-Expression Network Analysis.
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1128
– volume: 22
  start-page: bbab325
  issue: 6
  year: 2021
  ident: pgen.1010942.ref019
  article-title: DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab325
– volume: 101
  start-page: 3765
  issue: 11
  year: 2004
  ident: pgen.1010942.ref056
  article-title: Universality and flexibility in gene expression from bacteria to human
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0306244101
– volume: 17
  start-page: 173
  issue: 1
  year: 2016
  ident: pgen.1010942.ref027
  article-title: Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1033-x
– volume: 70
  start-page: 1155
  issue: 7
  year: 2017
  ident: pgen.1010942.ref061
  article-title: Prognostic significance of CD9 expression differs between tumour cells and stromal immune cells, and depends on the molecular subtype of the invasive breast carcinoma.
  publication-title: Histopathology
  doi: 10.1111/his.13184
– volume: 33
  start-page: 2314
  issue: 15
  year: 2017
  ident: pgen.1010942.ref013
  article-title: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx194
– volume: 11
  start-page: 1503
  year: 2015
  ident: pgen.1010942.ref035
  article-title: Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.05.016
– volume: 24
  start-page: 1287
  issue: 6
  year: 2012
  ident: pgen.1010942.ref045
  article-title: Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2012.02.007
– volume: 188
  start-page: 589
  issue: 3
  year: 1998
  ident: pgen.1010942.ref068
  article-title: Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice
  publication-title: J Exp Med
  doi: 10.1084/jem.188.3.589
– volume: 33
  start-page: 764
  issue: 5
  year: 2016
  ident: pgen.1010942.ref003
  article-title: LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw729
– volume: 185
  start-page: 690
  issue: 4
  year: 2022
  ident: pgen.1010942.ref007
  article-title: Mapping transcriptomic vector fields of single cells
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.045
– volume: 7
  start-page: 80
  issue: 1
  year: 2007
  ident: pgen.1010942.ref029
  article-title: Extra-embryonic endoderm cells derived from ES cells induced by GATA Factors acquire the character of XEN cells
  publication-title: BMC Dev Biol
  doi: 10.1186/1471-213X-7-80
– volume: 9
  start-page: e111430
  issue: 11
  year: 2014
  ident: pgen.1010942.ref024
  article-title: Boolean Modelling Reveals New Regulatory Connections between Transcription Factors Orchestrating the Development of the Ventral Spinal Cord
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111430
– volume: 176
  start-page: 928
  issue: 4
  year: 2019
  ident: pgen.1010942.ref014
  article-title: Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.006
– year: 2010
  ident: pgen.1010942.ref042
  article-title: Understanding the difficulty of training deep feedforward neural networks.
  publication-title: AISTATS
– volume: 14
  start-page: 964
  issue: 1
  year: 2023
  ident: pgen.1010942.ref071
  article-title: Single-cell biological network inference using a heterogeneous graph transformer.
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-36559-0
– volume: 80
  start-page: 4409
  issue: 16_Supplement
  year: 2020
  ident: pgen.1010942.ref017
  article-title: Abstract 4409: Towards cell-type-specific gene regulation in heterogeneous cancer cells
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.AM2020-4409
– volume: 118
  start-page: 2653
  issue: 10
  year: 2011
  ident: pgen.1010942.ref048
  article-title: Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome.
  publication-title: Blood
  doi: 10.1182/blood-2011-05-356352
– volume: 19
  start-page: 15
  issue: 1
  year: 2018
  ident: pgen.1010942.ref032
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 9
  start-page: 603
  issue: 6
  year: 2008
  ident: pgen.1010942.ref050
  article-title: Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation
  publication-title: Nat Immunol
  doi: 10.1038/ni.1609
– volume: 24
  start-page: 1873
  issue: 11
  year: 2005
  ident: pgen.1010942.ref053
  article-title: Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208404
– volume: 32
  start-page: 381
  issue: 4
  year: 2014
  ident: pgen.1010942.ref002
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– volume: 48
  start-page: W275
  issue: W1
  year: 2020
  ident: pgen.1010942.ref016
  article-title: IRIS3: integrated cell-type-specific regulon inference server from single-cell RNA-Seq
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa394
– volume: 18
  start-page: 120
  issue: 2
  year: 2020
  ident: pgen.1010942.ref044
  article-title: hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2019.09.006
– volume: 10
  year: 2019
  ident: pgen.1010942.ref049
  article-title: STAT1 Gain-of-Function Mutations Cause High Total STAT1 Levels With Normal Dephosphorylation.
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2019.01433
– volume: 8
  start-page: 463
  issue: 5
  year: 2007
  ident: pgen.1010942.ref052
  article-title: Pax5: the guardian of B cell identity and function
  publication-title: Nat Immunol
  doi: 10.1038/ni1454
– volume: 407
  start-page: 651
  issue: 6804
  year: 2000
  ident: pgen.1010942.ref054
  article-title: The large-scale organization of metabolic networks
  publication-title: Nature
  doi: 10.1038/35036627
– volume: 1
  start-page: 491
  issue: 7
  year: 2021
  ident: pgen.1010942.ref021
  article-title: Modeling gene regulatory networks using neural network architectures.
  publication-title: Nat Comput Sci.
  doi: 10.1038/s43588-021-00099-8
– volume: 153
  start-page: 973
  issue: 3
  year: 1998
  ident: pgen.1010942.ref060
  article-title: Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)65639-8
– start-page: 99
  ident: pgen.1010942.ref020
  article-title: Gene Regulatory Network Inference using 3D Convolutional Neural Network.
  publication-title: THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE2021.
– volume: 81
  start-page: 1229
  issue: 13_Supplement
  year: 2021
  ident: pgen.1010942.ref062
  article-title: Abstract 1229: Novel Arf1-targeting ã-dipeptides counteract triple negative breast cancer by inducing autophagic death
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.AM2021-1229
– volume: 510
  start-page: 363
  issue: 7505
  year: 2014
  ident: pgen.1010942.ref028
  article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
  publication-title: Nature
  doi: 10.1038/nature13437
– start-page: 1
  volume-title: Power Laws, Scale-Free Networks and Genome Biology
  year: 2006
  ident: pgen.1010942.ref055
– volume: 22
  start-page: 665
  issue: 6
  year: 2015
  ident: pgen.1010942.ref004
  article-title: ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients
  publication-title: Commun Stat Appl Met.
– volume: 80
  start-page: P3-01-24
  issue: 4_Supplement
  year: 2020
  ident: pgen.1010942.ref063
  article-title: Abstract P3-01-24: The cancer-associated TRPC5 opposite strand protein, a novel regulatory factor for cell proliferation in triple negative breast cancer
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.SABCS19-P3-01-24
– volume: 14
  start-page: e1006098
  issue: 4
  year: 2018
  ident: pgen.1010942.ref057
  article-title: Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006098
– volume: 5
  start-page: 11432
  issue: 1
  year: 2015
  ident: pgen.1010942.ref034
  article-title: TRRUST: a reference database of human transcriptional regulatory interactions.
  publication-title: Sci Rep
  doi: 10.1038/srep11432
– volume: 123
  start-page: e90
  issue: 17
  year: 2014
  ident: pgen.1010942.ref047
  article-title: Transcription and enhancer profiling in human monocyte subsets
  publication-title: Blood
  doi: 10.1182/blood-2013-02-484188
– volume: 5
  start-page: 251
  issue: 3
  year: 2017
  ident: pgen.1010942.ref005
  article-title: Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures.
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.08.014
– start-page: abs/1412.6575
  year: 2015
  ident: pgen.1010942.ref040
  article-title: Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
  publication-title: CoRR
– volume: 34
  start-page: 964
  issue: 6
  year: 2018
  ident: pgen.1010942.ref008
  article-title: A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx605
– volume: 25
  start-page: 1091
  issue: 8
  year: 2009
  ident: pgen.1010942.ref067
  article-title: ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp101
– volume: 38
  start-page: 1007
  issue: 9
  year: 2020
  ident: pgen.1010942.ref072
  article-title: Integrative Methods and Practical Challenges for Single-Cell Multi-omics
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2020.02.013
– volume: 7
  start-page: 64527
  issue: 40
  year: 2016
  ident: pgen.1010942.ref070
  article-title: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11743
– volume: 38
  start-page: 110333
  issue: 6
  year: 2022
  ident: pgen.1010942.ref010
  article-title: Network inference with Granger causality ensembles on single-cell transcriptomics
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2022.110333
– volume: 36
  start-page: 4774
  issue: 18
  year: 2020
  ident: pgen.1010942.ref012
  article-title: Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa576
– volume: 85
  start-page: 2918
  issue: 10
  year: 1995
  ident: pgen.1010942.ref046
  article-title: Neutrophils and Monocytes Express High Levels of PU.l (Spi-1) But Not Spi-B.
  publication-title: Blood
  doi: 10.1182/blood.V85.10.2918.bloodjournal85102918
– volume: 56 6
  start-page: 1244
  year: 1996
  ident: pgen.1010942.ref059
  article-title: Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer.
  publication-title: Cancer Res
– volume: 2015
  start-page: bav095
  year: 2015
  ident: pgen.1010942.ref033
  article-title: RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.
  publication-title: Database (Oxford).
  doi: 10.1093/database/bav095
– volume: 181
  start-page: 4590
  issue: 7
  year: 2008
  ident: pgen.1010942.ref051
  article-title: Early Growth Response Genes Regulate B Cell Development, Proliferation, and Immune Response
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.7.4590
– volume: 104
  start-page: 51
  year: 2014
  ident: pgen.1010942.ref037
  article-title: Robustness analysis of three classical correlation coefficients under contaminated Gaussian Model.
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2014.04.003
– volume: 8
  start-page: 873
  year: 2010
  ident: pgen.1010942.ref065
  article-title: Autophagy Regulates Keratin 8 Homeostasis in Mammary Epithelial Cells and in Breast Tumors
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-09-0494
– volume: 35
  start-page: 2159
  issue: 12
  year: 2019
  ident: pgen.1010942.ref009
  article-title: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty916
– start-page: abs/1412.6980
  year: 2015
  ident: pgen.1010942.ref041
  publication-title: Adam: A Method for Stochastic Optimization
– volume: 7
  start-page: 50
  issue: 1
  year: 2021
  ident: pgen.1010942.ref066
  article-title: Tumor-associated autoantibodies from mouse breast cancer models are found in serum of breast cancer patients
  publication-title: npj Breast Cancer
  doi: 10.1038/s41523-021-00257-1
– volume: 116
  start-page: 27151
  issue: 52
  year: 2019
  ident: pgen.1010942.ref018
  article-title: Deep learning for inferring gene relationships from single-cell expression data
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1911536116
– volume: 128
  start-page: e20
  issue: 8
  year: 2016
  ident: pgen.1010942.ref030
  article-title: A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
  publication-title: Blood
  doi: 10.1182/blood-2016-05-716480
– volume: 14
  start-page: 1083
  issue: 11
  year: 2017
  ident: pgen.1010942.ref015
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4463
– volume: 9
  start-page: 619
  issue: 1
  year: 2018
  ident: pgen.1010942.ref043
  article-title: Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-02866-0
– volume: 9
  start-page: 3588
  issue: 1
  year: 2018
  ident: pgen.1010942.ref058
  article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq.
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06052-0
– volume: 343
  start-page: 193
  issue: 6167
  year: 2014
  ident: pgen.1010942.ref001
  article-title: Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells
  publication-title: Science
  doi: 10.1126/science.1245316
– volume: 10
  start-page: 265
  issue: 3
  year: 2020
  ident: pgen.1010942.ref006
  article-title: Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe.
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2020.02.003
– year: 2016
  ident: pgen.1010942.ref038
  article-title: Variational graph auto-encoders.
  publication-title: arXiv preprint
– volume: 6
  start-page: e1000936
  issue: 9
  year: 2010
  ident: pgen.1010942.ref023
  article-title: A Boolean Model of the Gene Regulatory Network Underlying Mammalian Cortical Area Development.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000936
– volume: 19
  start-page: e46255
  issue: 12
  year: 2018
  ident: pgen.1010942.ref031
  article-title: ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data
  publication-title: EMBO Rep
  doi: 10.15252/embr.201846255
– start-page: abs/1609.02907
  year: 2017
  ident: pgen.1010942.ref039
  article-title: Semi-Supervised Classification with Graph Convolutional Networks.
  publication-title: ArXiv
– volume: 12
  start-page: 26
  issue: 1
  year: 2015
  ident: pgen.1010942.ref026
  article-title: A Boolean network model of human gonadal sex determination.
  publication-title: Theor Biol Med Model
  doi: 10.1186/s12976-015-0023-0
– volume: 23
  start-page: 151
  year: 2021
  ident: pgen.1010942.ref064
  article-title: Transcriptional landscape associated with TNBC resistance to neoadjuvant chemotherapy revealed by single-cell RNA-seq
  publication-title: Mol Ther Oncolytics
  doi: 10.1016/j.omto.2021.09.002
– volume: 508
  start-page: 103
  issue: 7494
  year: 2014
  ident: pgen.1010942.ref069
  article-title: XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway
  publication-title: Nature
  doi: 10.1038/nature13119
– volume: 6
  start-page: e22649
  issue: 8
  year: 2011
  ident: pgen.1010942.ref025
  article-title: Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Factor Network.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022649
– volume: 34
  start-page: 258
  issue: 2
  year: 2018
  ident: pgen.1010942.ref011
  article-title: SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx575
SSID ssj0035897
Score 2.6531858
Snippet The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1010942
SubjectTerms Analysis
Biology and Life Sciences
Breast cancer
Cells
Computer and Information Sciences
Datasets
Deep learning
Gene expression
Gene Regulatory Networks - genetics
Genes
Humans
Identification and classification
Leukocytes, Mononuclear
Machine learning
Medicine and Health Sciences
Methods
Performance evaluation
Peripheral blood mononuclear cells
Physical Sciences
Research and Analysis Methods
RNA
RNA sequencing
Transcriptome - genetics
Transcriptomes
Triple Negative Breast Neoplasms
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKPgifl_11CiCT_WapGnax1M8PJBV_OKeDNk00YO1XdqucP-9M0m3XOXg7sHXzXTZnZnMzC-d_IaQl6wsXM2qOi2FMWmurE8rLlepWxWFZ4WBKj9Q5n9Qy2V5clJ9OjfqC3vCIj1wVNxBLS0yriOLJs99pUxl7KqCJOQZt3Ue0DpUPTswFWOwkGUcqyKlSBXA-vHSnFDsYLTR6w0YCLEr4Bs-S0qBu3-K0IvNuu0vKj__7aI8l5aObpNbYz1JD-P_uEOuueYuuREnTJ7dIz-O8UIfnt1R-CGOdnH0fNud0SY2gFO8YELxxGDtUjzGpwOmrxBM2t-up3hSSwOvNTXboUXiy9p1NIzQuU--Hb37-vZ9Oo5USC0UKkNqBfNQYWSs9srzTLjaFSujajy5rRTPVWmdLUuvlGO5E4C2ANFIZbgxXkB2Fw_Iomkbt0eolKVjPKsl9zLnmVtZy7m1UF4oKApZlhCx06m2I984jr1Y6_ASTQHuiCrSaAk9WiIh6fTUJvJtXCL_Bs01ySJbdvgAfEiPPqQv86GEPENj63j1dNrz-lBBKkdIqRLyIkggY0aDLTk_zbbv9fHH71cQ-rK8itDnmdCrUci3oDNrxrsSoHmk65pJ7s8kITjY2fIe-u9Odb0GhAgAvZKZgCd3Pn3x8vNpGb8Ue_Ea1257zcsix1GzAmQexi0wqV8oyCBQQSaknG2OmX3mK83pr8BqzrJAdJQ9-h8WfUxucqhGsbGHiX2yGLqte0Ku2z_Dad89DbHiL7vUbEU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQAhIX3tCFAgYhcQqN7SR2jgWxolK1VLzUE5bj2FBpSVZJFqn_nhknG0jVinJdf15ZY3sezsw3hLxkKnMly8tICWOiRFof5TwtIldkmWeZAS8_UOYfyuVSHR_nR38CxTNf8IVke4NMX69BoBhrQjwCKvcqF1mGKVyLo8Ot5hWpyuVQHnfRzIn5CSz9oy6erVd1e56jeTZf8i8DtLj1v0u_TW4Oribd78_GHXLFVXfJ9b755Ok98u0Aa_3wWY_CREebvit93ZzSqs8Np1h7QvExYeUifOGnHVq2oGfqn66l-IhLA-U1NZuuRk7M0jU0dNe5T74s3n1--z4aui1EFnyYLrKCeXA-YlZ66XksXOmywsgSH3VzyROprLNKeSkdS5yAQAyCnVQabowXYPjFAzKr6srtEJqmyjEelyn3acJjV1jLubXgeUjwF1k8J2K7CdoOVOTYEWOlw_c1CSFJLyKNktOD5OYkGmeteyqOf-Df4P6OWCTSDj_AFunhXuoytUjojyStPPG5NLmxRQ4-jmfclgks9RmeDt1XpY7qQO9LsPIYbco5eREQSKZRYbbOd7NpW33w4eslQJ-WlwF9nIBeDSBfg8ysGcooQPLI5DVB7k6QoDfsZHgHD_xWdK2G4BFi9zyNBczcXoLzh5-Pw_inmKZXuXrTaq6yBLvQCsA87O_MKH4hwbiAczknanKbJvszHalOfgTCcxYHDqT40cVLfkxucHA_MZOHiV0y65qNe0Ku2V_dSds8DWriN8ZdZ1I
  priority: 102
  providerName: Public Library of Science
Title Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
URI https://www.ncbi.nlm.nih.gov/pubmed/37703293
https://www.proquest.com/docview/3069179503
https://www.proquest.com/docview/2864900033
https://pubmed.ncbi.nlm.nih.gov/PMC10519590
https://doaj.org/article/d5c5782179124f97a9acb9613f12cd40
http://dx.doi.org/10.1371/journal.pgen.1010942
Volume 19
WOSCitedRecordID wos001067521400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIv45sVRjEIiaew2E7i5AltaBWVRonGh8oLkes4Y1KXlKRF2n_PneMGgiaYxEse4kuU-Ozz787n3xHygsWRyVmSe7FQygukLryEh3PPzKOoYJEClG8p84_ldBrPZknqAm6NS6vc2ERrqPNKY4x8H6AteBZJ6IvXy-8eVo3C3VVXQmOLbCNLgrCpe-nGEoswbourhKHwJDj37uickGzfaerVEtSEHix4Oby3NFkG_85OD5aLqrkMhP6ZS_nb4jS-9b-_dZvsOFhKD9pxdIdcM-VdcqMtVHlxj3yd4LlADAFS-BND67aCfVVf0LLNI6d4ToVi4GFhPNwNoCtcBa1Nqs5NQzHgSy09NlXrVYX8mbmpqa3Ec598Gh99fPPWc5UZPA14Z-VpwQoAKj7LC1lwX5jcRHMlcwwAJ5IHMtZGx3EhpWGBEeC0gWMUSsWVKgSABPGADMqqNLuEhmFsGPfzkBdhwH0z15pzrQGlSMCWzB8SsVFKph1tOVbPWGR2L06C-9J2UYaqzJwqh8Trnlq2tB3_kD9EfXeySLptb1T1aebmcJaHGsn_kdCVB0UiVaL0PAE8VDCu8wA-9SmOlqw9wdqZjuxAAiJAz1QOyXMrgcQbJWb2nKp102ST95-vIPRhehWhk57QSydUVNBnWrkjF9DzyPrVk9zrSYKN0b3mXZwAm65rsl_DFp7cDOzLm591zfhSTOkrTbVuMh5HAVasFSDzsJ1DXfcLCQsRANEhiXuzq6effkt59s2SozPf8iX5j_7-XY_JTQ5wFTN_mNgjg1W9Nk_Idf1jddbUI7IlZ9Je4xHZPjyapicjG62B6zg9HlkzAy3p5F365SfrnIIS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoILb-hCoQaBOIXGdhInB4TKo-qqy1JBQT1hvI6zVFqSJdkF7Z_iNzLjJAtBFfTSA9d4EiWTeXxjz4OQhyyObMqS1IuF1l4gTeYlPBx7dhxFGYs0oHzXMn8oR6P48DDZXyM_2loYTKtsbaIz1GlhcI98C6AtRBZJ6Itns68eTo3C09V2hEYtFnt2-R1Cturp4CX830ec77w6eLHrNVMFPAO-eu4ZwTJwsj5LM5lxX9jURmMtU9y8TCQPZGysieNMSssCKyDgAFAfSs21zgQ4OAHPPUPOAozgsUsV3G8tvwjjephLGApPisRvSvWEZFuNZDyZgVhgxAxRFe-4QjcxYOUXerNpUR0Hev_M3fzNGe5c_t_YeIVcamA33a715CpZs_k1cr4exLm8Tj4OsO4RtzgpcM7S0k5wrFlRLmle58lTrMOhuLEytR6edtA5enlnc4svtqK4oU1d-2-qF_MC-4OmtqRu0tAN8v5UPu4m6eVFbtcJDcPYMu6nIc_CgPt2bAznxgAKk4Cdmd8nohUCZZq27DgdZKrcWaOE8KxmkULRUY3o9Im3umtWtyX5B_1zlK8VLTYVdxeKcqIaG6XS0OBwA2xYy4MskTrRZpwA3ssYN2kAr7qJ0qnqCt2VaVTbEhAPRt6yTx44CmwskmPm0kQvqkoN3nw4AdG70UmI3naIHjdEWQE8M7opKQHOY1ezDuVGhxJsqOksr6PCtayr1C81gTtbRTp--f5qGR-KKYu5LRaV4nEU4EReATS3ap1dsV9IcLQAtPsk7mhz5_90V_Kjz675O_NdPyj_9t_fa5Nc2D14PVTDwWjvDrnIAZpjlhMTG6Q3Lxf2Ljlnvs2PqvKeM2GUfDptZf8JI5vXYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW8hAX3rCFhTUIxCk0tpM4OSC0sFRUuyorXtoTxnWcslJJStKC-tf4dcw4SSFoBXvZA9d4EiWTedoz3xDykMWRTVmSerHQ2gukybyEhxPPTqIoY5GGKN9B5u_L8Tg-PEwONsiPthcGyypbm-gMdVoY3CMfQGgLmUUS-mKQNWURB7vDZ_OvHk6QwpPWdpxGLSJ7dvUd0rfq6WgX_vUjzocv37145TUTBjwDfnvhGcEycLg-SzOZcV_Y1EYTLVPcyEwkD2RsrInjTErLAisg-YAAP5Saa50JcHYCnnuGnJUIWu7KBg9aLyDCuB7sEobCkyLxm7Y9IdmgkZIncxARzJ4hw-Idt-imB6x9RG8-K6rjAuA_6zh_c4zDy_8zS6-QS004Tndq_blKNmx-jZyvB3SurpOPI-yHxK1PCly0tLRTHHdWlCua1_XzFPtzKG64zKyHpyB0gd7f2eLii60obnRTBwtO9XJRIG5oakvqJhDdIO9P5eNukl5e5HaT0DCMLeN-GvIsDLhvJ8ZwbgxEZxJiaub3iWgFQpkGrh2nhsyUO4OUkLbVLFIoRqoRoz7x1nfNa7iSf9A_R1lb0yLYuLtQlFPV2C6VhgaHHiCQLQ-yROpEm0kCcWDGuEkDeNVtlFRVd-6uTabakRAJYUYu--SBo0DAkRzlbKqXVaVGrz-cgOjt-CREbzpEjxuirACeGd20mgDnEe2sQ7nVoQTbajrLm6h8Lesq9Utl4M5WqY5fvr9exodiKWNui2WleBwFOKlXAM2tWn_X7BcSHDAE4H0SdzS783-6K_nRZwcKz3yHE-Xf_vt7bZMLoONqfzTeu0MucojYsfiJiS3SW5RLe5ecM98WR1V5z1kzSj6dtq7_BLO74B0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+gene+regulatory+network+from+single-cell+transcriptomes+with+graph+autoencoder+model&rft.jtitle=PLoS+genetics&rft.au=Wang%2C+Jiacheng&rft.au=Chen%2C+Yaojia&rft.au=Zou%2C+Quan&rft.date=2023-09-13&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=19&rft.issue=9&rft.spage=e1010942&rft_id=info:doi/10.1371%2Fjournal.pgen.1010942&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon