Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data

Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 14; H. 4; S. e1006076
Hauptverfasser: Ching, Travers, Zhu, Xun, Garmire, Lana X.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 10.04.2018
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.
AbstractList Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet. The increasing application of high-througput transcriptomics data to predict patient prognosis demands modern computational methods. With the re-gaining popularity of artificial neural networks, we asked if a refined neural network model could be used to predict patient survival, as an alternative to the conventional methods, such as Cox proportional hazards (Cox-PH) methods with LASSO or ridge penalization. To this end, we have developed a neural network extension of the Cox regression model, called Cox-nnet. It is optimized for survival prediction from high throughput gene expression data, with comparable or better performance than other conventional methods. More importantly, Cox-nnet reveals much richer biological information, at both the pathway and gene levels, by analyzing features represented in the hidden layer nodes in Cox-nnet. Additionally, we propose to use hidden node features as a new approach for dimension reduction during survival data analysis.
Audience Academic
Author Garmire, Lana X.
Ching, Travers
Zhu, Xun
AuthorAffiliation 2 Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States of America
1 Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, United States of America
University of Cambridge, UNITED KINGDOM
AuthorAffiliation_xml – name: 1 Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, United States of America
– name: University of Cambridge, UNITED KINGDOM
– name: 2 Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States of America
Author_xml – sequence: 1
  givenname: Travers
  surname: Ching
  fullname: Ching, Travers
– sequence: 2
  givenname: Xun
  surname: Zhu
  fullname: Zhu, Xun
– sequence: 3
  givenname: Lana X.
  orcidid: 0000-0002-4654-2126
  surname: Garmire
  fullname: Garmire, Lana X.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29634719$$D View this record in MEDLINE/PubMed
BookMark eNqVk12P1CAUhhuzxv3Qf2C0iTd60REKlLIXJpOJH5NsNPHjmjAUWsYOdIHq-u-lO93NzmZjYnrBCTznhfP2nNPsyDqrsuw5BAuIKHy7daO3ol8McmMWEIAK0OpRdgIJQQVFpD66Ex9npyFsAUghq55kxyWrEKaQnWTNyl0V1qp4ni9tLnw02kgj-tyq0V8v8bfzP_Odip1rcu18PnjXWhdMSJFqjIzG2dzpvDNtV8TOu7HthjHmbmdkyBsRxdPssRZ9UM_m9Sz78eH999Wn4uLLx_VqeVFIWtJYMI20aBSqNdmUggiENgSTqiJAQSzQRpVVCRGgWmFaSVlqCWgNBcOAMFQ3EJ1lL_e6Q-8Cnw0KvASI0YqkihOx3hONE1s-eLMT_g93wvDrDedbPnkge8WJJBiTRiMIGFZEMIUV1YxB3UhRkzppvZtvGzc71UhlY3LsQPTwxJqOt-4XJwwwVuIk8HoW8O5yVCHynQlS9b2wyo3Tu0sM4ORAQl_dQx-ubqZakQowVrt0r5xE-ZKgqk6FlGWiFg9Q6WtU-mOpybRJ-wcJbw4SEhPVVWzFGAJff_v6H-znQ_bFXQNvnbvpzgTgPSC9C8ErfYtAwKchuHGBT0PA5yFIaef30qSJYmrTVKjp_538F1g8DaI
CitedBy_id crossref_primary_10_1186_s13073_022_01012_2
crossref_primary_10_3390_ijms20010033
crossref_primary_10_3389_fgene_2019_00166
crossref_primary_10_1109_TRPMS_2023_3283562
crossref_primary_10_1053_j_semnuclmed_2020_10_003
crossref_primary_10_1016_j_critrevonc_2025_104682
crossref_primary_10_1109_TMI_2023_3262024
crossref_primary_10_3390_diagnostics11050742
crossref_primary_10_1186_s12864_019_5546_z
crossref_primary_10_3389_froh_2021_686863
crossref_primary_10_1007_s10462_023_10681_3
crossref_primary_10_1186_s12874_020_01153_1
crossref_primary_10_1002_sim_10221
crossref_primary_10_1007_s12072_022_10393_w
crossref_primary_10_1093_bib_bbaf166
crossref_primary_10_1002_cpt_1951
crossref_primary_10_1109_RBME_2019_2904488
crossref_primary_10_1016_j_canlet_2019_12_007
crossref_primary_10_1093_bioinformatics_btaf413
crossref_primary_10_2174_1574893618666230502102712
crossref_primary_10_3389_fonc_2020_588990
crossref_primary_10_1109_TIP_2025_3579200
crossref_primary_10_1002_sim_8743
crossref_primary_10_1111_acel_13608
crossref_primary_10_1186_s13073_021_00968_x
crossref_primary_10_1097_MD_0000000000039582
crossref_primary_10_3390_cancers13133106
crossref_primary_10_1007_s10142_023_01064_6
crossref_primary_10_1186_s12920_020_00775_0
crossref_primary_10_3389_frai_2024_1428501
crossref_primary_10_1016_j_fmre_2024_06_016
crossref_primary_10_1016_j_heliyon_2025_e41835
crossref_primary_10_1093_bib_bbae544
crossref_primary_10_1109_JBHI_2020_2980204
crossref_primary_10_1002_gepi_22518
crossref_primary_10_1109_TNB_2024_3441533
crossref_primary_10_23736_S1824_4785_19_03213_8
crossref_primary_10_1038_s41698_023_00494_6
crossref_primary_10_1093_bib_bbab392
crossref_primary_10_1093_nargab_lqab015
crossref_primary_10_3389_fonc_2020_543817
crossref_primary_10_3233_JIFS_179669
crossref_primary_10_7717_peerj_cs_492
crossref_primary_10_3389_fphys_2022_952709
crossref_primary_10_1109_TNNLS_2022_3190321
crossref_primary_10_1007_s00180_021_01086_3
crossref_primary_10_26599_BDMA_2024_9020083
crossref_primary_10_1371_journal_pone_0260681
crossref_primary_10_1093_gigascience_giaa162
crossref_primary_10_1109_ACCESS_2021_3065965
crossref_primary_10_3390_cancers15143690
crossref_primary_10_1186_s40709_020_00116_3
crossref_primary_10_1007_s12471_019_1286_6
crossref_primary_10_1109_JIOT_2024_3392292
crossref_primary_10_1038_s42003_023_05459_w
crossref_primary_10_1007_s11831_025_10357_x
crossref_primary_10_1186_s12920_019_0624_2
crossref_primary_10_1093_bib_bbab454
crossref_primary_10_1007_s10489_024_05794_3
crossref_primary_10_3389_fdgth_2025_1550407
crossref_primary_10_1016_j_bspc_2024_106137
crossref_primary_10_1007_s00180_025_01634_1
crossref_primary_10_1038_s41746_024_01207_4
crossref_primary_10_1007_s10044_024_01216_9
crossref_primary_10_1016_j_bspc_2024_106025
crossref_primary_10_12677_aam_2024_136251
crossref_primary_10_1080_24725854_2022_2030881
crossref_primary_10_1038_s41374_022_00801_y
crossref_primary_10_3892_ijo_2023_5555
crossref_primary_10_1007_s11831_021_09547_0
crossref_primary_10_1186_s12859_023_05392_z
crossref_primary_10_1016_j_artmed_2023_102696
crossref_primary_10_1016_j_crmeth_2023_100461
crossref_primary_10_3390_genes13091674
crossref_primary_10_6339_25_JDS1173
crossref_primary_10_1016_j_isci_2021_103617
crossref_primary_10_1007_s00167_021_06794_3
crossref_primary_10_3390_medicina56050243
crossref_primary_10_1038_s41467_025_58437_7
crossref_primary_10_1093_bib_bbaf150
crossref_primary_10_1186_s12859_020_03850_6
crossref_primary_10_3390_jpm11080787
crossref_primary_10_1093_bib_bbz040
crossref_primary_10_1109_ACCESS_2023_3240515
crossref_primary_10_1109_JBHI_2023_3332640
crossref_primary_10_1214_21_AOS2153
crossref_primary_10_3390_cancers12030603
crossref_primary_10_1038_s41598_020_70542_9
crossref_primary_10_1186_s44398_025_00009_2
crossref_primary_10_1038_s41467_025_57181_2
crossref_primary_10_1155_2021_1051172
crossref_primary_10_3390_cimb47060470
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1007_s00500_025_10855_x
crossref_primary_10_1016_j_ifacol_2023_10_762
crossref_primary_10_1093_jrsssc_qlae051
crossref_primary_10_1016_j_artmed_2023_102589
crossref_primary_10_1093_bib_bbaf028
crossref_primary_10_1002_ece3_70937
crossref_primary_10_1016_j_cmpb_2023_107978
crossref_primary_10_1186_s12957_020_02116_y
crossref_primary_10_1016_j_ifacol_2024_07_229
crossref_primary_10_1016_j_compbiomed_2023_107796
crossref_primary_10_1109_ACCESS_2025_3607285
crossref_primary_10_3390_cells11091421
crossref_primary_10_1089_nsm_2020_0003
crossref_primary_10_1093_jamia_ocae278
crossref_primary_10_1109_TMI_2025_3526816
crossref_primary_10_3390_e22121349
crossref_primary_10_3390_cancers15194897
crossref_primary_10_1038_s41598_025_09869_0
crossref_primary_10_1109_JBHI_2024_3397955
crossref_primary_10_1038_s41467_020_18918_3
crossref_primary_10_1186_s12859_022_05110_1
crossref_primary_10_3390_math11194150
crossref_primary_10_1186_s12920_020_0686_1
crossref_primary_10_1038_s41467_020_20816_7
crossref_primary_10_1093_bib_bbaf209
crossref_primary_10_1186_s12859_023_05535_2
crossref_primary_10_1016_j_ress_2021_108033
crossref_primary_10_1093_bib_bbz144
crossref_primary_10_1038_s41598_021_85671_y
crossref_primary_10_1093_bib_bbac171
crossref_primary_10_1093_nar_gkac317
crossref_primary_10_4251_wjgo_v17_i8_106621
crossref_primary_10_1016_j_neucom_2021_11_094
crossref_primary_10_1016_j_suronc_2023_102009
crossref_primary_10_3389_fbioe_2023_1081950
crossref_primary_10_1016_j_neucom_2023_127168
crossref_primary_10_1002_sim_9310
crossref_primary_10_7554_eLife_100923_3
crossref_primary_10_1038_s43856_023_00276_y
crossref_primary_10_1109_TCBB_2021_3080295
crossref_primary_10_1016_j_health_2022_100108
crossref_primary_10_1007_s42979_023_01774_5
crossref_primary_10_3390_math9111244
crossref_primary_10_1093_gigascience_giac071
crossref_primary_10_1016_j_ijrobp_2021_01_042
crossref_primary_10_1016_j_heliyon_2024_e24374
crossref_primary_10_1186_s12920_020_0687_0
crossref_primary_10_1016_j_ymeth_2021_01_004
crossref_primary_10_1038_s41698_024_00700_z
crossref_primary_10_1038_s41746_021_00453_0
crossref_primary_10_1016_j_bspc_2025_108640
crossref_primary_10_1186_s12874_022_01829_w
crossref_primary_10_1007_s42081_021_00125_z
crossref_primary_10_3390_cancers14030623
crossref_primary_10_1134_S1064562424601999
crossref_primary_10_3390_app12052622
crossref_primary_10_1016_j_compbiomed_2021_105012
crossref_primary_10_2147_CLEP_S333147
crossref_primary_10_1109_JBHI_2019_2929264
crossref_primary_10_1007_s10278_024_01227_2
crossref_primary_10_1038_s42256_019_0019_2
crossref_primary_10_1016_j_health_2023_100168
crossref_primary_10_1155_2019_9506461
crossref_primary_10_1186_s12967_020_02497_4
crossref_primary_10_1038_s41467_020_20167_3
crossref_primary_10_1155_2021_9025470
crossref_primary_10_1080_02664763_2024_2444649
crossref_primary_10_1515_ijb_2022_0055
crossref_primary_10_1186_s12859_023_05262_8
crossref_primary_10_1146_annurev_biodatasci_020722_020704
crossref_primary_10_1016_j_cmpb_2023_107341
crossref_primary_10_3390_inventions9030059
crossref_primary_10_7717_peerj_6257
crossref_primary_10_1016_j_ejca_2021_03_005
crossref_primary_10_1109_ACCESS_2022_3172348
crossref_primary_10_1038_s41568_022_00502_0
crossref_primary_10_1038_s41598_021_92799_4
crossref_primary_10_1371_journal_pdig_0000038
crossref_primary_10_1007_s11222_022_10140_z
crossref_primary_10_1016_j_trc_2021_103173
crossref_primary_10_1016_j_knosys_2021_107335
crossref_primary_10_1186_s13059_019_1837_6
crossref_primary_10_3390_biomedicines12122881
crossref_primary_10_1002_cam4_5864
crossref_primary_10_7554_eLife_100923
crossref_primary_10_1093_bioinformatics_btae521
crossref_primary_10_1109_ACCESS_2019_2919956
crossref_primary_10_1038_s43856_023_00414_6
crossref_primary_10_1007_s12672_023_00823_y
crossref_primary_10_1155_2021_2160322
crossref_primary_10_1016_j_knosys_2022_110234
crossref_primary_10_1016_j_csda_2021_107323
crossref_primary_10_1016_j_apsb_2020_12_013
crossref_primary_10_3389_fgene_2024_1378809
crossref_primary_10_1136_bmjopen_2020_039560
crossref_primary_10_1186_s12880_020_0418_1
crossref_primary_10_1038_s43588_021_00083_2
crossref_primary_10_1080_10255842_2023_2211188
crossref_primary_10_1109_JTEHM_2020_3040236
crossref_primary_10_1016_j_ins_2025_122242
crossref_primary_10_1016_j_cmpb_2023_107681
crossref_primary_10_1155_2022_1176060
crossref_primary_10_1016_j_artmed_2023_102741
crossref_primary_10_3390_info15010007
crossref_primary_10_1093_nar_gkaf844
crossref_primary_10_3390_ijms22094563
crossref_primary_10_3389_fgene_2022_800853
crossref_primary_10_1007_s00167_022_06894_8
crossref_primary_10_1016_j_engappai_2024_109972
crossref_primary_10_1093_bib_bbad238
crossref_primary_10_1186_s12874_022_01679_6
crossref_primary_10_1016_j_ress_2019_03_054
crossref_primary_10_1016_j_iswa_2025_200577
Cites_doi 10.1214/10-AOAS388
10.1007/978-3-642-40763-5_51
10.1093/nar/gkx681
10.1038/nbt.3300
10.1158/1078-0432.CCR-07-4790
10.1007/s11033-013-2578-3
10.1007/s00109-011-0759-x
10.1038/nature14539
10.1159/000056575
10.1038/sj.onc.1201542
10.1016/S0962-8924(01)02130-4
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1002/bimj.200800228
10.1109/ICASSP.2013.6639349
10.1200/JCO.2012.43.3383
10.1093/nar/28.1.27
10.1073/pnas.0506580102
10.1002/sim.4780140108
10.1016/j.juro.2011.02.019
10.1214/08-AOAS169
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1016/S0893-6080(98)00116-6
10.1007/978-1-4757-3294-8
10.1002/sim.5681
10.1186/s13073-016-0289-9
10.1371/journal.pcbi.1003851
10.1158/1535-7163.MCT-07-0177
10.18637/jss.v033.i01
10.1007/BF02478259
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ching T, Zhu X, Garmire LX (2018) Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol 14(4): e1006076. https://doi.org/10.1371/journal.pcbi.1006076
2018 Ching et al 2018 Ching et al
2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ching T, Zhu X, Garmire LX (2018) Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol 14(4): e1006076. https://doi.org/10.1371/journal.pcbi.1006076
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ching T, Zhu X, Garmire LX (2018) Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol 14(4): e1006076. https://doi.org/10.1371/journal.pcbi.1006076
– notice: 2018 Ching et al 2018 Ching et al
– notice: 2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ching T, Zhu X, Garmire LX (2018) Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol 14(4): e1006076. https://doi.org/10.1371/journal.pcbi.1006076
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1006076
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Artificial neural network for prognosis
EISSN 1553-7358
ExternalDocumentID 2039765347
oai_doaj_org_article_5c5445df31094e5a9e4e7f991fdca858
PMC5909924
A536809422
29634719
10_1371_journal_pcbi_1006076
Genre Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD084633
– fundername: NIH HHS
  grantid: K01ES025434
– fundername: NLM NIH HHS
  grantid: R01 LM012373
– fundername: NIH HHS
  grantid: P20 GM103457
– fundername: NIEHS NIH HHS
  grantid: K01 ES025434
– fundername: NIGMS NIH HHS
  grantid: P20 GM103457
– fundername: NIH HHS
  grantid: R01 LM012373
– fundername: NIH HHS
  grantid: R01 HD084633
– fundername: ;
  grantid: GM103457
– fundername: ;
  grantid: HD084633
– fundername: ;
  grantid: 14ADVC-64566
– fundername: ;
  grantid: K01ES025434
– fundername: ;
  grantid: LM012373
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
M~E
UMP
ID FETCH-LOGICAL-c727t-9f3fade38f5b2a5a33b5456650e14a3be2621307fe476cc2fc0781a9405938d13
IEDL.DBID FPL
ISICitedReferencesCount 259
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432169600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun May 07 16:29:17 EDT 2023
Fri Oct 03 12:51:00 EDT 2025
Tue Nov 04 01:57:21 EST 2025
Fri Sep 05 06:42:13 EDT 2025
Sat Nov 29 15:08:11 EST 2025
Tue Nov 11 10:39:21 EST 2025
Tue Nov 04 17:59:58 EST 2025
Thu Nov 13 14:31:14 EST 2025
Thu Nov 13 15:46:36 EST 2025
Thu Apr 03 07:04:20 EDT 2025
Sat Nov 29 06:31:14 EST 2025
Tue Nov 18 21:45:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-9f3fade38f5b2a5a33b5456650e14a3be2621307fe476cc2fc0781a9405938d13
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
The authors have declared that no competing interests exist.
ORCID 0000-0002-4654-2126
OpenAccessLink http://dx.doi.org/10.1371/journal.pcbi.1006076
PMID 29634719
PQID 2039765347
PQPubID 1436340
ParticipantIDs plos_journals_2039765347
doaj_primary_oai_doaj_org_article_5c5445df31094e5a9e4e7f991fdca858
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909924
proquest_miscellaneous_2024014566
proquest_journals_2039765347
gale_infotracmisc_A536809422
gale_infotracacademiconefile_A536809422
gale_incontextgauss_ISR_A536809422
gale_incontextgauss_ISN_A536809422
pubmed_primary_29634719
crossref_primary_10_1371_journal_pcbi_1006076
crossref_citationtrail_10_1371_journal_pcbi_1006076
PublicationCentury 2000
PublicationDate 20180410
PublicationDateYYYYMMDD 2018-04-10
PublicationDate_xml – month: 4
  year: 2018
  text: 20180410
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References C-L Chi (ref13) 2007
ref14
I Marques (ref30) 2013; 40
TM Therneau (ref1) 2000
D Faraggi (ref11) 1995; 14
TK Choueiri (ref32) 2013; 31
ref10
H Nishimori (ref37) 1997; 15
S Kudo (ref38) 2007; 18
FE Harrell (ref47) 1996; 15
M Love (ref44) 2013
SM Cork (ref33) 2011; 89
C Girgin (ref29) 2001; 66
ref19
HB Demuth (ref41) 2014
P Breheny (ref2) 2011; 5
S Huang (ref24) 2016; 8
H Ishwaran (ref4) 2008
JA Koziol (ref21) 2009; 51
T Masters (ref46) 1993
Maaten Lvd (ref26) 2008; 9
TA Gerds (ref20) 2013; 32
S Huang (ref23) 2014; 10
RJ Akhurst (ref31) 2001; 11
Y Fukushima (ref34) 1998; 13
C Lin (ref15) 2017; 45
LP Petalidis (ref12) 2008; 7
E Graf (ref25) 1999; 18
N Qian (ref18) 1999; 12
A Sergushichev (ref28) 2016
N Jones (ref8) 2014
J Friedman (ref45) 2010; 33
H Oka (ref39) 1995; 55
ref43
T Izutsu (ref36) 2011; 185
B Alipanahi (ref9) 2015; 33
J Lee (ref35) 2001; 18
R Al-Rfou (ref16) 2016
WS McCulloch (ref5) 1943; 5
N Srivastava (ref17) 2014; 15
R Wei (ref22) 2016
BB Friday (ref40) 2008; 14
ref3
A Subramanian (ref27) 2005; 102
T Ching (ref7) 2017
Y LeCun (ref6) 2015; 521
Y LeCun (ref42) 1995; 3361
M Kanehisa (ref48) 2000; 28
References_xml – volume: 5
  start-page: 232
  issue: 1
  year: 2011
  ident: ref2
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: The annals of applied statistics
  doi: 10.1214/10-AOAS388
– ident: ref3
– ident: ref10
  doi: 10.1007/978-3-642-40763-5_51
– year: 2007
  ident: ref13
  article-title: editors. Application of artificial neural network-based survival analysis on two breast cancer datasets
  publication-title: AMIA Annual Symposium Proceedings
– volume: 45
  start-page: e156
  issue: 17
  year: 2017
  ident: ref15
  article-title: Using neural networks for reducing the dimensions of single-cell RNA-Seq data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx681
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref26
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 18
  start-page: 785
  issue: 4
  year: 2007
  ident: ref38
  article-title: Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma
  publication-title: Oncology reports
– ident: ref43
– year: 2016
  ident: ref16
  article-title: Theano: A Python framework for fast computation of mathematical expressions
– year: 2014
  ident: ref8
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  ident: ref9
  article-title: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.3300
– volume: 14
  start-page: 342
  issue: 2
  year: 2008
  ident: ref40
  article-title: Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-07-4790
– volume: 40
  start-page: 4819
  issue: 8
  year: 2013
  ident: ref30
  article-title: Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population
  publication-title: Molecular biology reports
  doi: 10.1007/s11033-013-2578-3
– start-page: 142760
  year: 2017
  ident: ref7
  article-title: Opportunities And Obstacles For Deep Learning In Biology And Medicine
  publication-title: bioRxiv
– volume: 89
  start-page: 743
  issue: 8
  year: 2011
  ident: ref33
  article-title: Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development
  publication-title: Journal of molecular medicine
  doi: 10.1007/s00109-011-0759-x
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: ref6
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 66
  start-page: 78
  issue: 2
  year: 2001
  ident: ref29
  article-title: P53 mutations and other prognostic factors of renal cell carcinoma
  publication-title: Urologia internationalis
  doi: 10.1159/000056575
– volume: 18
  start-page: 355
  issue: 2
  year: 2001
  ident: ref35
  article-title: Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer
  publication-title: International journal of oncology
– volume: 15
  start-page: 2145
  issue: 18
  year: 1997
  ident: ref37
  article-title: A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201542
– volume: 11
  start-page: S44
  issue: 11
  year: 2001
  ident: ref31
  article-title: TGF-β signaling in cancer–a double-edged sword
  publication-title: Trends in cell biology
  doi: 10.1016/S0962-8924(01)02130-4
– volume: 15
  start-page: 361
  year: 1996
  ident: ref47
  article-title: Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Statistics in medicine
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume: 51
  start-page: 467
  issue: 3
  year: 2009
  ident: ref21
  article-title: The concordance index C and the Mann–Whitney parameter Pr (X> Y) with randomly censored data
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.200800228
– ident: ref19
  doi: 10.1109/ICASSP.2013.6639349
– volume: 31
  start-page: 181
  issue: 2
  year: 2013
  ident: ref32
  article-title: Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2012.43.3383
– year: 2014
  ident: ref41
– volume: 55
  start-page: 4182
  issue: 18
  year: 1995
  ident: ref39
  article-title: Constitutive activation of mitogen-activated protein (MAP) kinases in human renal cell carcinoma
  publication-title: Cancer research
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: ref48
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic acids research
  doi: 10.1093/nar/28.1.27
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: ref27
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0506580102
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref17
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 14
  start-page: 73
  issue: 1
  year: 1995
  ident: ref11
  article-title: A neural network model for survival data
  publication-title: Statistics in medicine
  doi: 10.1002/sim.4780140108
– volume: 185
  start-page: 2353
  issue: 6
  year: 2011
  ident: ref36
  article-title: Brain-specific angiogenesis inhibitor 1 is a putative factor for inhibition of neovascular formation in renal cell carcinoma
  publication-title: The Journal of urology
  doi: 10.1016/j.juro.2011.02.019
– start-page: 841
  year: 2008
  ident: ref4
  article-title: Random survival forests
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/08-AOAS169
– volume: 18
  start-page: 2529
  issue: 17‐18
  year: 1999
  ident: ref25
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Statistics in medicine
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– year: 1993
  ident: ref46
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: ref18
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(98)00116-6
– start-page: 060012
  year: 2016
  ident: ref28
  article-title: An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation
  publication-title: bioRxiv
– year: 2000
  ident: ref1
  article-title: Modeling survival data: extending the Cox model
  doi: 10.1007/978-1-4757-3294-8
– volume: 32
  start-page: 2173
  issue: 13
  year: 2013
  ident: ref20
  article-title: Estimating a time‐dependent concordance index for survival prediction models with covariate dependent censoring
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.5681
– volume: 8
  start-page: 1
  issue: 1
  year: 2016
  ident: ref24
  article-title: Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis
  publication-title: Genome medicine
  doi: 10.1186/s13073-016-0289-9
– year: 2016
  ident: ref22
  article-title: Meta-dimensional data integration identifies critical pathways for susceptibility, tumorigenesis and progression of endometrial cancer
  publication-title: Oncotarget
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: ref42
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The handbook of brain theory and neural networks
– volume: 10
  start-page: e1003851
  issue: 9
  year: 2014
  ident: ref23
  article-title: A Novel Model to Combine Clinical and Pathway-Based Transcriptomic Information for the Prognosis Prediction of Breast Cancer
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1003851
– year: 2013
  ident: ref44
  article-title: Differential analysis of RNA-Seq data at the gene level using the DESeq2 package
– volume: 7
  start-page: 1013
  issue: 5
  year: 2008
  ident: ref12
  article-title: Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data
  publication-title: Molecular cancer therapeutics
  doi: 10.1158/1535-7163.MCT-07-0177
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: ref45
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of statistical software
  doi: 10.18637/jss.v033.i01
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: ref5
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: The bulletin of mathematical biophysics
  doi: 10.1007/BF02478259
– ident: ref14
– volume: 13
  start-page: 967
  issue: 5
  year: 1998
  ident: ref34
  article-title: Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer
  publication-title: International journal of oncology
SSID ssj0035896
Score 2.6468887
Snippet Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1006076
SubjectTerms Angiogenesis
Artificial neural networks
Bioengineering
Biology and Life Sciences
Brain research
Cancer
Computation
Computational Biology
Computer and Information Sciences
Data analysis
Databases, Nucleic Acid - statistics & numerical data
Epidemiology
Female
Gene expression
Gene Expression Profiling - statistics & numerical data
Gene Regulatory Networks
Generalized linear models
Genomes
Genomics
Hazards
High-Throughput Nucleotide Sequencing - statistics & numerical data
Humans
Kaplan-Meier Estimate
Kidney cancer
Kinases
Male
Medical prognosis
Medical research
Medicine and Health Sciences
Metabolic Networks and Pathways - genetics
Methods
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - mortality
Neural networks
Neural Networks, Computer
Oncology
Patients
Physical Sciences
Predictions
Prognosis
Proportional Hazards Models
Proteins
Regression analysis
Research and Analysis Methods
Ribonucleic acid
RNA
Sequence Analysis, RNA - statistics & numerical data
Software
Survival
Survival Analysis
Writing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SFHwRPT9u9U6iCD7F626S7q5vveMOBSniB_QtZPPhFY7dctuK_vfOJOnSlZN78aG0dCaFzMwmvzQzvyHkDWB0aXPpmNPcMQTwrA5chBz_1s_rxvjQteRTuVhUy2X9ea_VF-aERXrgaLgTaZAuxnpksBRO6toJV3pANd4aXclQ5guoZ3eYimswl1XozIVNcVjJxTIVzfEyP0k-erc2zQpzBGZT5BvZ25QCd_-wQk_WV11_E_z8O4tyb1u6eEgeJDxJ53Eej8gd1x6Qe7HD5O_HxJ51vxhW3ryn85bibCNjBEUey_AWssBpbCRNAcFSzNhqu37Vwye8xUHP0c5TJDZmqa3PeruhWM7cU8wwfUK-X5x_O_vAUmMFZgCubFjtudfW8crLptBSc94gkAKw5nKheeOKWQF7W-mdKDGv2hukBNK1wP5_lc35UzJpu9YdEmpBLKaai5mBoQLWrNzCy1vNLaylOiN8Z1llEus4Nr-4UuEqrYTTRzSUQn-o5I-MsGHUOrJu3KJ_ik4bdJEzO3wBkaRSJKnbIikjr9HlClkxWky7-aG3fa8-fl2oueSzCkYVxT-VvoyU3iYl38FkjU6lDmAyZNsaaR6NNOHZNiPxIYbfbs69KqaIHyUXJYzcheTN4leDGH8UU-la121RBxyWo7sz8ixG8GC3ApZjQCt1RspRbI8MO5a0q8tASi5rOGsU4vn_8MQLch9waYWXdvn0iEw211t3TO6an5tVf_0yPOl_AMnAVvg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database (ProQuest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaggLQX3rCBBRmExMnQxHadcEFlxQoEqhAPqbfI9WOptEqyTYvg3zPjOGGDFjhwqFrV4yj2jMdje_x9hDyBGF3aVDrmNHcMA3hWBCxCjtv6abEyPrCWvFeLRb5cFh_ihlsb0yp7nxgcta0N7pHDIh1nTsmFetmcMmSNwtPVSKFxkVxK4clo5-8U6z0xl3ng50JqHKa4WMarc1ylz6OmnjVmtcZMgdkUUUfOTE0BwX_w05PmpG7PC0J_z6U8MzkdXfvfZl0nV2NYSuedHd0gF1x1k1zpiCp_3CL2sP7O8ALPCzqvKFpbBzxBEQ4zfIVkctrxUVMIhCkmflV1u27hFx4GoQHQ2lPER2aRHajZbSneim4pJqreJl-OXn8-fMMiPwMzEPVsWeG519bx3MtVpqXmfIXxGMR8LhWar1w2A51MlXdCYXq2N4gspAuBNIK5TfkdMqnqyu0TaqFYTDUXMwNVBbi-1MLHW80tuGSdEN6rpjQRvBw5NE7KcCKnYBHTdVSJCi2jQhPChlpNB97xD_lXqPVBFqG3wx_15riMI7mUBvGLrEdIVeGkLpxwykOY7a3RucwT8hhtpkRwjQqzd471rm3Lt58W5VzyWQ61suyPQh9HQk-jkK-hsUbHGxPQZQjaNZI8GEmCizCj4n20377NbfnL6qBmb5fnFz8aivGhmJFXuXqHMqCwFNWdkLvdEBj6LQOvDkFPkRA1Ghyjjh2XVOuvAdtcFrBkycS9v7_WfbIHgWuOp3rp9IBMtpude0Aum2_bdbt5GJzAT9I_ZIg
  priority: 102
  providerName: ProQuest
Title Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
URI https://www.ncbi.nlm.nih.gov/pubmed/29634719
https://www.proquest.com/docview/2039765347
https://www.proquest.com/docview/2024014566
https://pubmed.ncbi.nlm.nih.gov/PMC5909924
https://doaj.org/article/5c5445df31094e5a9e4e7f991fdca858
http://dx.doi.org/10.1371/journal.pcbi.1006076
Volume 14
WOSCitedRecordID wos000432169600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYB9JexjcLjMggJJ7CmjiOE966aRUTo4oGSIWXyPEHVJqSamkR_PfcOWkg0yrEQ92qPkfJ3dn-OT7_jpBXgNG5DrkJjGQmQAAfZI6LkOFr_TArlXVZS87FbJbO51n-Z6F4bQefifCo0-mbpSoXuKefwMp7h-xGLEkwhGuan29GXsbTLOmOx21rOZh-HEt_PxaPlpd1cxPQvB4v-dcENL37v7d-j-x3UJNOWt-4T26Z6gG50yaf_PWQ6JP6Z4CHct7SSUXRg1oyCYoUl-7LBYjTNsc0BXBLMZirqptFA79wgweNSmtLkfM46DL-LNcriiedG4rBp4_I5-npp5N3QZdzIVCAZFZBZpmV2rDU8jKSXDJWIsYCHGfCWLLSREkE056wJhYYcm0VsgXJLMbUgKkO2WMyqurKHBCqoToeSxYnCprGMJyFGj5WS6ZhmJUeYRtTFKojJMe8GJeF22UTsDBpFVWg_opOfx4J-lbLlpDjH_LHaOVeFum03R9gqKLrnQVXyEmkLdKkxobLzMRGWIDOViuZ8tQjL9FHCiTMqDAi55tcN01x9nFWTDhLUmgVRVuFLgZCrzshW8PDKtmdggCVIRHXQPJwIAndXg2qD9BfN8_cFNEYoSVnsYCWGx--ufpFX40XxSi7ytRrlAGDhWhujzxpXb7XWwQjNQCZzCNi0BkGih3WVIvvjq-cZ7AMieKn2-_4GdkDIJriLl04PiSj1dXaPCe31Y_VornyyY6YC1emPtk9Pp3lF757d-K77g_lexH4GLWbQ5nzryCVn33Iv_wGk9BZwg
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGAcELd1hhgEEgngJNHNcJEkJlMK1aqRAMqW_G8WVUmpLStMD-FL-Rc5wLCxrwtAceqlb1cRQ75-b4-PsIeQQ5Ojcht4FVzAaYwAepxyJk-Fo_TDPtPGvJREynyWyWvtsgP5qzMFhW2fhE76hNofEdOSzSMXJyFouXiy8Bskbh7mpDoVGpxZ49-gZLtvLF-DU838dRtPNmf3s3qFkFAg2xehWkjjllLEsczyLFFWMZZhGQqdgwViyz0TACxy6cjQUWFTuNeDgqjZH8LjEhg-ueIWfBjwssIROzdoHHeOL5wJCKJxAsntVH9ZgIn9Wa8XShszlWJgwHiHJyLBR6xoA2LvQWh0V5UtL7e-3msWC4c_l_m8Yr5FKddtNRZSdXyYbNr5HzFRHn0XVitovvAR5Qek5HOUVrqoA1KMJ9-i9fLE8rvm0KiT7Fwra8KOcl_MLNLlRwWjiK-M9BzX60WK8onvouKRbi3iAfT2WIN0kvL3K7SaiB5nigWDzU0DUG1x4a-DijmIGQo_qENaogdQ3Ojhwhh9LvOApYpFUTJVGBZK1AfRK0vRYVOMk_5F-hlrWyCC3u_yiWB7L2VJJrxGcyDiFjY8tVamMrHCwjnNEq4UmfPEQdlQgekmN10oFal6Ucf5jKEWfDBHpF0R-F3neEntRCroDBalWfCIEpQ1CyjuRWRxJcoO40b6K9NGMu5S8th56NHZzc_KBtxotixWFuizXKwAML8XH3ya3K5Np5iyBqQVKX9onoGGNnYrst-fyzx27nKSzJovj232_rPrmwu_92Iifj6d4dchGS9AR3MMPBFumtlmt7l5zTX1fzcnnPOyBKPp22qf4E4_bAOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGuYgX7rDCAINAPJk1sd0kSAiVjYpqU1UBkypeguPYo9KUlKYF9tf4dZzjOGVBA572wEPVqj6OGudc6-PvI-QJ5OgyD6RhRnHDMIFnicMi5Pi3fpBk2jrWkv1oPI6n02SyQX40Z2GwrbLxic5R56XG_8ihSMfIKbmItq1vi5jsDl_NvzBkkMKd1oZOo1aRPXP8Dcq36uVoF5710zAcvvmw85Z5hgGmIW4vWWK5VbnhsZVZqKTiPMOMArIWEwjFMxP2Q3DykTUiwgZjqxEbRyUCifDiPOBw3XPkfAQ1JhZ-E_mxiQJcxo4bDGl5WMTF1B_b41Gw7bXk-VxnM-xS6PcQ8eREWHTsAesY0ZkfldVpCfDvfZwnAuPw6v-8pNfIFZ-O00FtP9fJhilukIs1QefxTZLvlN8ZHlx6QQcFRSurATcowoC6N9dET2sebgoFAMWGt6KsZhV8wk0wVHxaWoq40MyzIs1XS4qnwSuKDbq3yMGZ3OJt0inKwmwSmsOw6Cku-hqmCnD5QQ4vmyueQyhSXcIbtUi1B21H7pCj1O1ERlC81QuVojKlXpm6hK1nzWvQkn_Iv0aNW8si5Lj7olwcpt6DpVIjblNuEUpWGKkSI0xkobywuVaxjLvkMepriqAiBerSoVpVVTp6P04HkvdjmBWGfxR61xJ65oVsCTerlT8pAkuGYGUtya2WJLhG3RreRNtp7rlKf2k8zGxs4vThR-thvCh2IhamXKEMPLAAH3eX3KnNb71uIUQzSPaSLolahtla2PZIMfvsMN1lAqVaKO7-_Wc9JJfAQtP90XjvHrkMuXuMG5tBb4t0louVuU8u6K_LWbV44HwRJZ_O2lJ_ArSfySs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cox-nnet%3A+An+artificial+neural+network+method+for+prognosis+prediction+of+high-throughput+omics+data&rft.jtitle=PLoS+computational+biology&rft.au=Ching%2C+Travers&rft.au=Zhu%2C+Xun&rft.au=Garmire%2C+Lana+X&rft.date=2018-04-10&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=14&rft.issue=4&rft.spage=e1006076&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon